Evaluation pratique de la durabilité

Agroscope a mis au point les bases d’une méthode permettant d’évaluer la durabilité des exploitations agricoles suisses. Une série d’indicateurs est testée dans près de dix exploitations depuis l’été 2016. Les exploitations conduites selon les règles du développement durable fournissent une base solide pour une production alimentaire saine et tournée vers l’avenir.   

Pour optimiser les exploitations agricoles, il est impératif d’évaluer leur durabilité. L’évaluation doit prendre en compte à parts égales les critères concernant les trois dimensions: environnement, économie et société. Agroscope a développé des indicateurs correspondants et les a publiés en mai 2016 dans la série Agroscope Science.

Ces indicateurs permettront aux agricultrices et aux agriculteurs ainsi qu’aux acteurs et aux parties prenantes issues de la production, de l’industrie de la transformation, du commerce, de la consommation et des associations d’évaluer globalement la durabilité des exploitations agricoles. Agroscope accorde une attention spéciale à la dimension sociale de la durabilité. Dans ce domaine, il existe en effet très peu d’indicateurs solides, transposables dans la pratique, qui soient adaptés aux exploitations agricoles suisses. 

Concept de well-being pour le bien-être humain

Quatre équipes de projet ont élaboré des indicateurs pour évaluer la durabilité sociale. Ils se concentrent sur les trois aspects suivants: le bien-être humain, le bien-être animal et l’esthétique du paysage. Il s’est avéré que le concept de well-being développé par l’Organisation de coopération et de développement économiques (OCDE) constituait un cadre apte à saisir les différents aspects du bien-être humain. Dans cette optique, des questions-clés ont été définies pour chaque aspect particulier comme l’équilibre vie professionnelle - vie privée, les liens sociaux ou le bien-être subjectif, afin de décrire le sujet correspondant de manière simple et concise. 

Etant donné l’importance de la question pour l’agriculture, une équipe de projet s’est chargée de calculer le temps de travail. Un indicateur a été établi à partir du logiciel «Budget de travail ART» développé par Agroscope pour calculer le besoin estimé en temps de travail. Cet indicateur repose sur la comparaison entre le temps de travail théorique et les unités de main-d’œuvre disponibles dans l’exploitation. 

Système de points pour le bien-être animal

Une autre équipe de projet a constaté qu’un simple indicateur ne pouvait suffire à l’évaluation du bien-être animal étant donné la complexité du sujet. C’est pourquoi les chercheurs-euses ont proposé un système de points qui fonctionne sans observations ni mesures sur l’animal. La méthode consiste à récompenser par des points les mesures censées avoir un effet positif dans un des douze aspects du bien-être animal pris en compte dans le protocole Welfare® Quality (p. ex. liberté de mouvement et absence de douleur). La condition pour obtenir les points de bonus est que le bien-être animal attendu aille au-delà du minimum légal de la législation suisse en matière de protection des animaux. Des projets ultérieurs étudieront s’il existe effectivement un lien entre le nombre de points obtenus et le bien-être animal.

Indicateurs pour l’économie et l’environnement

Agroscope a également décrit des indicateurs dans les domaines de l’économie et de l’environnement. Des informations plus détaillées se trouvent dans la publication Agroscope correspondante du mois de mai 2016. La durabilité économique d’une exploitation peut être représentée à l’aide de deux critères dans chacun des domaines suivants: rentabilité (revenu du travail par unité de main-d’œuvre familiale et rentabilité du capital total), liquidités (taux cashflow - chiffre d’affaires et degré d’endettement dynamique) et stabilité (intensité et couverture des investissements). La dimension environnementale de la durabilité comprend l‘efficience des ressources, les effets sur le climat, les éléments nutritifs, l‘écotoxicité ainsi que la biodiversité et la qualité des sols. 

Faisabilité, utilité, acceptation

Le test pratique de la série d’indicateurs se fait en collaboration étroite avec les agricultrices et agriculteurs participants. Il s’agit d’estimer la faisabilité du projet, son utilité et l’acceptation de l’évaluation de la durabilité à l’échelle de l’exploitation. Il est prévu de poursuivre le développement de la série d’indicateurs, mais aussi d’effectuer une analyse scientifique des résultats. Le projet s’achèvera fin 2019 par la publication d’un rapport détaillé. Les connaissances obtenues contribueront à trouver une solution pratique pour évaluer la durabilité dans un grand nombre d’exploitations agricoles. Le projet est soutenu financièrement par la Fédération des coopératives Migros. IP-Suisse participe activement à la collecte des données.  

Informations complémentaires

Numéro du projet: 22.17.19.01.03

Sources et puits de CO2 dans les sols agricoles

Die Schweiz soll bis 2050 unter dem Strich keine Treibhausgase mehr ausstossen. Um dieses vom Bundesrat beschlossene Netto-Null-Ziel zu erreichen wird es nötig sein die landwirtschaftlichen Emissionen – nebst anderen Sektoren - weiter zu reduzieren und zusätzlich CO2 aus der Atmosphäre zurück zu binden (negative Emissionen). Da Böden sowohl Quellen wie Senken für CO2 sind, setzt unsere Forschung sowohl bei der Reduktion als auch bei den negativen Emissionen an. Wir untersuchen Massnahmen zur Reduktion von Treibhausgasemissionen drainierter, organischer Böden unter Berücksichtigung anderer Ökosystemdienstleistungen. Für die nationale Klimaberichterstattung haben wir Systeme entwickelt um die CO2 Bilanz der Böden zu erfassen. Für mineralische Böden wird dieses Inventar weiterentwickelt um das Potential verschiedener Boden-C-Sequestrierungsmassnahmen auf der nationalen Skala zu quantifizieren. Zugleich werden Massnahmen experimentell untersucht um das Potential zu bestimmen.

Nom, Prénom Site
Bretscher Daniel Reckenholz
Dos Reis Martins Marcio Reckenholz
Giger Robin Reckenholz
Jocher Markus Reckenholz
Keel Sonja Reckenholz
Leifeld Jens Reckenholz
Paul Sonja Marit Reckenholz
Suter Matthias Reckenholz
Volk Matthias Reckenholz
Wüst Chloé Reckenholz

Don A., Seidel F., Leifeld J., Kätterer T., Martin M., Pellerin S., Emde D., Seitz D., Chenu C.
Reply letter to Munoz et al. ‘on the importance of time in carbon sequestration in soils and climate change mitigation’— Keep carbon sequestration terminologies consistent and functional.
Global Change Biology, 30, (3), 2024, 1-2.

Wang Y., Calanca P., Leifeld J.
Sources of nitrous oxide emissions from agriculturally managed peatlands.
Global Change Biology, 30, (1), 2024, 1-13.

Hobbie E. A., Keel S., Klein T., Rog I., Saurer M., Siegwolf R., Routhier M. R., Körner C.
Tracing the spatial extent and lag time of carbon transfer from Picea abies to ectomycorrhizal fungi differing in host type, taxonomy, or hyphal development.
Fungal Ecology, 68, 2024, 1-8.

Leifeld J., Lupascu C.
Climate impact of peatland agriculture.
Dans: Peatlands and climate change: Scientific facts and figures for decision-makers. Ed. International Peatland Society, Jyväskylä (FI). 2023, 151-191.

Feigenwinter I., Hörtnagl L., Zeeman M., Eugster W., Fuchs K., Merbold L., Buchmann N.
Large inter-annual variation in carbon sink strength of a permanent grassland over 16 years: Impacts of management practices and climate.
Agricultural and Forest Meteorology, 340, 2023, 1-24.

Fouché J., Burgeon V., Meersmans J., Leifeld J., Cornelis J-T.
Accumulation of century-old biochar contributes to carbon storage and stabilization in the subsoil.
Geoderma, 440, 2023, 1-16.

Don A., Seidel F., Leifeld J., Kätterer T., Martin M., Pellerin S., Emde D., Seitz D., Chenu C.
Carbon sequestration in soils and climate change mitigation: Definitions and pitfalls.
Global Change Biology, 00, 2023.

Hobbie E. A., Siegwolf R., Körner C., Steinmann K., Wilhelm M., Saurer M., Keel S.
Weather modifes the spatial extent of carbohydrate transfers from CO2‑supplied broad‑leaved trees to ectomycorrhizal fungi.
Plant and Soil, In Press, 2023, 1-14.

Keel S., Bretscher D., Leifeld J., von Ow A., Wüst C.
Soil carbon sequestration potential bounded by population growth, land availability, food production, and climate change.
Carbon Management, 14, (1), 2023, 1-17.

Rodrigues L., Budai A., Elsgaard L., Hardy B., Keel S., Mondini C., Plaza C., Leifeld J.
The importance of biochar quality and pyrolysis yield for soil carbon sequestration in practice.
European Journal of Soil Science, 74, (4), 2023, 1-11.

Wüst C., Heller S., Ammann C., Paul S. M., Doetterl S., Leifeld J.
Methane and nitrous oxide emissions from rice grown on organic soils in the temperate zone.
Agriculture, Ecosystems & Environment, 356, 2023, 1-9.

Keel S., Johannes A., Boivin P., Burgos S., Charles R., Hagedorn F., Kulli B., Leifeld J., Saluz A., Zimmermann S.
Soil carbon sequestration in Switzerland: Analysis of potentials and measures (Postulate Bourgeois 19.3639).
Ed. Swiss Federal Office for the Environment (FOEN), 2023, 129 pp.

Hugenschmidt J., Kay S.
Unmasking adaption of tree root structure in agroforestry systems in Switzerland using GPR.
Geoderma regional, 34, 2023, 1-10.

Wang Y., Paul S. M., Alewell C., Leifeld J.
Reduced nitrogen losses from drained temperate agricultural peatland after mineral soil coverage.
Biology and Fertility of Soils, 59, 2023, 153-165.

Leifeld J.
Carbon farming: Climate change mitigation via non-permanent carbon sinks.
Journal of Environmental Management, 339, 2023, 1-3.

Paul S. M., Leifeld J.
Management of organic soils to reduce soil organic carbon losses.
Dans: Understanding and fostering soil carbon sequestration. 07.11.2022, Ed. C. Rumpel, Burleigh Dodds Science Publishing. 2023, 617-680.

Tanneberger F., Larmola T., Sirin A., Arias-Navarro C., Farrell C., Glatzel S., Kozulin A., Laerke P.-E., Leifeld J., Mäkipää R., Minayeva T., Moen A., Oskarsson H., Pakalne M., Sendžikaitė J.
Regional assessment for Europe.
Dans: Global Peatlands Assessment: The State of the World’s Peatlands. Ed. UNEP und Global Peatlands Initiative, Nairobi (Kenya). 2022, 123-153.

Serk H., Nilsson M. B., Figurea J., Krüger J. P., Leifeld J., Alewell C., Schleucher J.
Organochemical characterization of peat reveals decomposition of specific hemicellulose structures as the main cause of organic matter loss in the acrotelm.
Environmental Science & Technology, 56, (23), 2022, 17410-17419.

Leifeld J., Keel S.
Quantifying negative radiative forcing of non-permanent and permanent soil carbon sinks.
Geoderma, 423, 2022, 1-8.

Hardy B., Borchard N., Leifeld J.
Identification of thermal signature and quantification of charcoal in soil using differential scanning calorimetry and benzene polycarboxylic acid (BPCA) markers.
Soil, 8, 2022, 451-466.

Gross-Schmölders M., Klein K., Emsens W.-J., van Diggelen R., Aggenbach C. J. S., Liczner Y., Frouz J., Leifeld J., Alewell C.
Stable isotopes (δ13C, δ15N) and biomarkers as indicators of the hydrological regime of fens in a European east–west transect.
Science of the Total Environment, 838, (4), 2022, 1-10.

Klein K., Schellekens J., Gross-Schmölders M., von Sengbusch P., Alewell C., Leifeld J.
Characterizing ecosystem-driven chemical composition differences in natural and drained Finnish bogs us-ing Pyrolysis-GC/MS.
Organic Geochemistry, 165, 2022, 1-10.

Volk M., Suter M., Wahl A.-L., Bassin S.
Massive warming-induced carbon loss from subalpine grassland soils in an altitudinal transplantation experiment.
Biogeosciences, 19, (11), 2022, 2921-2937.

He C., Wang Y., Yu Y., Kou Y., Yves B., Zhao X., Zhang H.
Comprehensive analysis of resource utilization efficiency under different tillage systems in North China Plain.
Journal of Cleaner Production, 347, 2022, 131289.

Wang Y., Paul S. M., Jocher M., Alewell, C., Leifeld J.
Reduced nitrous oxide emissions from drained temperate agricultural peatland after coverage with mineral soil.
Frontiers Environmental Science, 2022.

Rodrigues L., Hardy B., Huyghebaert B., Leifeld J.
Potential agricultural soil carbon sequestration across Europe: A reality check.
Dans: EGU General Assembly 2021. 19. bis 30. April, online. 2021.

Nachhaltigkeit Kuhstall
Aspects environnementaux: La nouvelle étable pour les essais d'émissions à Tänikon contribue à la recherche sur le développement durable.
Nachhaltigkeit Bauernfrühstück Tische
Aspects sociaux: Les discussions - ici les neuf heures des auxiliaires – permettent de trouver des solutions aux problèmes et ainsi de maintenir les relations personnelles.
Nachhaltigkeit Mähdrescher
Aspects économiques: L'utilisation de systèmes électroniques va augmenter l'efficacité lors de la récolte.
Nachhaltigkeit Silofutter
Une installation de biogaz produit de l'énergie renouvelable et l'améliore la durabilité d'une ferme.