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Abstract. Ever-growing concerns and governmental restrictions related to the use of pesticides in modern 
agriculture has driven the need for more adept decision-making tools to minimize unnecessary treatments 
whilst still efficiently preventing a spread of infection. To this effect, a network of cost-effective, laser-based 
holographic detectors were developed and placed in vineyards in Switzerland and France with the objective of 
detecting and identifying airborne spores of downy and powdery mildew before they have the potential to 
infect crops. The data collected are remotely sent to a server where image processing techniques and artificial 
intelligence classify the spores and determine the quantitative intervention thresholds. Knowledge on the 
quantitative development of fungal diseases has been successfully used to temporally and spatially identify the 
primary infection of downy mildew which was confirmed by a visual evaluation of symptoms within the 
parcel. This data coupled with the current risk prediction models provide farmers with a powerful decision-
making tool to optimise strategies in the management of grapevine diseases.   

1 Introduction  

Environmentally friendly treatment plans and products, 
marker-assisted selection of resistant phenotypes and 
more precise decision-making technologies are some of 
the significant efforts developed to tackle governmental 
regulation strategies dedicated to the reduction of 
pesticides in agriculture. Their use impacts the soil, air, 
human health, and final product costs and quality [1]. In 
this study, we consider two major grapevine diseases; 
downy and powdery mildew caused by the oomycete 
Plasmopara viticola (PV) and the ascomycete Erysiphe 
necator (EN) respectively. These polycyclic pathogens 
are characterised by having a fast asexual cycle leading to 
the production, release, and dispersion of spores in the 
environment [2]. 
 To treat the crops more selectively in time and 
space, efforts have been made in developing precise 
prediction models and smart sensing tools [3]. Typically, 
these are devices which detect the pathogens in the air 
using DNA, leaf sampling and further analyses in the 
laboratory, weather-based prediction models linked to the 
parasite’s biology, or hyperspectral imaging of the field 
using drones and satellites [3-5]. A key drawback to these 
techniques is related to the lack of simultaneously 
available spatially resolved data, with measurements 
taken quickly but not at the same time at various 
locations, and high temporal resolution, as the delay in 
getting selective results can range anywhere between a 
few days to a week. Additionally, predictive models 
based on meteorological data such as air temperature, 

humidity, precipitation, and wind values do not account 
for the local context. They lack the information related to 
the topography, proximity to forests or rivers, soil 
quality, turbulence, treatment history, etc, which dictate 
the appearance of sources and infection conditions as 
well as the dispersion of the spores [6]. Contrastingly, 
hyperspectral cameras installed on drones detect the 
symptoms of an already infected plant making them 
ineffective as prediction tools for the wine growers. 
 In a previous study, a network of autonomous 
stations providing real-time information on the 
concentration and size distribution of airborne particles 
demonstrated the spatial and temporal heterogeneity of 
spore concentrations within this same field [7]. However, 
the optical particle counters lacked the necessary 
selectivity to distinguish between the spore species, PV 
and EN as well as other particles in the same size range 
(10-30 µm). The validation was done by weekly-
integrated impaction filters analysed in the laboratory by 
multimodal, multiphoton microscopy [8].  
 To address this issue, the stations presented here 
were upgraded to integrate a new technique using digital 
holography to obtain a high-resolution, three-dimensional 
image which allows for a greater specificity of airborne 
particles, validated by qPCR analyses and repeated 
fungicides applications over the season, depending on 
crop management and disease pressure [9]. Additionally, 
the use of an optical method with the automatic renewal 
of the impact surface and online transfer of the images 
enables a larger volumetric sampling size than direct 
imaging with a frequency of measurements on the hourly 
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scale. This results in a large quantity of data for which an 
algorithm using artificial intelligence (AI) is trained to 
detect and identify the particles in the image. The 
information provided by this technology coupled with 
meteorological data provides farmers with a clear insight 
into the real risk of infection that their crops face 
allowing them to treat only when and possibly where 
necessary. 

2 Measurement stations and qPCR  

A total of 9 new-generation laser-based spore detectors 
have been placed in vineyards around Switzerland and 
France. 16 images are taken every day with a resolution 
of 0.8 µm/pixel. The solar-powered stations are 
autonomous as they are self-cleaning and automatically 
transmit the data to a centralised server. 

2.1 Determination of the first infection 

In the test field of the Agroscope, the National Centre of 
agricultural research of the Swiss Confederation, in 
Changins (Nyon, Switzerland), a station is placed every 
year with the purpose of measuring the disease dynamic 
when the vines are left untreated. The objective of the 
year 2021, a year particularly struck by downy mildew as 
seen in Fig. 1, was to determine the primary infection, 
which is theorised to originate from the soil. This is due 
to the occasional discrepancy between the primary 
infection predicted by models like Agrométéo/Vitimétéo-
Plasmopara and calculations using the incubation period 
after the observation of the first symptoms in the field 
laboratory [10].  
 

  
Figure 1. Measurements of the mean number of EN Spores 
(top) and PV spores (middle) between cleanings from the spore 
detection station. This is compared with the risk infection 
predictions (for first and secondary infections) given by the 
weather-based model Agrométéo for the year 2021. The arrow 
indicates the appearance of the first symptoms on the untreated 
plants. 

In 2021, the first oil spots of downy mildew in 
Changins were observed on the 25th of May (indicated in 
Fig. 1 with an arrow) which, considering the incubation 
period and a rain event with an intensity of 20.4 mm/h 
possibly causing splashing, suggests the first infection 
may have occurred around the 16th of May. This 
coincides with the PV spore measurements from the 
station depicted in the middle graph in Fig. 1, though 
some spores can already be seen the few days prior to the 
main rain event. On the other hand, the presence of EN 
spores was a lot less pronounced with only a few isolated 
sporulation events spread throughout the season. Another 
point to note is that the high frequency of measurements 
allows us to be sensitive to daily fluctuations and one-off 
events, for example caused by wind turbulences 
generated by machinery, which may be difficult to 
pinpoint when integrating the data over a longer period, 
e.g., a week. 

2.2 Validation with qPCR  

SIGMA-2 passive samplers (Particle Vision GmbH) 
containing a sample holder with scotch tape were 
deployed during 2021 and 2022 in Changins (Nyon, 
Switzerland) in parallel to the spore detector. Correlations 
of spore concentrations from the detector and the passive 
spore trap are made using multiplex qPCR on DNA 
extracted from the tapes sampled once a week and shown 
in Fig. 2. A 4-plex qPCR was developed combining 
Plasmopara viticola f. sp. Aestivalis [11], Erysiphe 
necator, Botrytis cinerea and exogenous internal positive 
control primers and probes originally designed by 
methods described in reference [12]. The efficiency was 
validated (> 98%) [9]. 
 

 
Figure 2. Comparison of the weekly-integrated number of 
spores of downy mildew between the spore detector (Station) 
and qPCR measurements from a scotch tape for the year 2021. 

 In 2021, the presence of downy mildew was 
abundant with the primary infection occurring in the first 
half of May followed by multiple secondary infections, 
originating from the asexual cycle, through June and July. 
Detection of downy mildew spores quantified by qPCR 
only occurred by the end of June, illustrating that the 
passive sampling method was not sensitive enough to 
catch the beginning of the infection. Indeed, the spore 
detector is equipped with a fan that actively captures the 
particles at a fixed flow rate, rather than rely on the 
sedimentation of these within the sample holder. This 

2

BIO Web of Conferences 68, 01020 (2023) https://doi.org/10.1051/bioconf/20236801020
44th World Congress of Vine and Wine



 

also accounts for the large difference in maximum 
number of spore values. Furthermore, some holes in the 
qPCR data can be seen and are attributed to either an 
extraction issue or a damage of the scotch tape.  
 To improve the sampling technique and increase its 
sensitivity, the SporeStick rotating-arm samplers 
(OptiSense) with matches coated in petroleum jelly were 
installed in the field during 2022. However, the season 
was very dry with no downy mildew and only some 
powdery mildew at the end of the season. Quantification 
of powdery mildew during August and September show 
that EN is 400 times more likely to be trapped on 
rotating-arm sampler than on passive sampler, however 
no conclusion can yet be drawn from the results. This 
method will be further tested during the 2023 season with 
one SporeStick installed next to each of the three spore 
detection stations put in place in Changins. 

3 Identification using artificial 
intelligence 

The plethora of particles with sizes in the range of both 
PV and EN spores makes the identification of these 
equate to finding a needle in a haystack. However, using 
digital holography gives access to characteristics such as 
the shape and density of the particle as well as its size. To 
do so the interference pattern obtained and sent from the 
station to a centralised server undergoes a series of image 
processing techniques to better extract the embedded 
information [13]. The image is segmented into the 
various regions of interest that the algorithm has 
identified as a potential particle of interest. Using 
multiple decision criteria such as size, interference 
pattern, shape, and fringes a classification can be made. It 
quickly became apparent that there were some pollens 
and other interferants whose shape and size closely 
resemble that of the PV and EN spores making the 
process of precise classification more difficult.  However, 
advancements in machine learning and neural networks 
can enable the automatization of the analysis whilst also 
distinguishing between these very similar particles 

Figure 3. Confusion matrix for the large neural network, 
containing 8 classes, that uses the bag of features technique 
resulting in an 86.1% precision rate. 

 In this study we used the bag of features technique 
which can extract and represents any relevant or recurring 
features within a given image. The database consisted 
initially only of the classes of interest, namely PV and 
EN spores but individual classes for the main interferants 
were subsequently added to improve the distinction 
possibility. The total database amounts to over 30 000 
images spread over the 8 classes, 80% of which was used 
to train the AI network and the remaining 20% for 
testing. Figure 3 shows the preliminary results of this 
algorithm, depicted as a confusion matrix, with a 
precision of 86.1%. It successfully distinguishes many of 
the pollens and spores from one another apart from a 
slight hesitation between Castanea Sativa pollens and PV 
as well as EN and Quercus Robur pollens, which could 
be the consequence of slightly less abundant ground truth 
databases. Furthermore, other techniques using neural 
networks with artificially augmented data are being 
evaluated as well as additional image processing 
techniques.  

4 Conclusion 

Significant advancements have been made to tackle the 
issues regarding the sensitivity to various species of 
spores by introducing a laser-based, digital, holographic 
technique integrated into the existing stations. This 
technology was used to successfully determine the first 
infection confirmed by the observation of symptoms after 
the incubation period and, though the validation using a 
multiplex qPCR is still ongoing, the preliminary results 
are very promising. Additionally, planned field trials 
where successive decisions to treat or not according to 
the image analysis outputs will be evaluated, which in 
fine will enable the determination of quantitative spore 
thresholds to trigger the application of fungicides. 
Furthermore, the autonomous device allows for both 
highly resolved spatial and temporal data providing 
farmers with precise information regarding the situation 
in their fields when the spores are airborne and have not 
yet infected the crops. This, coupled with the current 
weather-based models such as Vitimétéo-Plasmopara that 
consider the life cycle of the plant, results in a powerful 
decision-making tool to target the treatments to reduce 
unnecessary pesticide use whilst optimising the 
prevention of the infection. 
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