Practical Ways to Assess Sustainability

Agroscope has developed the foundation of a methodology for assessing the sustainability of Swiss farms. From summer 2016, a set of indicators will be tested on around ten farms. Sustainably managed farms form an important basis for healthy, fit-for-the-future food production.

The assessment of a farm’s sustainability is a vital step in its optimisation. Here, equal consideration must be given to the criteria concerning the three dimensions of environment, economy and society. Agroscope has developed appropriate indicators, and published these in May 2016 in the ‘Agroscope Science’ publication series.

These indicators are the foundation for enabling farmers, consumers and associations as well as interested actors and stakeholders from production, processing and trade to develop a comprehensive farm sustainability assessment. Particular attention is devoted by Agroscope to the social dimension. This field still lacks sufficient resilient and practical indicators that are tailor-made for Swiss farms.

Well-being concept for human well-being

Four project teams developed indicators for assessing social sustainability, with a focus on the three areas of human well-being, animal welfare, and landscape aesthetics. Here, it was shown that the Well-being Concept of the Organization for Economic Cooperation and Development (OECD) represents a good basis for depicting the various aspects of human well-being. To this end, key questions allowing the relevant topics to be described simply and concisely were developed for each sub-aspect such as e.g. work/life balance, social relationships and subjective well-being. 

Owing to the relevance of the topic for agriculture, a project team devoted itself to the calculation of temporal workload. On the basis of the ‘ART Work Budget’ software developed by Agroscope to calculate the expected working time, we derived an indicator by comparing the theoretically derived working-time input and the workforce available on the farm. 

Point system for animal welfare

A further project team noted that using a simple indicator to assess animal welfare cannot cover all of the requirements. The researchers therefore propose a point system that manages without observations or measurements on the animal itself. In this system, points are awarded to measures with an anticipated positive impact on one of the twelve animal welfare aspects taken into account in the existing Welfare®-Quality Protocol measuring instrument, e.g. freedom of movement or the absence of pain.  In order for points to be awarded, the anticipated animal welfare must go beyond the minimum stipulated in the Swiss Animal Protection Law. Follow-up projects will now aim to determine whether a correlation does in fact exist between the number of points awarded and the level of animal welfare.

Indicators for the economy and environment

Agroscope has also developed indicators for the economic and environmental dimensions; detailed information on these can be found in the relevant Agroscope publication of May 2016. The economic sustainability of a farm can be illustrated by two key figures in each of the following areas: profitability (earned income per family labour unit and total return on capital); liquidity (cashflow-turnover rate and dynamic gearing ratio), and stability (investment intensity and investment coverage). The environmental dimension of sustainability encompasses the components of resource efficiency, effects on climate, nutrients, and ecotoxicity, as well as biodiversity and soil quality. 

Practicability, utility, acceptance

Practical testing of the indicator set is carried out in close cooperation with the involved farmers. The test determines the practicability, utility and acceptance of a sustainability assessment at farm level. In addition to the refinement of the indicator set, a scientific analysis of the results is planned. The project will be concluded with an in-depth report at the end of 2019. The results obtained are meant to contribute to the implementation of a practical solution for assessing sustainability on a large number of farms. The project is financially supported by the Migros Cooperative Association (MGB). IP-Suisse is actively involved in data acquisition.

Further information:

Project number: 22.16.19.06.04

Assessing and Designing Agricultural Landscapes

Die Multifunktionale Agrarlandschaft der Zukunft ist produktiv, umwelt- und klimafreundlich und wird von der Bevölkerung wertgeschätzt. Um diese Funktionen auf der begrenzt zur Verfügung stehenden Fläche zu erbringen, bedarf es abgestimmter agrarökologischer Konzepte und Gesamtsystembetrachtungen.

Mit Hilfe von GIS und räumlichen Daten werden in Zusammenarbeit mit Interessensvertretern und diversen Partnern Kriterien zur Bewertung der visuellen Qualität der Landschaft erarbeitet und praktische Massnahmen u.a. Agroforstsysteme und gemischte Anbausysteme hinsichtlich ihrer Einflüsse auf Biodiversität, Boden, Wasser, Luft und Klima evaluiert. Unser Ziel ist es, nachhaltige multifunktionale Agrarlandschaften zu gestalten, deren visuelle Qualität zu bewerten, und u.a. moderne Agroforstsysteme in der Umsetzung zu begleiten.

Last Name, First Name Location
Ehlers Melf-Hinrich Tänikon
Herzog Felix Reckenholz
Kay Sonja Reckenholz
Klein Noëlle Reckenholz
Kreuzer Amelie Reckenholz
Kunzelmann Jaromir Reckenholz
Roberti Giotto Reckenholz
Rubeaud Camille Reckenholz
Schüpbach Beatrice Reckenholz
Szerencsits Erich Reckenholz
Winizki Jonas Reckenholz
Wodzinowski Elias Reckenholz

Hofer S., Herzog F., Hirte J., Mestrot A., Oberholzer S., Kandeler E., Halswimmer H., Jarosch K.
How do trees affect soil organic carbon (SOC) stocks in a 13-years old Swiss agroforestry system?
In: Jahrestagung 2024. 21 March, Publ. BGS, SGP, SGPW, Zollikofen. 2024, 1.

Li Y., Herzog F., Levers C., Mohr F., Verburg P. H., Bürgi M., Dossche R., Williams T. G.
Agricultural technology as a driver of sustainable intensification: Insights from the diffusion and focus of patents.
Agronomy for Sustainable Development, 44, 2024, 1-21.

Schüpbach B., Kay S.
Validation of a visual landscape quality indicator for agrarian landscapes using public participatory GIS data.
Landscape and Urban Planning, 241, 2024, 1-11.

Muntwyler A., Panagos P., Morari F., Berti A., Jarosch K., Mayer J., Lugato E.
Modelling phosphorus dynamics in four European long-term experiments.
Agricultural Systems, 206, 2023, 1-13.

Kunzelmann J., Luchsinger N., Roberti G.
Comparing approaches to increase BirdNETs reliability in field recordings.
In: Bioacoustic meeting. 7 November, Publ. Swiss Ornithological Institute, Online. 2023, 1-14.

Mohr F., Diogo V., Helfenstein J., Debonne N., Dimopoulos T., Dramstad W., Garçia-Martin M., Hernik J., Herzog F., Bürgi M.
Why has farming in Europe changed? A farmers’ perspective on the development since the 1960s.
Regional Environmental Change, 23, (156), 2023, 1-17.

Hart D. E. T., Yeo S., Almaraz M., Beillouin D., Cardinael R., Garcia E., Kay S., Lovell S. T., Rosenstock T. S., Sprenkle-Hyppolite S., Stolle F., Suber M., Thapa B., Wood S., Cook-Patton S. C.
Priority science can accelerate agroforestry as a natural climate solution.
Nature Climate Change, 13, 2023, 1179-1190.

Roberti G., Kay S.
Ein Leitfaden für das Monitoring von Agroforstsystemen.
Die Grüne, 10, 2023, 11.

Suškevičs M., Kraner K., Bethwell C., Danzinger F., Kay S., Nishizawa T., Schuler J., Sepp K., Värnik R., Glemnitz M., Semm M., Umstätter C., Conradt T., Herzog F., Klein N. and others
Stakeholder perceptions of agricultural landscape services, biodiversity, and drivers of change in four European case studies.
Ecosystem Services, 64, 2023, 1-17.

Kay S., Gosme M., Reubens B., Lawson G., Burgess P., de Beour M., Worms P., Hübner R.
DigitAF: DIGItale Tools zur Unterstützung der AgroForstwirtschaft: Verknüpfung von Feld und Cloud.
In: 9. Forum Agroforstsysteme. 28. September, Publ. Deutscher Fachverband für Agroforstwirtschaft (DeFAF), Freiburg im Breisgau. 2023, 59-60.

Nishizawa T., Kay S., Schuler J., Klein N., Conradt T., Mielewczik M., Herzog F., Aurbacher J., Zander P.
Towards diverse agricultural land uses: Socio-ecological implications of European agricultural pathways for a Swiss orchard region.
Regional Environmental Change, 23, 2023.

Achermann G., Helfenstein J., Speranza C.I., Herzog F.
Drei Visionen im Realitäts-Check: Avenir Suisse, Bauernverband, Landwirtschaft mit Zukunft.
Agrarforschung Schweiz, 14, 2023, 130-140.

Hugenschmidt J., Kay S.
Unmasking adaption of tree root structure in agroforestry systems in Switzerland using GPR.
Geoderma regional, 34, 2023, 1-10.

Klein N., Herzog F., Jeanneret P., Kay S.
Validating farmland biodiversity life cycle assessment at the landscape scale.
Environmental Science & Technology, 57, (25), 2023, 9184-9193.

Vaccaro C., Six J., Schöb C.
How do different functional crop groups perform in temperate silvoarable agroforestry systems? A Swiss case study.
Journal of Sustainable Agriculture and Environment, 2, (2), 2023, 157-167.

Mann S., Hunziker M., Torregroza L., Wartmann F., Kienast F., Schüpbach B.
Landscape quality payments in Switzerland: The congruence between policy and preferences.
Journal of Policy Modeling, 45, 2023, 251-265.

Klein N., Grêt-Regamey A., Herzog F., Van Strien M., Kay S.
A multi-scale analysis on the importance of patch-surroundings for farmland birds.
Ecological Indicators, 150, 2023, 1-10.

Notz I., Topp C. F. E., Schuler J., Alves S., Amthauer Gallardo L., Dauber J., Haase T., Hargreaves P. R., Hennessy M., Iantcheva A., Jeanneret P., Kay S., Recknagel J., Rittler L., Vasiljević M. and others
Transition to legume‑supported farming in Europe through redesigning cropping systems.
Agronomy for Sustainable Development, 43, 2023, 1-12.

Roberti G., von Pfeil C., Kunzelmann J., Funke L., Rutz T., Kay S.
Monitoring-Leitfaden für Agroforstsysteme: Methoden zur Messung der Umwelteffekte.
Agroscope Transfer, 468, 2023, 1-34.
other Languages: french | italian

Dimopoulos T., Helfenstein J., Kreuzer A., Mohr F., Sentas S., Giannelis R., Kizos T.
Different responses to mega-trends in less favorable farming systems: Continuation and abandonment of farming land on the islands of Lesvos and Lemnos, Greece.
Land Use Policy, 124, 2023, 1-13.

Jarosch K., Herzog F., Mayer J.
Climate resilience concept farming.
Publ. Agromix, 2022, 4 pp.

Hu Y., Jarosch K., Kavka M., Eichler-Löbermann B.
Fate of P from organic and inorganic fertilizers assessed by complementary approaches.
Nutrient Cycling in Agroecosystems, 124, 2022, 189-209.

Herzog F.
Agro-ecological innovations for sustainable production: Mainstreaming agroforestry and flower strips in Switzerland.
Thünen Report, 98, 2022, 35-40.

Schmitt M., Jarosch K., Hertel R., Spielvogel S., Dippold M., Löppmann S.
Manufacturing triple-isotopically labeled microbial necromass to track C, N and P cycles in terrestrial ecosystems.
Applied Soil Ecology, 171, 2022, 1-13.

Diogo V., Helfenstein J., Mohr F., Varghese V., Debonne N., Levers C., Swart R., Sonderegger G., Nemecek T., Schader C., Walter A., Ziv G., Herzog F., Verburg P., Bürgi M.
Developing context-specific frameworks for integrated sustainability assessment of agricultural intensity change: An application for Europe.
Environmental Science and Policy, 137, 2022, 128-142.

Helfenstein J., Edlinger A., Herzog F.
Farmer surveys in Europe suggest that specialized, intensive farms were more likely to perceive negative impacts from COVID-19.
Agronomy for Sustainable Development, (42), 2022, 1-16.

Herzog F.
Agroforstwirtschaft.
In: Touch wood: Material, Architektur, Zukunft. Publ. Ferner C., Holdebrand T., Martinez-Carlavate C., Lars Müller Publishers. 2022, 64.

Debonne N., Bürgi M., Diogo V., Helfenstein J., Herzog F., Levers C., Mohr F., Swart R., Verburg P.
The geography of megatrends affecting European agriculture.
Global Environmental Change - Human and Policy Dimensions, 75, 2022, 1-14.

Nishizawa T., Kay S., Schuler J., Klein N., Herzog F., Aurbacher J., Zander P.
Ecological–Economic Modelling of Traditional Agroforestry to Promote Farmland Biodiversity with Cost-Effective Payments.
Sustainability, 14, (9), 2022, 1-21.

Wang YP., Huang Y., Augusto L., Goll D., Helfenstein J., Hou E.
Towards a global model for soil inorganic phosphorus dynamics: dependence of exchange kinetics and soil bioavailability on soil physicochemical properties.
Global Biogeochemical Cycles, 36, (2), 2022.

Helfenstein J., Diogo V., Bürgi M., Verburg P. H., Schüpbach B., Szerencsits E., Mohr F., Siegrist M., Swart R., Herzog F.
An approach for comparing agricultural development to societal visions.
Agronomy for Sustainable Development, 42, 2022, 1-17.

Nisbet T. R., Andreucci M.-B., De Vreese R., Högbom L., Kay S., Kelly-Quinn M., Leonardi A., Lyubenova M. I., Ovando Pol P., Quinteiro P., Pérez Silos I., Valatin G.
Forest Green Infrastructure to Protect Water Quality: A Step-by-Step Guide for Payment Schemes: Chapter 8.
In: Green Infrastructure and Climate Change Adaptation: Function, Implementation and Governance. 1. Edition, Publ. Futoshi Nakamura, Springer. 2022, 105-131.

Gallmann, J., Schüpbach B., Jacot-Ammann K., Albrecht M., Winizki J., Kirchgessner, N., Aasen, H.
Flower Mapping in Grasslands With Drones and Deep Learning.
Frontiers in Plant Science, February 2022, (Volume 12), 2022.

Nachhaltigkeit Kuhstall
Measuring environmental impacts: The new emissions test barn in Tänikon makes a useful contribution to sustainability research.
Nachhaltigkeit Bauernfrühstück Tische
A social affair: During a chat – here, over morning coffee – problems are aired, solutions discussed, and interpersonal relationships fostered.
Nachhaltigkeit Mähdrescher
Cost-efficient: The use of modern electronics will improve efficiency during harvesting in the future.
Nachhaltigkeit Silofutter
A biogas plant produces renewable energy and improves the sustainability of a farm.