

Einfluss verschiedener Gülleapplikationsverfahren auf die Silagequalität

Ueli Wyss

28. September 2016

Inhaltsverzeichnis

- Einleitung
- Material und Methoden
 - Gülleapplikationsverfahren
 - Gülle
 - Regen
- Ergebnisse
 - Ausgangsmaterial
 - Clostridienbesatz
 - Buttersäuregehalte
 - DLG-Punkte
 - Zusammenhänge
- Folgerungen

U Einleitung

In den Jahren 2012 bis 2014 wurde ein gemeinsames Forschungsprojekt von BBZ Arenenberg und Agroscope durchgeführt, um den Einfluss von verschiedenen Gülleapplikationsverfahren im Grasland auf Ertrag, Stickstoffwirksamkeit, Pflanzenbestand und Futterqualität unter Schweizer Produktionsbedingungen zu untersuchen.

Annett Latsch¹, Daniel Nyfeler², Olivier Huguenin-Elie¹, Ueli Wyss³ und Thomas Anken¹

¹ Agroscope Institut für Nachhaltigkeitswissenschaften (INH), Tänikon, 8356 Ettenhausen

² Bildungs- und Beratungszentrum Arenenberg, 8268 Salenstein

³ Agroscope Institut für Nutztierwissenschaften (INT), 1725 Posieux

Fragestellung: Wird die Futterqualität durch die Gülleverteilung («Strohmädli») beeinträchtigt?

O

Unterschiedliche Gülleapplikationsverfahren

Behandlungen:

- Mineralischer N-Dünger (nur 2013)
- Breitverteiler
- Schleppschlauch
- Schleppschuh

Gülleapplikation:

- Früh: 1-3 Tage nach dem Schnitt
- Spät: 7-10 Tage nach dem Schnitt

Gülle:

- Dicke Gülle
- Dünne Gülle (nur 2014)

O

Versuchsparzellen Tänikon

Botanische Zusammensetzung

2013: Gras-Reinbestand

2014: Klee-Gras-Mischung

(86 % Gräser, 13 % Klee, 1 % Kräuter)

Zusammensetzung der Gülle

Jahr	Schnitt	Gülle-	TS	Nges	NH4 ⁺ -N	P2O5	K ₂ O	Mg
		konsistenz	%	kg m ⁻³	kg m ⁻³	kg m ⁻³	kg m ⁻³	kg m ⁻³
2013	1	dick	6.4	2.8	1.4	1.6	4.3	0.6
	3	dick	4.8	2.2	1.3	1.3	3.8	0.5
	4	dick	3.8	2.1	1.1	1.2	3.6	0.5
2014	1	dick	5.7	2.5	1.3	8.0	2.7	0.3
	2	dick	5.3	2.3	1.2	1.2	3.0	0.5
	4	dick*	2.1	1.4	8.0	0.6	1.9	0.3
	1	dünn	3.2	1.5	8.0	0.4	1.5	0.2
	2	dünn	3.0	1.2	0.7	0.7	1.7	0.3
	4	dünn*	1.2	8.0	0.5	0.3	1.1	0.2

^{*}Gülle mit Waschwasser vom Hochsilo versetzt, TS- und Nährstoffgehalte daher deutlich geringer

Niederschlagsmengen zwischen der Gülleausbringung und dem folgenden Schnitt

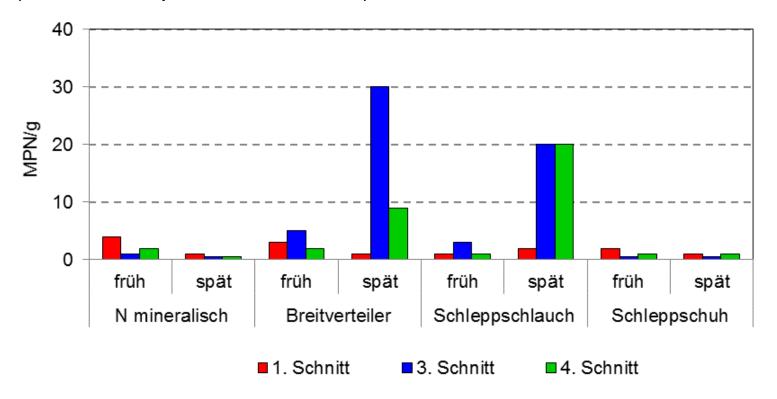
Jahr	Schnitt	Frühe Ausbringung Regen, mm	Späte Ausbringung Regen, mm
2013	1	200	161
	3	74	47
	4	116	63
2014	1	68	68
	2	161	93
	4	192	152

Rohnährstoffgehalte des Ausgangsmaterials

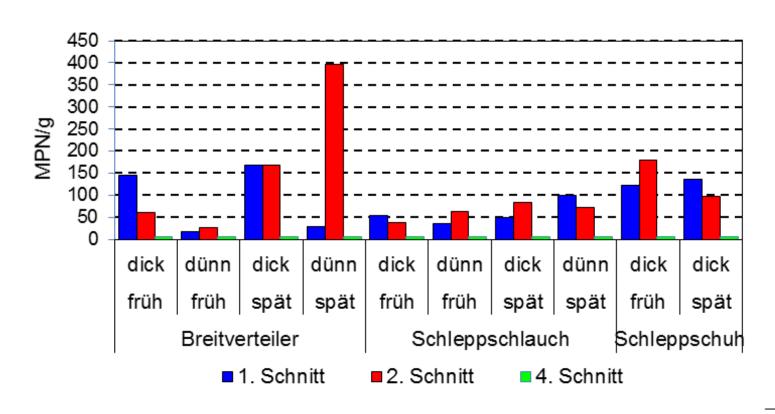
Jahr	Schnitt	TS %	Roh- asche g/kg TS	Roh- protein g/kg TS	Roh- faser g/kg TS	Zucker g/kg TS	VK
2013	1	22.2	72	120	254	146	42
	3	30.1	81	117	225	122	45
	4	33.1	78	143	207	124	49
2014	1	42.0	85	143	161	180	70
	2	35.2	73	73	334	105	55
	4	27.6	96	131	236	120	42

VK: Vergärbarkeitskoeffizient

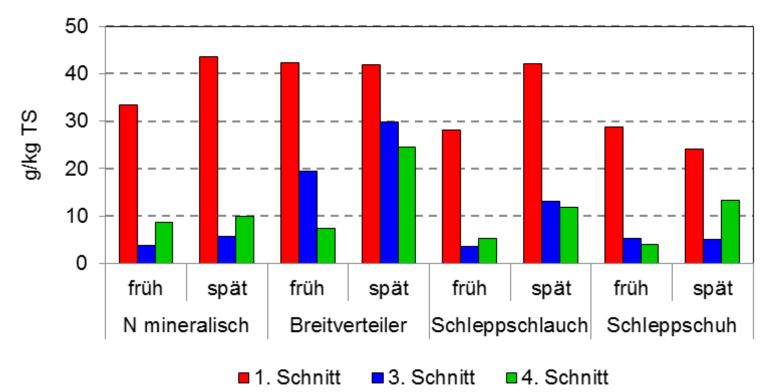
Werte über 45: Futter leicht silierbar


Werte zwischen 35 und 45: Futter mittelschwer silierbar

Werte unter 35: Futter schwer silierbar

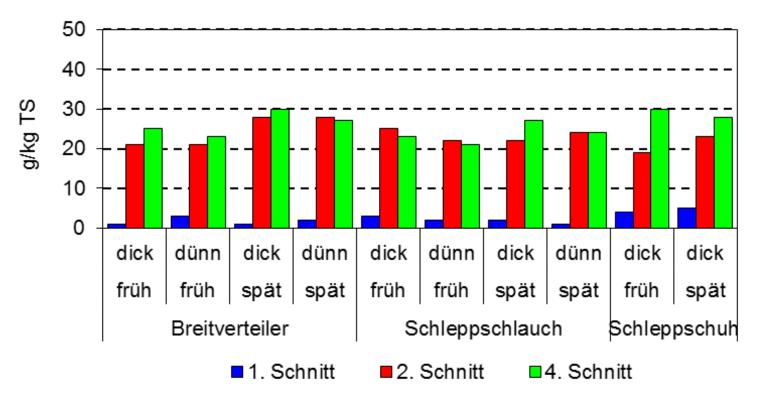

Clostridiensporen auf dem frischen Futter bei unterschiedlichen Applikationsverfahren und Zeitpunkten – Ergebnisse 2013

(MPN: most probable number)


V

Clostridiensporen auf dem frischen Futter bei unterschiedlichen Applikationsverfahren, Zeitpunkten und Güllekonsistenzen Ergebnisse 2014 (MPN: most probable number)

Buttersäuregehalte in den Silagen Ergebnisse 2013


Interpretation:

Bis 5 g Buttersäure: gute Qualität

5-20 g Buttersäure: fehlerhafte Qualität Über 20 g Buttersäure: schlechte Qualität

Buttersäuregehalte in den Silagen Ergebnisse 2014

Interpretation:

Bis 5 g Buttersäure: gute Qualität

5-20 g Buttersäure: fehlerhafte Qualität Über 20 g Buttersäure: schlechte Qualität

DLG-Punkte der Silagen:

Kriterien:

0 bis 90 Punkte Buttersäure:

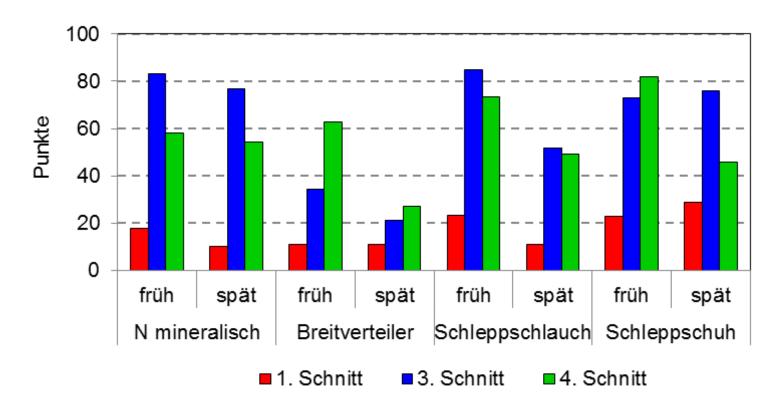
Essigsäure und Propionsäure: -70 bis 0 Punkte

-5 bis 10 Punkte pH-Werte:

Interpretation der Gesamtpunkte:

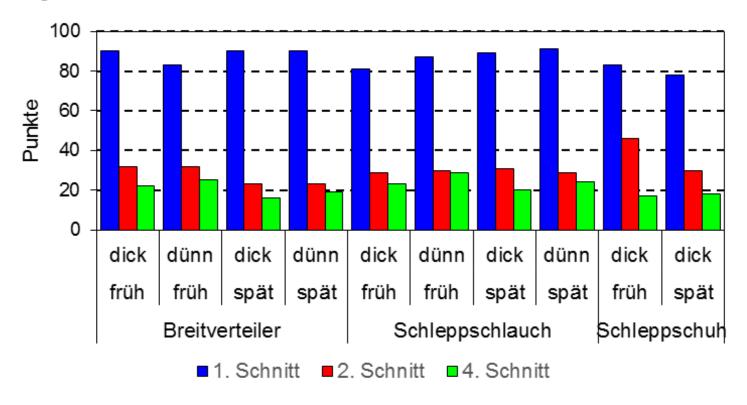
100 – 90: sehr gut

89 - 72: gut

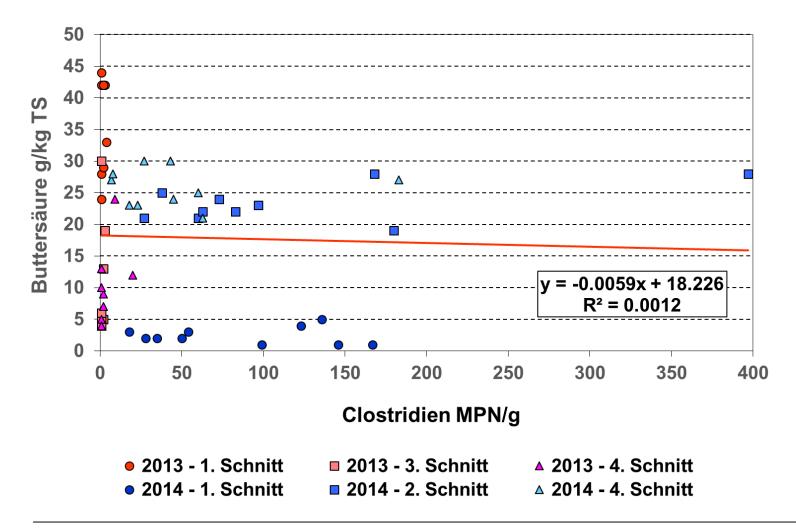

71 – 52: verbesserungsbedürftig

51 – 30: schlecht

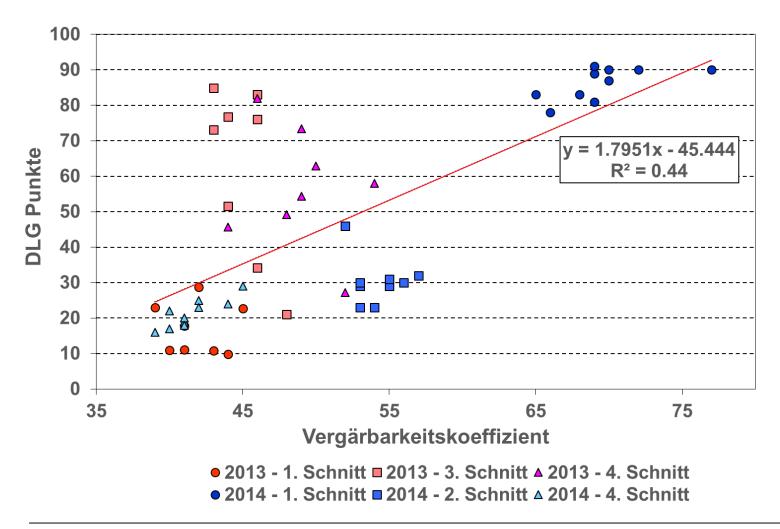
< 30: sehr schlecht



DLG-Punkte der Silagen Ergebnisse 2013



DLG-Punkte der Silagen Ergebnisse 2014



Zusammenhang zwischen Clostridien im Ausgangsmaterial und Buttersäure in den Silagen

Zusammenhang zwischen Vergärbarkeitskoeffizienten im Ausgangsmaterial und DLG-Punkten in den Silagen

U Fo

Folgerungen I

Breitverteiler Gülle und Clostridien werden über das ganzen Futter verteilt Stärkste negative Beeinflussung der Silagequalität

Schleppschlauch Güllestreifen (Strohmädli) weniger negativ als Breitverteilung

Schleppschuh Unterschiedliche Ergebnisse 2013 und 2014. Wird die Grasnarbe zu stark verletzt?

Folgerungen II

- Eine späte Güllegabe führte in etwas nachgewachsenen Pflanzenbeständen, insbesondere beim Breitverteiler und auch beim Schleppschlauch, zu einer Erhöhung des Clostridienbesatzes im Ausgangsmaterial.
- Der Einsatz von dicker oder dünner Gülle brachte in diesen Untersuchungen kein eindeutiges Ergebnis. Die Effekte hängen aber wohl stark von den Niederschlagsmengen zwischen der Ausbringung und dem Folgeschnitt ab.
- Ein hoher Buttersäuregehalt resp. eine schlechte Silagequalität korrelierte jedoch nicht zwingend mit einem hohen Clostridienbesatz, sondern hing stärker mit dem TS-Gehalt und den Inhaltsstoffen des gemähten Ausgangsmaterials zusammen.
- Die Wahl eines geeigneten Schnittzeitpunktes und ein optimaler Anwelkgrad sind daher wichtiger für eine gute Futterqualität als die Gülleausbringtechnik.

ObligationBesten Dank für Ihre Aufmerksamkeit

