Practical Ways to Assess Sustainability

Agroscope has developed the foundation of a methodology for assessing the sustainability of Swiss farms. From summer 2016, a set of indicators will be tested on around ten farms. Sustainably managed farms form an important basis for healthy, fit-for-the-future food production.

The assessment of a farm’s sustainability is a vital step in its optimisation. Here, equal consideration must be given to the criteria concerning the three dimensions of environment, economy and society. Agroscope has developed appropriate indicators, and published these in May 2016 in the ‘Agroscope Science’ publication series.

These indicators are the foundation for enabling farmers, consumers and associations as well as interested actors and stakeholders from production, processing and trade to develop a comprehensive farm sustainability assessment. Particular attention is devoted by Agroscope to the social dimension. This field still lacks sufficient resilient and practical indicators that are tailor-made for Swiss farms.

Well-being concept for human well-being

Four project teams developed indicators for assessing social sustainability, with a focus on the three areas of human well-being, animal welfare, and landscape aesthetics. Here, it was shown that the Well-being Concept of the Organization for Economic Cooperation and Development (OECD) represents a good basis for depicting the various aspects of human well-being. To this end, key questions allowing the relevant topics to be described simply and concisely were developed for each sub-aspect such as e.g. work/life balance, social relationships and subjective well-being. 

Owing to the relevance of the topic for agriculture, a project team devoted itself to the calculation of temporal workload. On the basis of the ‘ART Work Budget’ software developed by Agroscope to calculate the expected working time, we derived an indicator by comparing the theoretically derived working-time input and the workforce available on the farm. 

Point system for animal welfare

A further project team noted that using a simple indicator to assess animal welfare cannot cover all of the requirements. The researchers therefore propose a point system that manages without observations or measurements on the animal itself. In this system, points are awarded to measures with an anticipated positive impact on one of the twelve animal welfare aspects taken into account in the existing Welfare®-Quality Protocol measuring instrument, e.g. freedom of movement or the absence of pain.  In order for points to be awarded, the anticipated animal welfare must go beyond the minimum stipulated in the Swiss Animal Protection Law. Follow-up projects will now aim to determine whether a correlation does in fact exist between the number of points awarded and the level of animal welfare.

Indicators for the economy and environment

Agroscope has also developed indicators for the economic and environmental dimensions; detailed information on these can be found in the relevant Agroscope publication of May 2016. The economic sustainability of a farm can be illustrated by two key figures in each of the following areas: profitability (earned income per family labour unit and total return on capital); liquidity (cashflow-turnover rate and dynamic gearing ratio), and stability (investment intensity and investment coverage). The environmental dimension of sustainability encompasses the components of resource efficiency, effects on climate, nutrients, and ecotoxicity, as well as biodiversity and soil quality. 

Practicability, utility, acceptance

Practical testing of the indicator set is carried out in close cooperation with the involved farmers. The test determines the practicability, utility and acceptance of a sustainability assessment at farm level. In addition to the refinement of the indicator set, a scientific analysis of the results is planned. The project will be concluded with an in-depth report at the end of 2019. The results obtained are meant to contribute to the implementation of a practical solution for assessing sustainability on a large number of farms. The project is financially supported by the Migros Cooperative Association (MGB). IP-Suisse is actively involved in data acquisition.

Further information:

Project number: 22.15.19.03.01

Soil Structure and Soil Functions

Bodenstruktur bezeichnet die räumliche Anordnung von Bodenfestsubstanz und Porensystem. Der Aufbau des Porensystems bestimmt viele Bodenfunktionen, z.B. Wasser- und Nährstoffversorgung, landwirtschaftliche Produktivität. Der Mensch beeinflusst den Bodenstrukturzustand durch Bodenbewirtschaftung massiv. Dies hat neben günstigen auch einige problematische Folgen. Die FG BQBN widmet sich seit Jahren der Erforschung der Bodenstruktur und ihrem Stellenwert im System Boden. Trotz zahlreicher Studien sind die Auswirkungen aktueller Bodennutzungssysteme auf den Bodenstrukturzustand meist nur qualitativ verstanden. Moderne Messmethoden (z.B. Röntgentomographie) bieten hier Chancen, die funktionell-physiologischen Verknüpfungen zwischen physikalischen, chemischen und biologischen Prozessen besser zu verstehen und deren Bedeutung für das Angebot an Bodenfunktionen richtig einzuschätzen.

Last Name, First Name Location
Heller Olivier Reckenholz
Hiltebrand Charlotte Reckenholz
Johannes Alice Reckenholz
Keller Thomas Reckenholz
Köstel Johannes Reckenholz
Kreuzer Amelie Reckenholz
Sommer Marlies Reckenholz
Volpe Valerio Reckenholz
Vorkauf Maria Reckenholz

Deluz C., Deluz A., Keller T., Doetterl S., Boivin P.
Shrinkage analysis of repacked soil samples enables quantifying the soil's potential physical quality.
Soil Science Society of America Journal, 89, (2), 2025.

Coucheney E., Casali E., Jarvis N., Köstel J.
Air-filled porosity, its connectivity and relation to particulate organic matter in intact soil cores controls carbon emissions near saturation.
Soil and Tillage Research, 248, 2025, Article 106468.

Leuther F., Iseskog D., Keller T., Larsbo M., Pandey B.K., Colombi T.
Root circumnutation reduces mechanical resistance to soil penetration.
Plant, Cell & Environment, 48, (2), 2025, 1608-1620.

Heckova P., Köstel J. K., Klement A., Kodesova R., Snehota M.
Soil structure dynamics in constructed Technosols for bioretention cells: X-ray microtomography study.
Journal of Soils & Sediments, 25, 2025, 591-608.

Princ T., Köstel J., Snehota M.
How wetting and drainage cycles and wetting angle affect capillary air trapping and hydraulic conductivity: A pore network modeling of experiments on sand.
Water, 16, (21), 2024, Article 3103.

Marešová P., Köstel J., Klement A., Kodešová R., Sněhota M.
A dataset of µCT images of small samples of constructed technosol from bioretention cells.
Data in Brief, 57, 2024, Article 111066.

Colombi T., Pandey B. K., Chawade A., Bennett M. J., Mooney S. J., Keller T.
Root plasticity versus elasticity: When are responses acclimative?
Trends in Plant Science, 29, (8), 2024, 856-864.

Torres L. C., Nemes A., ten Damme L., Keller T.
Current limitations and future research needs for predicting soil precompression stress: A synthesis of available data.
Soil and Tillage Research, 244, 2024, 1-13.

Fukumasu J., Jarvis N., Köstel J. K., Larsbo M.
Links between soil pore structure, water flow and solute transport in the topsoil of an arable field: Does soil organic carbon matter?
Geoderma, 449, 2024, 1-11.

Weber T., Weihermüller L., Nemes A., Bechtold B., Degré A., Diamantopoulos E., Fatichi S., Filipovic V., Gupta S., Hohenbrink T., Hirmas D., Jackisch C., De Jong Van Lier Q., Köstel J. K., Lehmann P. and others
Hydro-pedotransfer functions: A roadmap for future development.
Hydrology and Earth System Sciences, 28, (14), 2024, 3391-3433.

Romero Ruiz A., O'Leary D., Daly E., Tuohy P., Milne A., Coleman K., Whitmore A. P.
An agrogeophysical modelling framework for the detection of soil compaction spatial variability due to grazing using field‐scale electromagnetic induction data.
Soil Use and Management, 40, (2), 2024, 1-16.

Romero Ruiz A., O'Leary D., Keller T.
Agrogeophysical modelling of managed grasslands.
In: Agriculture and geophysics: Illuminating the subsurface. 1 February, Zürich. 2024, 1.

Ten Damme L., Calleja-Huerta A., Munkholm L.J., Schjønning P., Keller T., Lamandé M.
Traction modifies the contact area and the vertical and horizontal stress distributions beneath the tyre.
Soil and Tillage Research, 244, 2024, 1-9.

Martínez I., Stettler M., Lorenz M., Brunotte J., Weisskopf P., Sommer M., Keller T.
Immediate effects of wheeling with agricultural machinery on topsoil gas transport properties and their anisotropy.
Soil and Tillage Research, 241, 2024, 1-6.

Arrázola-Vásquez E., Larsbo M., Capowiez Y., Taylor A., Herrmann A., Keller T.
Estimating energy costs of earthworm burrowing using calorimetry.
European Journal of Soil Biology, 121, 2024, 1-9.

Casali E., Larsbo M., Köstel J. K., Jarvis N.
Macropore flow in relation to the geometry and topology of soil macropore networks: Re-visiting the kinematic wave equation.
Journal of Hydrology, 630, 2024, 1-9.

Garland G., Köstel J. K., Johannes A., Heller O., Doetterl S., Or D., Keller T.
Perspectives on the misconception of levitating soil aggregates.
Soil, 10, 2024, 23-31.

Schlüter S., Köstel J. K.
Soil Structure.
In: Encyclopedia of soils in the environment, Volume 5. Second Edition, Publ. Academic Press 2023, Elsevier. 2023, 1-7.

Larsbo M., Köstel J. K., Krab E., Klaminder J.
Quantifying earthworm soil ingestion from changes in vertical bulk density profiles.
European Journal of Soil Biology, 120, 2023, 1-9.

Schwenk A., Larsbo M., Jarvis N., Köstel J. K.
Three-dimensional X-ray imaging of macropore flow.
Geoderma, 440, 2023, 1-18.

de Lima R. P., Rolim M. M., Torres L. C., Cavalieri-Polizeli K. V. M., Keller T.
Modelagem da compactação do solo induzida pelo tráfego agrícola.
In: Tópicos em Ciência do Solo. Band 12, Publ. Sociedade Brasileira de Ciência do Solo. 2023.

Romero Ruiz A., Rivero M. J., Milne A., Morgan S., Meo Filho P., Pulley S., Segura C., Harris P., Lee M. R. F., Coleman K., Cardenas L., Whitmore A. P.
Grazing livestock move by Lévy walks: Implications for soil health and environment.
Journal of Environmental Management, 345, 2023, 1-13.

Blanchy G., Albrecht L., Bragato G., Garré S., Jarvis N., Köstel J. K.
Impacts of soil management and climate on saturated and near-saturated hydraulic conductivity: Analyses of the Open Tension-disk Infiltrometer Meta-database (OTIM).
Hydrology and Earth System Sciences, 27, (14), 2023, 2703-2724.

Schjønning P., Lamandé M., De Pue J., Cornelis W. M., Labouriau R., Keller T.
The challenge in estimating soil compressive strength for use in risk assessment of soil compaction in field traffic.
Advances in Agronomy, 178, 2023, 61-105.

Keller T., Karlen D. L., Hallett P. D.
Soil tilth.
In: Encyclopedia of Soils in the Environment. 2nd edition, Elsevier. 2023, 48-56.

Johannes A., Kellermann L. A., Weisskopf P.
Weiterentwicklung der Spatenproben-Methoden BodenDok, VESS2020 und SpadeSubVESS in der Schweiz.
Agrarforschung Schweiz, 14, 2023, 197-206.
other Languages: french

Nazari M., Arthur E., Lamandé M., Keller T., Bilyera N., Bickel S.
A meta-analysis of soil susceptibility to machinery-induced compaction in forest ecosystems across global climatic zones.
Current Forestry Reports, 9, 2023, 370-381.

Tschanz P., Köstel J. K., Volpe V., Albrecht M., Keller T.
Morphology and temporal evolution of ground-nesting bee burrows created by solitary and social species quantified through X-ray imaging.
Geoderma, 438, 2023, 1-13.

Bahrami M., Naderi-Boldaji M., Ghanbarian D., Keller T.
Discrete element modelling of stress propagation in soil under a rigid wheel in a soil bin: A simulation of probe inducing stress deviation and wheel speed.
Biosystems Engineering, 230, 2023, 159-170.

van den Akker J.J.H., ten Damme L., Lamandé M., Keller T.
Compaction.
In: Encyclopedia of Soils in the Environment. 2nd Edition, Elsevier. 2023, 85-99.

Johannes A., Weisskop P., Boivin P., Boizard H.
Spade-SubVESS Visual Evaluation of Subsoil Structure with a Spade.
Agroscope. 2023, 2 pp.
other Languages: german | french

Blanchy G., Albrecht L., Köstel J. K., Garré S.
Potential of natural language processing for metadata extraction from environmental scientific publications.
Soil, 9, (1), 2023, 155-168.

Klaminder J., Krab E., Larsbo M., Jonsson H., Fransson J., Köstel J. K.
Holes in the tundra: Invasive earthworms alter soil structure and moisture in tundra soils.
Science of the Total Environment, 859, (Part 2), 2023, 1-8.

Keller T., Lamandé M., Naderi-Boldaij M., de Lima R.P.
Soil compaction due to agricultural field traffic: An overview of current knowledge and techniques for compaction quantification and mapping.
In: Advances in Understanding Soil Degradation. Springer. 2022, 287-312.

Colombi T., Keller T.
Effects of high soil density on soil functions and crop growth.
In: Soil Constraints to Crop Production. Cambridge Scholar Publishing. 2022, 38-61.

Arrázola-Vásquez E.M., Larsbo M., Capowiez Y., Taylor A., Sandin M., Iseskog D., Keller T.
Earthworm burrowing modes and rates depend on earthworm species and soil mechanical resistance.
Applied Soil Ecology, 178, 2022, Article 104568.

Hosseinpour-Ashenaabad R., Keller T., Larsbo M., Hallett P.D.
Dual-platform micromechanical characterization of soils: Oscillation shear rheometry and spherical indentation.
Soil & Tillage Research, 223, 2022, Article 105467.

Bahrami M., Naderi-Boldaji M., Ghanbrian D., Keller T.
Simulation of soil stress under plate sinkage loading: A comparison of finite element and discrete element methods.
Soil & Tillage Research, 223, 2022, Article 105463.

Köstel J. K., Fukumasu J., Larsbo M., Herrmann A., Ariyathilaka P., Magdysyuk O., Burca G.
Potential of combined neutron and X-ray imaging to quantify local carbon contents in soil.
European Journal of Soil Science, 73, (1), 2022, 1-19.

Fukumasu J., Jarvis N., Köstel J. K., Kätterer T., Larsbo M.
Relations between soil organic carbon content and the pore size distribution for an arable topsoil with large variations in soil properties.
European Journal of Soil Science, 73, (1), 2022, 1-15.

Keller T., Or D.
Farm vehicles approaching weights of sauropods exceed safe mechanical limits for soil functioning.
Proceedings of the National Academy of Sciences of the United States of America, 119, (21), 2022, 1-6.

Barbosa L.A.P., Gerke K.M., Munkholm L.J., Keller T., Gerke H.H.
Discrete element modelling of aggregate shape and internal structure effects on Weibull distribution of tensile strength.
Soil & Tillage Research, 219, 2022, 105341.

Parvin N., Coucheney E., Gren I.-M., Andersson H., Elofsson K., Jarvis N., Keller T.
On the relationships between the size of agricultural machinery, soil quality and net revenues for farmers and society.
Soil Security, 6, 2022, 100044.

Romero-Ruiz A., Linde N., Baron L., Breitenstein D., Keller T., Or D.
Lasting effects of soil compaction on soil water regime confirmed by geoelectrical monitoring.
Water Resources Research, 58, 2022, e2021WR030696.

Weiss L., Lutz S. , Keller T., Weisskopf P.
Physikalische Bodeneigenschaften: Recherche zum Stand der Technik zu Bestimmungsmethoden und zu Geräten.
Kompetenzzentrum Boden. KOBO-Bericht Nr. 1, 2021, 87 pp.

Nachhaltigkeit Kuhstall
Measuring environmental impacts: The new emissions test barn in Tänikon makes a useful contribution to sustainability research.
Nachhaltigkeit Bauernfrühstück Tische
A social affair: During a chat – here, over morning coffee – problems are aired, solutions discussed, and interpersonal relationships fostered.
Nachhaltigkeit Mähdrescher
Cost-efficient: The use of modern electronics will improve efficiency during harvesting in the future.
Nachhaltigkeit Silofutter
A biogas plant produces renewable energy and improves the sustainability of a farm.