It takes mere seconds to compact a soil, but years or even decades for it to recover. Biological activities by plant roots and soil organisms (earthworms) as well as physical effects like drying out and rewetting phases, and freezing-thawing cycles are vital for natural regeneration. Exactly how recovery happens is being investigated in a long-term field trial. For this, an observational infrastructure with hundreds of soil probes – the Soil Structure Observatory (SSO) – was set up in 2014 together with ETH Zurich. After the initial compaction event, a fallow, a permanent grassland and a crop rotation with and without tillage were set up. This allows to analyse e.g. the influence of plants and tillage on recovery.
Milkers frequently suffer from musculoskeletal disorders, especially in the area of the shoulders and arms. Agroscope therefore investigated whether appropriate working heights can reduce workload in the milking parlour. For this, the angle of flexion of various joints during milking was recorded in one experiment, whilst a second experiment recorded muscle contractions at three different heights. The study showed that although a lower working height in the milking parlour has no effect on forearms or upper arms, it significantly reduces strain on the shoulders.
Providing bedding or access to an outdoor run are husbandry aspects intended to improve pig welfare, which is currently financially supported through animal welfare schemes in several European countries. However, they may significantly affect the environment through changes in feed efficiency and manure management. Therefore, the aim of this paper was to compare farms differing in animal welfare relevant husbandry aspects regarding (1) the welfare of growing-finishing pigs and (2) environmental impact categories such as global warming (GW), acidification (AC), and freshwater (FE) and marine eutrophication (ME), by employing an attributional Life Cycle Assessment. We collected data on 50 farms with growing-finishing pigs in seven European countries. Ten animal-based welfare indicators were aggregated into three pig welfare indices using principal component analysis. Cluster analysis of farms based on husbandry aspects resulted in three clusters: NOBED (31 farms without bedding or outdoor run), BED (11 farms with bedding only) and BEDOUT (eight farms with bedding and outdoor run). Pigs on farms with bedding (BED and BEDOUT) manipulated enrichment more often (P < 0.001), pen fixtures less frequently (P = 0.003) and showed fewer oral stereotypies (P < 0.001) than pigs on NOBED farms. There were fewer pigs with a short(er) tail on farms with than without bedding (P < 0.001). Acidification of BEDOUT and BED farms was significantly higher (compared to NOBED farms P = 0.002) due to higher ammonia emissions related to farmyard manure. Also, BEDOUT farms had higher ME than NOBED farms (P = 0.035). There were no significant differences regarding GW and FE between husbandry clusters, due to the large variability within clusters regarding feed composition and conversion. Therefore, both husbandry aspects associated with improved animal welfare have a significant influence on some environmental impacts, such as acidification and marine eutrophication. Nevertheless, the large variation within clusters suggests that trade-offs may be minimised through e.g. AC and ME.
On behalf of Micarna SA, Agroscope analysed the environmental impacts of beef, pork and poultry production. With beef production, feed intensity was crucial. In the case of pork and poultry production, the quantity of feed used per kg of meat had the greatest influence on environmental impacts. The use of European soya with its shorter transport distances had a positive effect.