Methane emissions from grazing dairy cows: comparison of data using the sulphur hexafluoride tracer technique and the GreenFeed system

Thomas M. Denninger^{1,2}, Frigga Dohme-Meier¹, Angela Schwarm², Michael Kreuzer², P.-A. Dufey¹, C. Martin³, Y. Rochette³, Andreas Münger¹

- ¹ Agroscope, Posieux, Switzerland
- ² ETH Zurich, Institute of Agriculture Science, Zurich, Switzerland
- ³INRA Research Center, UMR1213 Herbivores , Clermont-Ferrand/Theix, France

Introduction

- Enteric methane (CH₄) emissions:
 - → energy loss to the cow
 - → 2-12 % of gross energy intake
- Need to evaluate measurement methods on pasture
 - → mitigation strategies
- · 2 methods were assessed:
- 1) Sulfur hexafluoride (SF₆) tracer technique:
 - → established method
 - → labour intensive
- GreenFeed system (GF):
 - → possible alternative
 - → measures respiration gas automatically
 - → still some uncertainties

Objective

- Determine extent to which data obtained from GF reflect those from SF₆ technique
- Calculate relationships and differences from the two methods

Materials and Methods

- · 13 Holstein cows grazed as single herd
- GF measurements over 11 d
- SF₆ technique measurements:
 - → within the 11 d of GF measurements
 - → over 5 d simultaneously
 - → averaged per cow over 5 d
- Daily CH₄ emissions from GF averaged per cow over 5 d (Period 1), 7 d (Period 2) and 11 d (Period 3)
- GF data compared with data from the SF₆ technique

Image 2: GreenFeed system on pasture

Results

Technique						
Item	GF (g/d)	SF ₆	SEM	p-value	Correlation coefficient	p-value
Period 1 (5 d) CV (%)	331 17.2	245 9.5	13	<0.001	0.57	0.042
Period 2 (7 d) CV (%)	318 16.6	245 9.5	10.2	<0.001	0.59	0.036
Period 3 (11 d) CV (%)	311 17.3	245 9.5	10.3	<0.001	0.62	0.025

Significant correlations and differences between the methods (P<0.05), CV = coefficient of variation

Image 1: SF₆ technique device mounted on the cow

Conclusions

- Overall, CH_A emissions estimated by GF were higher than those obtained using the SF₆ technique.
- Number and temporal distribution of GF spot measurements relative to patterns of CH₄ may partly explain this.
- Correlations got slightly stronger when GF measurement period was extended from 5 d to 11d.
- Further studies have to show whether there is a systematic overestimation of CH, emission with GF on pasture

