

Biologische und konventionelle Landwirtschaft fördern Bodenmikrobiome mit unterschiedlichem Stoffwechselpotenzial

Martin Hartmann, ETH Zurich martin.hartmann@usys.ethz.ch www.sae.ethz.ch, www.microbiome.ch **Partner**: Hans-Martin Krause, Ralf Müller, Martina Lori, Paul Mäder (FiBL), Franco Widmer, Jochen Mayer (Agroscope)

11. Nachhaltigkeitstagung Agroscope, 25. Januar 2024, Agroscope, Zürich-Reckenholz

Climate regulation

Hartmann & Six 2022 (Nat Rev Earth Environ), credit J. Binswanger

Pest control

Pollutant degradation

Stress tolerance

Nutrient cycling

Transforming agriculture to promote soil microbiomes

Transforming agriculture to promote soil microbiomes

The DOK experiment

Cropping system	Unfertilized NOFERT	Bio-dynamic BIODYN	Bio-organic BIOORG	Conventional mixed CONFYM	Conventional mineral CONMIN
Fertilization	no fertilizer	composted manure	rotten manure	stacked manure & mineral fertilizer	mineral fertilizer
Crop protection	mechanical	mechanical, indirect, beneficials		_ insecticides, fungicides, herbicides	
		bio-dynamic preps	CuSO4	(thresholds)	

Measuring key properties for answering key questions

Molecular genetic toolbox

ETH zürich

Soil microbial biomass and activity

ETH zürich

Sustainable Agroecosystems Krause et al. 2022 (Agronomy for Sustainable Development)

Alpha-diversity (bacteria, archaea, fungi)

Soil microbial diversity

Sustainable Agroecosystems

ETH zürich

Soil microbial diversity

Aaroecosystems

10% of the OTUs (= 50% of total sequences) responded (q<0.05) to management

Soil functional potential

Shotgun metagenomes (5.7 billion reads, 347 million contigs, 422 million ORFs)

Differences in taxonomic composition translate into differences in the underlying genetic potential

Krause, Hartmann et al. (in preparation)

Soil functional potential

ETH zürich

Soil functional potential

Overall, the soil microbiome in the organic systems appears to prioritize energy generation through the breakdown of available organic matter (C-rich environment), while the soil microbiome in the conventional systems seems to invest more into nutrient uptake and biosynthesis.

Sustainable Agroecosystems

Krause, Hartmann et al. (in preparation)

Soil organic carbon (SOC)

The organic systems increase SOC, stockless systems loose SOC

Krause et al. 2022 (Agronomy for Sustainable Development)

Soil nitrogen

Mixed system requires excess N to maintain soil N stocks, stockless system loses soil N despite positive N balance

includes inputs via fertilization, deposition, seeds, and N fixation; outputs via harvest

Oberson et al. 2024 (Agriculture, Ecosystems and Environment)

Crop yields

Mean yields of crop rotations 1-6 (grass clover, wheat, potato) and 4-6 (soya, maize)

Conclusions

- 1) Organic and conventional farming systems harbor different soil microbiomes carrying distinct functions that are likely relevant for crop yield and health.
 - Microbiome composition and metabolic potential are largely driven by fertilization. Pesticide application seemed to play a subordinate role.
 - Organic fertilization promoted diverse microbial communities involved in decomposition and nutrient cycling, whereas stockless systems harbored more oligotrophic communities adapted to resource-limited environments and enriched for genes associated with cell maintenance.
- 2) Organic, lower-input farming systems showed an average yield gap of 15% but had positive effects on soil biodiversity (e.g., biocontrol species), metabolic potential to cycle nutrients, and soil carbon and nitrogen stocks. This suggests positive long-term trajectories for crop yield and health.

Acknowledgments

Implementation and maintenance DOK

Field teams FiBL & Agroscope Advising farmers

Sequencing facility

Genome Quebec Innovation Center, Montreal, Canada

Computational facilities ETH Zurich

Department of Health Sciences and Technology Genetic Diversity Center

Funding

Federal Office for Agriculture (FOAG) Federal Office for the Environment (FOEN) Swiss National Science Foundation Coop Sustainability Fonds European Commission

Lease of the experimental area

Agrico Cooperative, Birsmattehof, Therwil Christian Merian Foundation

