Sustainable solutions aiming at limiting Reynoutria japonica invasion consist of frequent removal of its aerial biomass. The aims of this study were to measure the accumulation of metallic trace elements (MTE) in R. japonica, and to assess the ecotoxicological risk related to the valorization of the produced biomass. R. japonica fragmented rhizomes were regenerated in pots for 41 days on a control soil (CTL) or a moderately MTE-contaminated soil (POL, 3.6 mg Cd kg−1 DM). Growth traits were recorded, as well as MTE bioconcentration (BCF) and translocation factors (TF) from soil to plant organs. Whatever the MTE and plant organs, BCF remained below one (mean Cd-BCF for stem and leaf: 0.07 and 0.29 for CTL and POL, respectively), conversely to TF (until 2.2 for Cd and Ni in POL soil). When grown on the POL soil, R. japonica stem and leaf Cd content was close to the EU maximum regulatory limit for organic amendments or animal feed. Model simulations suggested that liver and kidney Cd concentrations would exceed the regulatory limit in food when adult cattle or sheep constantly ingest R. japonica grown on the POL soil over 200 to 800 days. The results of the present study will be useful to help managers in selecting efcient and safe solutions for the control of R. japonica invasion.