Im Institutional Repository finden Sie die Publikationen der Agroscope-Forschenden. Wenn das PDF der Publikation frei verfügbar ist, kann es heruntergeladen werden. Ist dies nicht der Fall, können Sie anhand des Publikationshinweises sehen, wo die Veröffentlichung erfolgte.
Durch Eingabe des Webcodes kann direkt auf eine Publikation zugegriffen werden.
Der Webcode wird bei Agroscope-Publikationen auf der Detailseite einer Publikation ganz unten angezeigt: Publikations-ID (Webcode): 12345
Durch Eingabe eines Suchbegriffes kann in den Metadaten zu einer Publikation gesucht werden: Titel, Untertitel, Zusammenfassung, Quellenname, ISBN, ISSN, DOI, Keywords
Mit der Volltextsuche wird der Inhalt der PDFs durchsucht; Hinweise zur Suche.
Virus detection by high-throughput sequencing of small RNAs: large scale performance testing of sequence analysis strategies.
Massart S., Chiumenti M., De Jonghe K., Glover R., Haegeman A., Koloniuk I., Kominek P., Kreuze J., Kutnjak D., Lotos L., Maclot F., Maliogka V., Maree H. J., Olivier T., Olmos A., Pooggin M. M., Reynard J.-S., Ruiz-García A. B., Safarova D., Schneeberger P. H. H., Sela N., Turco S., Vainio E. J., Varallyay E., Verdin E., Westenberg M., Brostaux Y., Candresse T.
Virus detection by high-throughput sequencing of small RNAs: large scale performance testing of sequence analysis strategies.
Recent developments in high-throughput sequencing (HTS), also called next-generation sequencing (NGS), technologies and bioinformatics have drastically changed research on viral pathogens and spurred growing interest in the field of virus diagnostics. However, the reliability of HTS-based virus detection protocols must be evaluated before adopting them for diagnostics. Many different bioinformatics algorithms aimed at detecting viruses in HTS data have been reported, but little attention has been paid so far to their sensitivity and reliability for diagnostic purposes. We therefore compared the ability of 21 plant virology laboratories, each employing a different bioinformatics pipeline, to detect 12 plant viruses through a double-blind large scale performance test ten datasets of 21-24 nt small (s)RNA sequences from three different infected plants. The sensitivity of virus detection ranged between 35 and 100% among participants, with a marked negative effect when sequence depth decreased. The false positive detection rate was very low and mainly related to the identification of host genome-integrated viral sequences or misinterpretation of the results. Reproducibility was high (91.6%). This work revealed the key influence of bioinformatics strategies for the sensitive detection of viruses in HTS sRNA datasets and, more specifically (i) the difficulty to detect viral agents when they are novel and/or their sRNA abundance is low, (ii) the influence of key parameters at both assembly and annotation steps, (iii) the importance of completeness of reference sequence databases and (iv) the significant level of scientific expertise needed when interpreting pipelines results. Overall, this work underlines key parameters and proposes recommendations for reliable sRNA-based detection of known and unknown viruses.