

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra Eidgenössisches Volkswirtschaftsdepartement EVD Forschungsanstalt Agroscope Changins-Wädenswil ACW

Soybean breeding for cool climates

Danube Soya / European soya breeders research workshop

Agroscope ACW A. Schori, C.-A. Bétrix,

3-4 june 2013, IPZ Freising

Introduction

- Soybean breeding initially supported by Nestlé (1981-1987).
- 50-100 hybridizations per year.
- Two breeding nurseries (Switzerland and south of France).

- Swiss climate is not well suited to the plants physiology
- => Main objective : genetic adaptation to cool climates (other breeding goals are not presented here)

Danube soya, 3-4 june 2013, IPZ Freising. Agroscope ACW.

Agroscope

3

Symptoms of tolerance vs. sensitivity

Schori et al. Revue suisse Agric. 24 (6): 341-344, 1992.

Tolerant S

Sensitive

Main mechanisms of agronomic tolerance

- True tolerance (reduced abscission of the flowers on central raceme).
- Ability for compensation on the same node (on lateral racemes).

Danube soya, 3-4 june 2013, IPZ Freising. Agroscope ACW.

- Sensitivity : Yield losses (barren nodes).
- And/or delayed maturity (due to apical compensation).
- And poor harvest quality or shattering (uneven ripening).

Mechanism 1 : True Tolerance (1)

Basic

Abscission of flowers depends on genotypes and on :

- Intensity AND <u>duration</u> of the cold spell.
- Phenological stage of the plant : highest susceptibility 10 days before and 15 days after stage
 - R1

Method

 \rightarrow Use of cold accumulation during

this period.

<u>Graph</u> : Illustration of cold accumulation for a period of 48h.

Gass et al. Revue suisse Agric. 26 (3): 171-178, 1994.

Danube soya, 3-4 june 2013, IPZ Freising. Agroscope ACW.

Observed phenotypical differences

Cumulated cold (18°C) °C.Day	Important abscission		Ability to compensate	
	Tolerant genotypes	Susceptible genotypes	Tolerant genotypes	Susceptible genotypes
55	no	yes	yes	yes
70	yes	yes	yes	yes
85	yes	yes	yes	no
100	yes	yes	no	no

Graph : Cumulated cold (18°C) during the sensitive phase above which visible damages occur

Gass et al. Revue suisse Agric. 26 (3): 171-178, 1994.

- 85 °C.d used for our screening
- Up to 3°C difference in the threshold for tolerant/sensitiv (15°C vs 18°C).

Mechanism 2 : Ability to compensate losses

0

For the next years...

- Cheaper and quicker screening for cold tolerance. QTL, growth chamber...
- Rhizobium /plant interactions. Selection of performing stains in cool soils.
- Keep on reducing the leaf area (and lodging), test it or bred it in organic conditions as well, Improve sclerotinia resistance.
- Quality : <u>Better know what consumers</u> want (organoleptic, rheology)
- Favor multiple site nurseries and trials
 - Create broader breeding populations, better use the available genetic diversity.

