Practical Ways to Assess Sustainability

Agroscope has developed the foundation of a methodology for assessing the sustainability of Swiss farms. From summer 2016, a set of indicators will be tested on around ten farms. Sustainably managed farms form an important basis for healthy, fit-for-the-future food production.

The assessment of a farm’s sustainability is a vital step in its optimisation. Here, equal consideration must be given to the criteria concerning the three dimensions of environment, economy and society. Agroscope has developed appropriate indicators, and published these in May 2016 in the ‘Agroscope Science’ publication series.

These indicators are the foundation for enabling farmers, consumers and associations as well as interested actors and stakeholders from production, processing and trade to develop a comprehensive farm sustainability assessment. Particular attention is devoted by Agroscope to the social dimension. This field still lacks sufficient resilient and practical indicators that are tailor-made for Swiss farms.

Well-being concept for human well-being

Four project teams developed indicators for assessing social sustainability, with a focus on the three areas of human well-being, animal welfare, and landscape aesthetics. Here, it was shown that the Well-being Concept of the Organization for Economic Cooperation and Development (OECD) represents a good basis for depicting the various aspects of human well-being. To this end, key questions allowing the relevant topics to be described simply and concisely were developed for each sub-aspect such as e.g. work/life balance, social relationships and subjective well-being. 

Owing to the relevance of the topic for agriculture, a project team devoted itself to the calculation of temporal workload. On the basis of the ‘ART Work Budget’ software developed by Agroscope to calculate the expected working time, we derived an indicator by comparing the theoretically derived working-time input and the workforce available on the farm. 

Point system for animal welfare

A further project team noted that using a simple indicator to assess animal welfare cannot cover all of the requirements. The researchers therefore propose a point system that manages without observations or measurements on the animal itself. In this system, points are awarded to measures with an anticipated positive impact on one of the twelve animal welfare aspects taken into account in the existing Welfare®-Quality Protocol measuring instrument, e.g. freedom of movement or the absence of pain.  In order for points to be awarded, the anticipated animal welfare must go beyond the minimum stipulated in the Swiss Animal Protection Law. Follow-up projects will now aim to determine whether a correlation does in fact exist between the number of points awarded and the level of animal welfare.

Indicators for the economy and environment

Agroscope has also developed indicators for the economic and environmental dimensions; detailed information on these can be found in the relevant Agroscope publication of May 2016. The economic sustainability of a farm can be illustrated by two key figures in each of the following areas: profitability (earned income per family labour unit and total return on capital); liquidity (cashflow-turnover rate and dynamic gearing ratio), and stability (investment intensity and investment coverage). The environmental dimension of sustainability encompasses the components of resource efficiency, effects on climate, nutrients, and ecotoxicity, as well as biodiversity and soil quality. 

Practicability, utility, acceptance

Practical testing of the indicator set is carried out in close cooperation with the involved farmers. The test determines the practicability, utility and acceptance of a sustainability assessment at farm level. In addition to the refinement of the indicator set, a scientific analysis of the results is planned. The project will be concluded with an in-depth report at the end of 2019. The results obtained are meant to contribute to the implementation of a practical solution for assessing sustainability on a large number of farms. The project is financially supported by the Migros Cooperative Association (MGB). IP-Suisse is actively involved in data acquisition.

Further information:

Project number: 22.17.19.01.02

Greenhouse Gas Emissions and Mitigation Options

Die Emission von Treibhausgasen (THG) in die Atmosphäre gehört zu den wichtigsten Umweltbelastungen der Landwirtschaft. Sie müssen deshalb jährlich für das nationale Treibhausgasinventar quantifiziert werden. Um die THG-Emissionen unter den aktuellen sowie möglichen alternativen Produktionsbedingungen in der Schweiz bestimmen zu können, sind Untersuchungen unter spezifischen Schweizerischen Bewirtschaftungs-, Boden- und Klimabedingungen notwendig. Dabei werden die THG-Emissionen auf verschieden Skalen (Land, Betrieb, Feld) analysiert. Es kommen Messmethoden im Feld sowie prozessbasierte Modelle zur Anwendung. Um die ambitionierte THG-Reduktionsziele des Bundes zu erreichen, werden potentielle Minderungsmassnahmen bezügliche ihrer Wirksamkeit und Anwendbarkeit in der Praxis untersucht.

Last Name, First Name Location
Ammann Christof Reckenholz
Barczyk Lena Reckenholz
Bérard Joël Posieux
Bretscher Daniel Reckenholz
Bystricky Maria Reckenholz
Calanca Pierluigi Reckenholz
Fuchsmann Pascal Liebefeld
Furrer Cédric Reckenholz
Jocher Markus Reckenholz
Kuntu-Blankson Kate Reckenholz
Lazzari Giovanni Posieux
Stüssi Martin Reckenholz
Zosso Cyrill Reckenholz

Zosso C., Thiébaud E., Huber S., Bretscher D.
Landwirtschaftliche Treibhausgasrechner im Praxistest: Möglichkeiten und Grenzen.
Agrarforschung Schweiz, 15, 2024, 145-155.

Laubach J., Flesch T. K., Ammann C., Bai M., Gao Z., Merbold L., Campbell D. I., Goodrich J. P., Graham S. L., Hunt J. E., Wall A. M., Schipper L. A.
Methane emissions from animal agriculture: Micrometeorological solutions for challenging measurement situations.
Agricultural and Forest Meteorology, 350, 2024, 1-23.

Bretscher D., Grassnick n.
Chancen und Grenzen einzelbetrieblicher Treibhausgasbilanzierung in der Landwirtschaft.
In: Agrarforschung zum Klimawandel - Konferenz der Deutschen Agrarforschungsallianz. 7. März, Publ. Deutsche Agrarforschungsallianz (DAFA), Potsdam. 2024, 67.

Bretscher D., Hagemann N., Keel S., Leifeld J.
Pflanzenkohle.
Publ. Agroscope, Merkblatt Nr. 191, 2023, 4 pp.
other Languages: french | italian

Gorfer M., Borruso L., Deltedesco E., Gichuhi E., Menge D., Makihara D., Praeg N., Merbold L., Leitner S.
Plants and microbes respond differently to fertilization and environmental factors in a Kenyan rice field.
In: 3rd Global Soil Biodiversity Conference. 13-15 March, Publ. INRAE, Dublin. 2023, 338.

Leitner S., Carbonell V., Butterbach-Bahl K., Barthel M., Mhindu R., Mutuo P., Buchmann N., Merbold L.
Traditional livestock enclosures are greenhouse gas hotspots in the African savanna landscape: The case of a rangeland in Kenya.
In: EGU General Assembly 2023. 23-28 April, Publ. European Geosciences Union (EGU), Vienna (AT). 2023, 1-2.

Saunders M., Salmon E., Skjelvan I., Bornman T., Klausen J., Feig G., Merbold L., Kutsch W.
Designing a pan-African climate observation system to deliver societal benefit through climate action: The KADI project.
In: EGU General Assembly 2023. 23-28 April, Publ. European Geosciences Union (EGU), Vienna (AT). 2023, 1-2.

Merbold L., Odongo V., Dowling T., Fava F., Glücks I., Vrieling A., Wooster M., Leitner S.
Continuous observations of CO2 and CH4 exchange from East-African rangelands.
In: EGU General Assembly 2023. 23-28 April, Publ. European Geosciences Union (EGU), Vienna (AT). 2023.

Mwangi P., Eckard R., Gakige J., Marquardt S., Gluecks I., Mulat D., Merbold L., Pinares-Patino C.
Supplementation of sheep fed on a poor-quality grass with Calliandra sp. improves health and productivity, and reduces enteric methane emissions.
In: 11th International Symposium on the Nutrition of Herbivores (ISNH 2023). 4. - 8. June, Publ. Universidade Federal do Rio Grande do Sul and Universidade Federal de Santa Catarina, 2023, 606-607.

Mwangi P., Eckard R., Gluecks I., Merbold L., Mulat D., Gakige J., Pinares-Patino C., Marquardt S.
Impact of Haemonchus contortus infection on feed intake, digestion, liveweight gain, and enteric methane emission from Red Maasai and Dorper sheep.
Frontiers in Animal Science, 4, 2023, 1-16.

Bretscher D., Felder D., Zosso C.
Chancen und Herausforderungen einzelbetrieblicher Treibhausgasbilanzierung in der Praxis.
Publ. Bundesamt für Landwirtschaft BLW, 2023, 2 pp.

Dos Reis Martins M., Keel S.
Model simulation of N2O emissions from Swiss agricultural soils: Steps for upscaling.
In: LULUCF Soil Meeting. 18 October, Bern. 2023, 1-27.

Barczyk L., Kuntu-Blankson K., Calanca P., Six J., Ammann C.
N2O emission factors for cattle urine: Effect of patch characteristics and environmental drivers.
Nutrient Cycling in Agroecosystems, 127, 2023, 173-189.

Kay S., Zosso C., Bretscher D.
Wiederkäuer in der klimafreundlichen Landwirtschaft.
In: THeKLa- Treibhausgasbilanzierung und Klimaschutz in der Landwirtschaft -Jahrestagung 2023. 28. Juni, Braunschweig. 2023, 1-35.

Boss M., Meyer S.
Klimagerechte Produktion von Lebensmitteln: Wie können wir die Treibhausgasemissionen der Land- und Ernährungswirtschaft senken und trotzdem genügend produzieren?
In: Bäreggforum 2023. 22. März, Publ. INFORAMA Emmental, Bärau (BE). 2023.

Ndung'u P. W., du Toit C. J. L., Takahashi T., Robertson-Dean M., Butterbach-Bahl K., Merbold L., Goopy J. P.
A simplified approach for producing Tier 2 enteric-methane emission factors based on East African smallholder farm data.
Animal Production Science, 63, (3), 2023, 227-236.

Korir D., Marquardt S., Eckard R., Sanchez A., Dickhoefer U., Merbold L., Butterbach-Bahl K., Jones C., Robertson-Dean M., Goopy J.
Weight gain and enteric methane production of cattle fed on tropical grasses.
Animal Production Science, 63, (2), 2023, 120-132.

Stüssi M., Furrer C., Bystricky M.
LCA of greenhouse gas mitigations measures of farms.
In: 13th International Conference on Life Cycle Assessment of Food 2022 (LCA Foods 2022). 12. Oktober, Lima, Peru. 2022, 784-786.

Wolz K., Leitner S., Merbold L., Wolf B., Mauder M.
Enteric methane emission estimates for Kenyan cattle in a nighttime enclosure using a backward Lagrangian Stochastic dispersion technique.
Theoretical and Applied Climatology, 147, 2022, 1091-1103.

Wachiye S., Pellikka P., Rinne J., Heiskanen J., Abwanda S., Merbold L.
Effects of livestock and wildlife grazing intensity on soil carbon dioxide flux in the savanna grassland of Kenya.
Agriculture Ecosystems and Environment, 325, 2022, 1-14.

Ndung'u P. W., Takahashi T., du Toit C. J. L., Robertson-Dean M., Butterbach-Bahl K., McAuliffe G. A., Merbold L., Goopy J. P.
Farm-level emission intensities of smallholder cattle (Bos indicus; B. indicus–B. taurus crosses) production systems in highlands and semi-arid regions.
Animal, 16, (1), 2022, 1-12.

Salmon E., Jégou F., Guenet B., Jourdain L., Qiu C., Bastrikov V., Guimbaud C., Zhu D., Ciais P., Peylin P., Gogo S., Laggoun-Défarge F., Aurela M., Bret-Harte M. S., Chen J. and others
Assessing methane emissions for northern peatlands in ORCHIDEE-PEAT revision 7020.
Geoscientific Model Development, 15, (7), 2022, 2813-2838.

Graham M. W., Butterbach-Bahl K., du Doit C. J. L., Korir D., Leitner S., Merbold L., Mwape A., Ndung'u P. W., Pelster D. E., Rufino M. C., van der Weerden T., Wilkes A., Arndt C.
Research progress on greenhouse gas emissions from livestock in sub-saharan Africa falls short of national inventory ambitions.
Frontiers in Soil Science, 2, 2022, 1-18.

Korir D., Eckard R., Goopy J., Arndt C., Merbold L., Marquardt S.
Effects of replacing Brachiaria hay with either Desmodium intortum or dairy concentrate on animal performance and enteric methane emissions of low-yielding dairy cows.
Frontiers in Animal Science, 3, 2022, 1-15.

Heiskanen J., Brümmer C., Buchmann N., Calfapietra C., Chen H., Gielen B., Gkritzalis T., Hammer S., Hartmann S., Herbst M., Janssens I. A., Jordan A., Juurola E., Karstens U., Kasurinen V. and others
The integrated carbon observation system in Europe.
Bulletin of the American Meteorological Society, 103, (3), 2022, E855-E872.

dos Reis Martins M., Necpalova M., Ammann C., Buchmann N., Calanca P., Flechard C.R., Hartman M. D., Krauss M., Le Roy P., Mäder P., Maier R., Morvan T., Nicolardot B., Skinner C., Six J. and others
Modeling N2O emissions of complex cropland management in Western Europe using DayCent: Performance and scope for improvement.
European Journal of Agronomy, 141, 2022, 1-12.

Kupper T., Häni Ch., Bretscher D., Zaucker F.
Ammoniakemissionen der schweizerischen Landwirtschaft 1990 bis 2020.
Publ. Hochschule für Agrar-, Forst- und Lebensmittelwissenschaften HAFL, Zollikofen. 31. März, 2022

Lembrechts J.J., van den Hoogen J., Aalto J., Ashcroft M.B., De Frenne P., Kemppinen J., Kopecky M., Luoto M., Mclean I.M.D., Crowther T.W., Bailey J.J., Haesen S., Klinges D.H., Niittynen P., Scheffers B.R. and others
Global maps of soil temperature.
Global Change Biology, 28, (16), 2022, 3110-3144.

Bühler M., Häni C., Ammann C., Brönnimann S., Kupper T.
Using the inverse dispersion method to determine methane emissions from biogas plants and wastewater treatment plants with complex source configurations.
Atmospheric Environment: X, 13, 2022, 1-14.

Bystricky M.
Punkten für das Klima.
UFA-Revue, 5, 2022, 52-55.
other Languages: french

Zaman M., Kleineidam K., Bakken L., Berendt J., Bracken C., Butterbach-Bahl K., Cai Z., Chang S. X., Clough T., Dawar K., Ding W. X., Dörsch P., dos Reis Martins, M., Eckhardt C., Fiedler S. and others
Greenhouse Gases from Agriculture.
In: Measuring Emission of Agricultural Greenhouse Gases and Developing Mitigation Options using Nuclear and Related Techniques. Publ. Mohammad Zaman, Lee Heng, Christoph Müller, Springer. 2022, 1-10.

Monteiro E. de C., da Silva C. G. N., Dos Reis Martins M., Reis V. M., Boddey R. M., Alves B. J. R., Urquiaga S.
Strategy for the sampling of sugarcane plants for the reliable quantification of N2 fixation using 15N natural abundance.
Journal of Soil Science and Plant Nutrition, 21, 2022, 2741-2752.

Brümmer C., Rüffer J, Delorme J-P, Wintien P, Schrader F, Beudert B, Schaap M, Ammann C.
Reactive nitrogen fluxes over peatland and forest ecosystems using micrometeorological measurement techniques.
Earth System Science Data, 14, 2022, 743-761.

Zhu Y., Butterbach-Bahl K., Merbold L., Leitner S., Pelster D.
Nitrous oxide emission factors for cattle dung and urine deposited onto tropical pastures: A review of field-based studies.
Agriculture, Ecosystems & Environment, 322, 2021, 1-8.

Merbold L., Decock C., Eugster W., Fuchs K., Wolf B., Buchmann N., Hörtnagl L.
Are there memory effects on greenhouse gas emissions (CO2, N2O and CH4) following grassland restoration?
Biogeosciences, 18, (4), 2021, 1481-1498.

Yang L., Schallhart S., Taipale T., Tykkae T., Raesaenen M., Merbold L., Hellén H., Pellikka P.
Seasonal and diurnal variations in biogenic volatile organic compounds in highland and lowland ecosystems in southern Kenya.
Atmospheric Chemistry and Physics, 21, 2021, 14761-14787.

Leitner S., Ring D., Wanyama G., Korir D., Pelster D., Goopy J., Butterbach-Bahl K., Merbold L.
Effect of feeding practices and manure quality on CH4 and N2O emissions from uncovered cattle manure heaps in Kenya.
Waste Management, 126, 2021, 209-220.

Wachiye S., Merbold L., Vesala T., Rinne J., Leitner S., Räsänen M., Vuorinne I., Heiskanen J., Pellikka P.
Soil greenhouse gas emissions from a sisal chronosequence in Kenya.
Agricultural and Forest Meteorology, 307, 2021, 1-15.

Carbonell V., Merbold L., Diaz-Pienes E., Dowling T., Butterbach-Bahl K.
Nitrogen cycling in pastoral livestock systems in Sub-Saharan Africa: Knowns and unknowns.
Ecological Applications, 31, (6), 2021, 1-17.

Virkkala A.-M., Natali S. M., Rogers B.M., Watts J.D., Savage K., Connon S. J., Mauritz M., Schuur E. A. G., Peter D., Minions C., Nojeim J., Commane R., Emmerton C. A., Goeckede M., Helbig M. and others
The ABCflux database: Arctic-Boreal CO2 flux observations and ancillary information aggregated to monthly time steps across terrestrial ecosystems.
Earth System Science Data, 14, (1), 2021, 179-208.

Irvin J., Zhou S., McNicol G., Lu F., Liu V., Fluet-Chouinard E., Ouyang Z., Knox S. H., Lucas-Moffat A., Trotta C., Papale D., Vitale D., Mammarella I., Alekseychik P., Aurela M. and others
Gap-filling eddy covariance methane fluxes: Comparison of machine learning model predictions and uncertainties at FLUXNET-CH4 wetlands.
Agricultural and Forest Meteorology, 308-309, 2021, 1-22.

Merbold L., Scholes R., Acosta M., Beck J., Bombelli B., Fiedler B., Grieco E., Helmschrot J., Hugo W., Kasurinen V., Dong-Gill K., Körtzinger A., Leitner S., Lopez-Ballesteros A., Ndisi M. and others
Opportunities for an African greenhouse gas observation system.
Regional Environmental Change, 21, (104), 2021, 1-12.

Ndung'u P., Kirui P., Takahashi T., du Toit C. J. L., Merbold L., Goopy J. P.
Data describing cattle performance and feed characteristics to calculate enteric methane emissions in smallholder livestock systems in Bomet County, Kenya.
Data in Brief, 39, 2021, 1-11.

Zaman M., Kleineidam K., Bakken L., Berendt J., Bracken C., Butterbach-Bahl K., Cai Z., Chang S. X., Clough T., Dawar K., Ding W. X., Dörsch P., Dos Reis Martins M., Eckhardt C., Fiedler S. and others
Climate-smart agriculture practices for mitigating greenhouse gas emission.
In: Measuring emission of agricultural greenhouse gases and developing mitigation options using nuclear and related techniques. 30 January, Publ. Mohammad Zaman, Lee Heng, Christoph Müller, Springer, Cham. 2021, 303-328.

Zaman M., Kleineidam K., , Bakken L., Berendt J., Bracken C. , Butterbach-Bahl K., dos Reis Martins, M., Müller, C., Cai Z., Chang S. X., Clough T., Dawar K., Ding W. X., Dörsch P., dos Reis Martins M. and others
Methodology for measuring greenhouse gas emissions from agricultural soils using non-isotopic techniques: Chapter 2.
In: Measuring Emission of Agricultural Greenhouse Gases and Developing Mitigation Options using Nuclear and Related Techniques. 30 January, Publ. Zaman Mohammad, Heng Lee, Müller Christoph, Springer, Cham. 2021, 11-108.

Zaman M., Kleineidam K., Bakken L., Berendt J., Bracken C., Butterbach-Bahl K., Cai Z., Chang S. X., Clough T., Dawar K., Ding W. X., Dörsch P., Dos Reis Martins M., Eckhardt C., Fiedler S. and others
Isotopic techniques to measure N2O, N2 and their sources.
In: Measuring emission of agricultural greenhouse gases and developing mitigation options using nuclear and related techniques. 30 January, Publ. Mohammad Zaman, Lee Heng, Christoph Müller, Springer, Cham. 2021, 213-301.

Zaman M., Kleineidam K., Bakken L., Berendt J., Bracken C., Butterbach-Bahl K., Cai Z., Chang S. X., Clough T., Müller, C., Dawar K., Ding W. X., Dörsch P., Dos Reis Martins M., Eckhardt C. and others
Micrometeorological methods for greenhouse gas measurement.
In: Measuring emission of agricultural greenhouse gases and developing mitigation options using nuclear and related techniques. 30 January, Publ. Mohammad Zaman, Lee Heng, Christoph Müller, Springer, Cham. 2021, 141-150.

Zaman M., Kleineidam K., Bakken L., Berendt J., Bracken C., Butterbach-Bahl K., Cai Z., Chang S. X., Clough T., Dawar K., Ding W. X., Dörsch P., Dos Reis Martins M., Eckhardt C., Fiedler S. and others
Automated laboratory and field techniques to determine greenhouse gas emissions.
In: Measuring emission of agricultural greenhouse gases and developing mitigation options using nuclear and related techniques. Publ. Mohammad Zaman, Lee Heng, Christoph Müller, Springer, Cham. 2021, 109-139.

Nachhaltigkeit Kuhstall
Measuring environmental impacts: The new emissions test barn in Tänikon makes a useful contribution to sustainability research.
Nachhaltigkeit Bauernfrühstück Tische
A social affair: During a chat – here, over morning coffee – problems are aired, solutions discussed, and interpersonal relationships fostered.
Nachhaltigkeit Mähdrescher
Cost-efficient: The use of modern electronics will improve efficiency during harvesting in the future.
Nachhaltigkeit Silofutter
A biogas plant produces renewable energy and improves the sustainability of a farm.