Im Institutional Repository finden Sie die Publikationen der Agroscope-Forschenden. Wenn das PDF der Publikation frei verfügbar ist, kann es heruntergeladen werden. Ist dies nicht der Fall, können Sie anhand des Publikationshinweises sehen, wo die Veröffentlichung erfolgte.
Durch Eingabe des Webcodes kann direkt auf eine Publikation zugegriffen werden.
Der Webcode wird bei Agroscope-Publikationen auf der Detailseite einer Publikation ganz unten angezeigt: Publikations-ID (Webcode): 12345
Durch Eingabe eines Suchbegriffes kann in den Metadaten zu einer Publikation gesucht werden: Titel, Untertitel, Zusammenfassung, Quellenname, ISBN, ISSN, DOI, Keywords
Mit der Volltextsuche wird der Inhalt der PDFs durchsucht; Hinweise zur Suche.
Building an aerial-ground robotics system for precision farming: An adaptable solution.
Pretto A., Aravecchia S., Burgard W., Chebrolu N., Dornhege C., Falck T., Fleckenstein F.V., Fontenla A., Imperoli M., Khanna R., Liebisch F., Lottes P., Miloto A., Nardi D., Nardi S., Pfeifer J., Popovic M., Potena C., Pradalier C., Rothacker-Feder E., Sa I., Schaefer A., Siegwart R., Stachniss C., Walter A., Winterhalter W., Wu X., Nieto J.
Building an aerial-ground robotics system for precision farming: An adaptable solution.
The application of autonomous robots in agriculture is gaining increasing popularity thanks to the high impact it may have on food security, sustainability, resource-use efficiency, reduction of chemical treatments, and optimization of human effort and yield. With this vision, the Flourish research project aimed to develop an adaptable obotic solution for precision farming that combines the aerial survey capabilities of small autonomous unmanned aerial vehicles (UAVs) with targeted intervention performed by multipurpose unmanned ground vehicles (UGVs). This article presents an overview of the scientific and technological advances and outcomes obtained in the project. We introduce multispectral-perception algorithms and aerial and ground-based systems developed to monitor crop density, weed pressure, and crop nitrogen (N)-nutrition status and to accurately classify and locate weeds. We then introduce the navigation and mapping systems tailored to our robots in the agricultural environment as well as the modules for collaborative mapping. We finally present the ground-intervention hardware, software solutions, and interfaces we implemented and tested in different field conditions and with different crops. We describe a real use case in which a UAV collaborates with a UGV to monitor the field and perform selective spraying without human intervention.