

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra Département fédéral de l'économie DFE Station de recherche Agroscope Changins-Wädenswil ACW

Comparing impact of host species and environment on virulence in *Fusarium* graminearum and *F. culmorum*

Charlotte Martin, Romina Morisoli, Mario Bertossa, Stéphanie Schürch and Fabio Mascher Zurich Mycology Symposium 2015

Fusarium ear blight resistance in wheat and maize

- FEB in maize and wheat causes yield losses, loss of grain quality (shrivelled kernels) and accumulation of mycotoxins in grains.
- Many different resistance factors are known able to prevent or slow down infection and accumulation of mycotoxins.
- These resistance factors are complex, difficult to select for and determined by manifold genes and gene-interactions.
- Resistant varieties are a key element for sustainable disease control.

Need for reliable and stable information on resistance level of varieties in breeding of resistance, variety tests and VAT tests (registration of new varieties).

Resistance tests

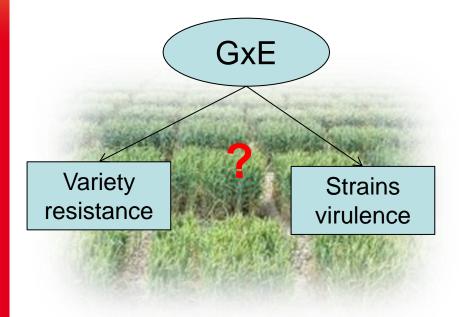
- Wheat and maize resistance tests are infected artificially with *F. graminearum* and/or *F. culmorum*.
- Creation of conducive conditions (overhead irrigation).
- Symptom scoring according to plant species and target trait – to appreciate level of resistance

Disease severity and accumulation of DON on wheat in 2010 in Nyon and Cadenazzo

LP	no			année	10ww1260	10ww6594	DONww1260	DONww6594
40	1	111.11420	RUNAL	2010	19.07	41.77	16.45	97.00
40	2	194.10077	ZINAL	2010	23.74	55.27	16.69	78.54
40	3	111.11834	LEVIS	2010	36.37	52.59	60.09	99.3
40	4	194.10119	CAMBRENA	2010	15.37	48.95	20.75	74.7
40	5	111.12754	CH CLARO	2010	22.25	46.75	25.00	90.4
40	6	111.13248	SURETTA	2010	18.71	54.13	35.24	66.9
40	7	221.10002	SERTORI	2010	14.03	37.26	18.05	24.4
40	8	111.10010	ARINA	2010	6.98	30.08	12.62	23.6
40	9	111.13431	MOLINERA	2010	14.05	41.43	16.53	63.0
40	10	111.13726	(SIMANO)	2010	10.86	39.99	12.01	59.0
40	11	194.10134	ORZIVAL	2010	19.53	49.76	29.16	76.6
40	12	111.13805	(LORENZO)	2010	28.34	51.96	52.30	126.4
40	13	111.13866	(CAMPIONI)	2010	26.26	49.24	81.63	147.7
40	14	194.10518	(TANELIN)	2010	17.47	42.16	66.15	75.0
40	15	111.13940	(JAZZI)	2010	36.70	58.10	126.21	105.9
40	16	111.13563	(MAGNO)	2010	25.78	51.73	38.98	94.2
40	17	111.13784		2010	25.78	47.27	27.98	71.1
40	18	211.13058		2010	21.10	36.64	14.14	
40	19	191.11080	AISC.3	2010	9.37	33.72	3.18	52.5
40	20	191.10922	VALODOR	2010	31.73	66.33	52.81	122.7
40	21	191.11047	EVENT	2010	19.07	33.62	14.34	83.7
40	22	191.11024	BATUTA	2010	17.13	46.75	38.60	112.3
40	23	191.11033	STRU 061879	2010	20.78	42.58	49.79	80.6
es of reaction	ons:			010	38.42	69.44	100.30	107.8
	nd low DON			010	20.11	49.76	64.61	110.0

Arina: low severity and low DON

Campioni: high severity and high DON at both sites


AISC.3: low severity but sometimes elevated DON

Battuta: from intermediate to high severity and always high DON

O

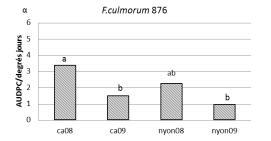
Evaluation of the resistance

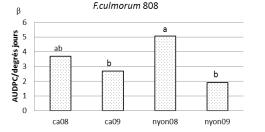
Significant differences in disease severity and DON accumulation between different locations (and years).

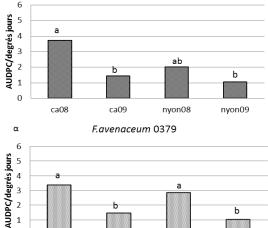
How to stabilize results of resistance tests in order to improve breeding for resistance ?

Here: What is the influence of *Fusarium* strains' virulence on resistance tests ?

Which factors may impact strains' virulence ?


Environmental factors Fusarium species and chemotype Resistance of host Host species


1. Effects of environmental factors on strain virulence


Field experiment:

- 6 WW varieties
- Infected with 6 Fusarium strains
 - F. culmorum
 - F. poae
 - F. avenaceum
 - F. graminearum
- Repeated in 4 environnements
 - Nyon (VD), Cadenazzo (TC)
 - 2008, 2009
 - Temperatures, humidity, wetting period are known
 - \rightarrow Analyse of disease severity

1. Effects of environmental factors on strain 0 virulence

ca09

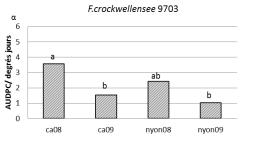
nyon08

b

nyon09

F.poae 0378

α


0

ca08

- «Cadenazzo 2008» conditions have fostered • strain virulence.
- · Humidity and wetting period were correlated with virulence (resp 0.78***, 0.71***) but not temperature.
- But one strain can be more virulent in one environment (ex : F.culmorum 808 in Nyon 2008) but not in another.

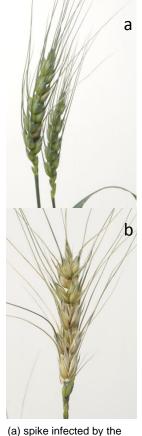
→ Strains virulence is dependant on environnment (p<0.05)

 \rightarrow Varieties resistance was not linked with environmental factors.

7

2. Effect of strain properties on virulence

Is the virulence linked with strain properties?


- Species
- Chemotype

Field experiment:

- 3 SW varieties (Carasso, Nadro, Toronit)
- Infected with 18 Fusarium strains
 - Species determined (F.culmorum, F. graminearum)
 - Chemotype determined (NIV, 3A-DON, 15A-DON)
 - Wheat or Maize as pathogen source
 - Isolated in different places in Switzerland

Strain number	Species**	Plant origin	Chemotype	
1073	Fusarium culmorum	Maize	3A-DON	
1068 *	Fusarium culmorum	Maize	NIV	
808 *	Fusarium culmorum	Wheat	3A-DON	
376 *	Fusarium culmorum	Wheat	NIV	
1153 *	Fusarium graminearum	Maize	15A-DON	
1088 *	Fusarium graminearum	Maize	15A-DON	
Fg13 *	Fusarium graminearum	Wheat	15A-DON	
1149 *	Fusarium graminearum	Wheat	15A-DON	
1069	Fusarium culmorum	Maize	NIV	
97003	Fusarium crookwellense	Wheat	NIV	
378	Fusarium culmorum	Maize	3A-DON	
1879	Fusarium culmorum	Wheat	NIV	
254	Fusarium culmorum	Wheat	3A-DON	
1065	Fusarium culmorum	Maize	NIV	
2113	Fusarium graminearum	Wheat	15A-DON	
1151	Fusarium graminearum	Maize	15A-DON	
1145	Fusarium graminearum	Wheat	15A-DON	
876 h	Fusarium culmorum	Wheat	Not available	
876 I	Fusarium culmorum	Wheat	Not available	

2. Effect of strain properties on virulence

strain 2113, (b) spike

infected by the strain 808 (source Agroscope IPS)

30

25 20 Moyenne des AUDPC 15 10 bc 5 0 1068 1073 808 376 1153 1088 13 1149 1069 97003 378 1879 254 1065 2113 1151 1145 876h 876l temoin

	Df	Sum Sq	Pr(>F)
chemotype	2	275.1	<0.001***
cultivar	2	474.9	<0.001***
Chemotype:strain	14	835.9	<0.001***
residue	123	3.508	
	Df	Sum Sq	Pr(>F)
species	1	122.7	0.00827 **
cultivar	2	479.6	3.10e-06 ***
species : strain	15	983.6	1.31e-05 ***
residue	123	2093.6	

- Different levels of virulence between strains
- Strains chemotype and species has only a weak impact on virulence.
 - chemotype 7.5%, strain 23%
 - species 3.3%, strain 27.5%

 \rightarrow Strains virulence depends on other properties than species or chemotype.

3. Impact of wheat variety on virulence

Does the level of host resistance affect strains virulence ?

Field experiment

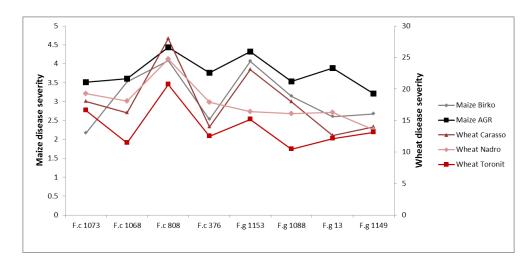
- 3 SW varieties (Nadro, Carasso, Toronit) with different levels of resistance
- Infected with the same 18 strains

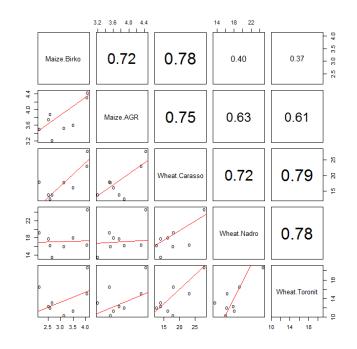
Decomposition of variability depending on the pathotype and on the cultivar.

SOV	Df	SS	F value	Pr (>F)
pathotype	19	2143.1	8.712	<0.001 ***
cultivar	2	514.7	19.877	<0.001 ***
repetition	2	179.87	13.893	<0.001 ***
pathotype : cultivar	38	514.9	1.047	0.4139
residue	117	1514.8		

Spikes infected with Fusarium graminearum 1153 Nadro Carasso Toronit Both varieties resistance and strains virulence have impacted disease severity. But 44% of the variability was explained by strains effect.

No interaction was found between wheat genotype and pathotype.


 \rightarrow There was no interaction between strains virulence and genotype resistance


4. Impact of host plant on virulence

Does a *Fusarium* strain display the same virulence level on different hosts?

Field experiment

- 3 SW varieties (Nadro, Carasso, Toronit) with different levels of resistance
- 2 maize varieties with different levels of resistance
- Infected with 8 *F.culmorum* or *F.graminearum* strains with different levels of virulence

- The virulence of strains was correlated with different species and genotypes
- An highly virulent strain on wheat is also more virulent on maize whatever the resistance level of the variety.
- \rightarrow Strains virulence is not linked with plant species and resistance.

Conclusion

- Virulence of *Fusarium* is similar on wheat and on maize.
- The virulence level but not the species of *Fusarium* determines the appreciation of the resistance in wheat and maize cultivars.
- Virulence is not influenced by the chemotype of the strain
 > influence of other endogenous factors.
- Virulence is influenced by environmental conditions (disease severity and synthesis of mycotoxins).
- Host resistance seems not to be influenced by the environment.

Approach to improve resistance tests:

 \rightarrow Use of a mixture of carefully selected strains to compensate environmental effects.

Acknowledgements

- S. Vogelgsang and I. Bänziger for providing strains of *Fusarium poae, F. crockwellense* and *F. avenaceum*.
- R. Morisoli (Agroscope Cadenazzo) for technical help.