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Abstract
Crop diversification is a potential strategy to increase the stability and productivity

of crops, while reducing pathogen pressures and pesticide requirements. Crop variety

mixtures provide some of these diversification benefits and their cultivation is fully

compatible with current mechanized agronomic practices. However, the develop-

ment of optimal variety mixtures is a long, labour-intense process requiring extensive

field trials. High throughput field phenotyping (HTFP) methods provide promising

applications in field testing because they allow for precise, repeatable, and rapid mea-

surements of crop properties. Here, we evaluated the use of HTFP for developing

high-performing oat (Avena sativa) variety mixtures by testing its suitability to pre-

dict diversity yield benefits from repeated canopy measurements across the growing

season. Analyzing 26 mixtures of five varieties, we found significant overyielding

at harvest, that is, mixtures were on average more productive than expected based

on component pure stands. This grain yield overyielding was well predicted from

deviations between mixture and pure stand canopy cover estimations, derived from

HTFP mid-way through the growing season. This shows that (i) positive interactions

between oat varieties occur already at an early stage, (ii) such interactions lead to

increased potential for light interception, (iii) HTFP offers rapid, scalable methods

to screen for performant variety mixtures.

1 INTRODUCTION

Increasing climate uncertainty and a still-growing human
population call for an increase in the stability and produc-
tivity of agriculture (Seneviratne et al., 2021; Tilman et al.,
2011). At the same time, there is an increasing urge to reduce
the environmental impact of crop production, and new reg-
ulations are limiting the use of pesticides to control pests.
This means that crops have to be grown more efficiently,
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and yield gaps, the differences between potential and actual
yields, must be closed (Senapati et al., 2022). However, this
is hampered by increased climatic variability; a problem that
is likely to worsen in the future (Keating et al., 2014; Tschurr
et al., 2020). Breeding more robust and productive varieties
or improving crop management are seen as key elements in
addressing some of these mentioned challenges. However,
both breeding as well as new management practices typically
come with trade-offs, for example, amongst different breeding
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goals such as quantity and quality of products, or the trade-
off between ecological management, by using less inputs, and
yield in agricultural systems (Kanter et al., 2018; Sukumaran
et al., 2018).

Crop diversification is a known means to render produc-
tion more resilient to climate and weather-related variability
(Kopp et al., 2023; Renard & Tilman, 2019). Increased
diversity in agriculture can be exploited through spatial and
temporal variation (e.g., crop rotations) or at different scales
(e.g., strip cropping), benefiting farmers or the environment
or both (Brooker et al., 2015). In both natural and agricultural
systems, diversity has been shown to contribute to resilience
and productivity (Lin, 2011). At the crop level, intercrop-
ping (more than one species) or variety mixtures (more than
one variety or genotype) can be used to increase within-field
diversity (Brooker et al., 2015). Intercropping offers greater
potential for plant architectural and trait diversity compared
to intracropping, as varieties are more similar to each other.
Species-rich natural plant or crop communities are known to
often be more productive and stable than less diverse systems
(Gross et al., 2014; Ives & Carpenter, 2007). However, crop-
level diversification by intercropping multiple species is often
perceived as incompatible with modern mechanized agricul-
tural practices (Brooker et al., 2015). Mixtures of varieties
offer an interesting middle ground between pure and mixed
cultures because they allow to increase within-field genetic
and trait diversity, but are similar to pure stands in terms of
processing (Barot et al., 2017; Finckh et al., 2000; Mundt,
2002; Newton et al., 2009).

Meta-analyses of the benefits of variety mixtures have
indeed shown that (i) variety mixtures often have higher yields
than their respective pure stands (overyielding), albeit aver-
age benefits are relatively minor, for example, approximately
2% –4% in wheat; (ii) mixtures are effective in suppressing
disease epidemics, and overyielding strongly increases under
high disease pressure, and (iii) yield stability is often slightly
higher in variety mixtures (Borg et al., 2018; Kristoffersen
et al., 2020; Kiær et al., 2009; Reiss & Drinkwater, 2018;
Smithson & Lenné, 1996). Furthermore, mixtures may buffer
effects from environmental influences and tend to show a
higher resilience (McAlvay et al., 2022). Importantly, these
identified benefits can be expected to occur on average in
any random mixture, and even without prior knowledge of
the potential drivers of positive mixture effects. For exam-
ple, diversity-mediated disease suppression has been shown
to occur in experimental apple cultivar mixtures (reduc-
tion of apple scab incidence [Venturia inaequalis]) or in
commercial wheat variety mixtures (reducing Septoria trit-
ici blotch [Zymoseptoria tritici]) that were not deliberately
designed to do so (Kristoffersen et al., 2020; Kellerhals et al.,
2003). It has been speculated that crop variety mixtures could
potentially provide even greater benefits once varietal com-
binations with optimal trait complementarity (e.g., different
disease resistances, different resource requirements, different

Core Ideas
∙ Overyielding effects in crop variety mixtures with

different numbers of mixture partners were evalu-
ated.

∙ Grain yield overyielding was found to be correlated
with early measurable traits, that is, canopy cover
overyielding.

∙ High throughput field phenotyping can be used at
early vegetative stages to predict the potential of
crop variety mixtures.

environmental optima, and so on) can be identified (Barot
et al., 2017; Wuest et al., 2021). For example, deploying
such variety mixtures specifically to suppress the spread of
pathogens and at very large scales has been associated with
remarkable effects in the past, whereby diseases effectively
disappeared from diversified regions (Finckh et al., 2000;
Mundt, 2002; Wolfe et al., 1992; Zhu et al., 2000). Over-
all, it is therefore conceivable that screening for particularly
good variety combinations and their wider use can lead to
substantial improvements in crop yields. However, the devel-
opment of well-performing mixtures currently creates several
challenges. On the one hand, there are agronomic constraints
on the trait differences that exist between the varieties to be
combined within the field. For example, large divergence in
phenology between mixture components is undesirable, as
this has a strong influence on the optimal harvest time point
or other agronomic management decisions. At the same time,
some phenological differences may also be beneficial to min-
imize risks, exemplifying the conflict between maximizing
trait diversity for beneficial interactions and minimizing trait
diversity for ease of management (Litrico & Violle, 2015).
Unfortunately, little is currently known about the drivers of
overyielding or improved crop stability in variety mixtures.
This impedes their targeted design based on simple predictors
for increased diversity benefits. Currently, developing variety
mixtures relies on empirical testing, and involving a poten-
tially large number of combinations of different genotypes
(Wuest et al., 2021). The reason for this is that the “combi-
natorial universe” of possible mixtures (including two-way,
three-way, four-way, and so on combinations) grows exponen-
tially with an increase in the number of varieties available.
Especially in field trials, data collection and phenotypic
evaluation of mixtures can therefore become a bottleneck, par-
ticularly if the data collection is done by breeders or other
human evaluators. Here, we present a technical approach that
increases screening throughput, reduces the space and labor
requirements for field experiments, and therefore exhibits the
potential to facilitate the development of variety mixtures.

In plant breeding, high throughput field phenotyping
(HTFP) shows large potential to gather vast amounts of data in
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a standardized and repeatable manner (Atkinson et al., 2018;
Araus et al., 2018; Reynolds & Langridge, 2016). For HTFP,
we consider a wide range of technologies that rely on auto-
mated data acquisition workflows in order to analyze and
evaluate plant traits (Jangra et al., 2021). In our work, we
have used image-based HTFP methods, meaning automati-
cally collected images by the field phenotyping platform (FIP)
(Kirchgessner et al., 2017), which are then further processed
with deep learning models (Zenkl et al., 2022). This allows
the extraction of plant traits, such as canopy cover (CC),
which is represented by the green leaf fraction in an image. A
major advantage of HTFP over manual ratings as performed
by humans is that it is more objective and avoids the rating
variability associated with different raters and rater bias (Jiang
et al., 2020). Using automated measurement methods allows
to conduct time-resolved measurements of plant growth and
identify mechanisms that improve crop performance (Walter
et al., 2015). To investigate how HTFP methods could be used
to evaluate optimal mixture partners, preferably at an early
stage of plant growth, we conducted a field experiment with
108 plots. Variety mixtures of oat (Avena sativa) were used for
this experiment, as oat is less susceptible to pests compared
to other crops, such as wheat (Triticum aestivum), making it
of particular interest for organic farming. Though there is no
clearly defined trait for early vigor of plants (Grieder et al.,
2015), we used early CC as a trait describing the early plant
development (Tschurr et al., 2023). CC describes the percent-
age of plant area covered within a region of interest, in this
study a plot of the field trial (Roth et al., 2022), from nadir
view. The CC values can therefore range between 0 and 100%.
The experiment took place at the research site for plant science
of ETH Zurich in Eschikon, Lindau, where the FIP is located
(Kirchgessner et al., 2017). The FIP is a rope suspended cam-
era system that allows to take precise and automated images.
During the whole vegetation period, RGB images of differ-
ent variety mixtures were taken using the FIP, in order to
investigate the performance of different genotypes in combi-
nation. By measuring CC and yield on a plot level basis over
different mixture levels, this study aimed to (i) use HTFP as
a method to identify well-performing mixture partners, and
at an early stage; (ii) improve the throughput for a potential
practical application, allowing to scale up the evaluation of
multiple mixtures, and (iii) deliver a method to reduce time-
consuming and labour-intensive measurements that can reveal
potential drivers of end-of-season benefits of mixtures.

2 MATERIAL AND METHODS

2.1 Plant material and measurements

Field experiments were conducted at the ETH Research Sta-
tion for Plant Sciences Lindau-Eschikon, Switzerland (47.449

N, 8.682E, 520 m a.s.l.) below the FIP in the year 2022
(Kirchgessner et al., 2017). The typical climate shows rela-
tively cold winters, warm and precipitation rich summers over
the past 30 years (see Supplemental Figure A.1). The soil of
the experimental field is a gleyic cambisol with 21% clay,
21% silt, and 3.5% organic matter (Kirchgessner et al., 2017).
In this study we examined a set of five summer oat varieties
that are recommended in Switzerland, namely: Canyon (Can),
Delfin (Del), Husky (Hus), Lion (Lio), and Zorro (Zor) (see
Table A.1). The varieties were grown in pure stands and in
two-way (10), three-way (10), four-way (5), and five-way (1)
mixtures, leading to 26 different mixture compositions. The
proportions of each variety in a mixture were calculated as
follows: two way: 50% of the number of sown seeds for each
variety, three way: 33.3% of each variety, four way: 25% of
each variety, five way: 20% of each variety. With this, not only
various varieties were investigated but also multiple mixture
levels. Pure stands were grown at higher replication levels (six
replications) than mixtures because their yield is used repeat-
edly in the estimation of mixture overyielding. Specifically,
experimental plots were grown with a size of 1.25 × 6 m,
and arranged in a randomized complete block design with 3
replications, each containing all 26 mixtures and 2 × 5 pure
stands. All plots were sown on March 10, 2022 with 9 rows
per plot and a seed density of 385 seeds per square meter.
The plots were harvested with a combine thresher on July 15,
2022 (127 days of growing season). Yield data was measured
after harvesting of the whole plots, using a small combine har-
vester constructed for field experiments, for each individual
plot, no differentiation within plots for the specific varieties
was done.

An RGB 21 Mega Pixel full frame digital single-lens reflex
(DSLR) camera (EOS 5D Mark II, 35 mm lens (Canon Inc.,
Tokyo, Japan) attached to the FIP was used for the measure-
ments which delivers a ground sampling distance of∼0.3 mm,
by carrying the camera approximately 2.5 m above canopy
in nadir view. The measurements were conducted according
to feasible weather conditions, about two times a week. This
resulted in 34 measurements over the entire growing sea-
son, 20 of which were taken before canopy closure, when
differences between mixtures in CC can be assumed.

2.2 Data processing

The FIP images cover a larger area than one experimental plot.
The region of interest was therefore defined as the plot within
an intended boundary to reduce border effects. This was done
by detecting the sowing rows, according to the method used
in Anderegg et al. (2023).

From the region of interest, the canopy cover (CC) was
calculated by using the deep learning network trained and
tested in Zenkl et al. (2022). This approach uses a pixel-based
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segmentation, meaning that a deep learning algorithm with
a convolutional neural network is able to label each pixel
as soil or as plant. With this so-called “soil-plant mask,” it
is possible to calculate the ratio between soil and plant pix-
els in an experimental plot, which results in canopy cover.
To reduce the spatial heterogeneity effects within the exper-
imental field site we applied the SpATS package developed
by Rodríguez-Álvarez et al. (2018) to the CC values for
each individual measurement time point, as well as for the
end-of-season yield. After fitting the SpATS model, the spa-
tial corrected best linear unbiased prediction (BLUP) values
were extracted. As they describe the best predicted over-
all value for each mixture (or pure stand) we used these
values for further analysis. In this study we refer to it as
“spatially corrected values.” The expected yield was cal-
culated as described in the following equations with the
BLUPs.

Expected yield (EY) is calculated as the sum of the values
(i.e., CC and yield individually) from their respective pure
stands (Mono), by the relative proportion of each mixture
partner (n) (Equation 1).

𝐸𝑌mixture 1∶n =
𝑛∑

𝑖=1

𝑀𝑜𝑛𝑜𝑖

𝑛
(1)

Overyielding grain yield (OYgrain yield) and Overyielding
canopy cover (OYcanopy cover) were calculated as the differ-
ences between the measured value (Measurement) and the EY
(Equation 2)

𝑂𝑌mixture 1∶n=𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡mixture 1∶n − 𝐸𝑌mixture 1∶n (2)

Overyielding (OY) was calculated for yield (OYgrain yield)
and canopy cover (OYcanopy cover) (Equation 2) and these
results were used for further statistical analysis. For compar-
ison, the OY values have been scaled as percentage of the
measured values.

In a first step, mixture yields have been modeled accord-
ing to the spatial corrected values of the grain yields deriving
from the pure stands and the according EY within a linear
model. The yield was considered as a function of the EY yield
in the linear model ANOVA.

In a next step, a one-sided, paired t-test between the
expected values (EY) and the measured values was per-
formed. Then, a robust linear model was fitted by using the
robustbase library (Maechler et al., 2021) in R (R Core Team,
2018). The linear model was fitted with the OYgrain yield as
a function of OYcanopy cover for each CC measurement time
point until canopy closure was reached (first 20 measurement
time points have been integrated to the analysis). Also a Pear-
son correlation between OYgrain yield and each OYcanopy cover
measurement was calculated.

3 RESULTS

The 26 different (two-way, three-way, four-way, and five-way
mixtures) were harvested 127 days after sowing (DAS) to
determine end-of-season grain yield. Final yield averaged 6.8
kg/plot which corresponds to approximately 7.5 tons/ha. This
a relatively high yield level for Switzerland (average commer-
cial yield approximately 5 tons/ha; IP-Suisse, 2020). We then
determined mixture yields and patterns of overyielding, that
is, the observed yield deviations of a mixture from the spa-
tially corrected average pure stand yields of its components.
Mixture yields were found to be predictable from the aver-
age pure stand yields (spatially corrected) of components, that
is, combinations of varieties with higher estimated pure stand
yields also resulted in higher-yielding mixtures (linear model
ANOVA F1,24 = 9.6, p < 0.01; but with moderate R2 = 0.29;
Supplemental Figure A.2).

At the same time, we estimated a significant average
OYgrain yield of 2.3 % (Figure 2; t-test for overyielding >0%:
t25 = 4.35, p < 0.001), equivalent to an average mixture
yield benefit of 150 g per plot (∼ 166 kg per hectare).
OYgrain yield was highest in two-way mixtures but decreased
linearly with the number of components (ANOVA F1,24 =
6.02, p = 0.022; see Supplemental Table A.2). For example,
OYgrain yield was estimated to be positive in all two-way mix-
tures, whereas only 60% of the four-way mixtures exhibited
positive OYgrain yield estimates.

We next examined if mixture benefits had already been evi-
dent in crop stand development throughout the season. For
this, we had used repeated HTFP measurements (34 time
points in total) to estimate CC from the resulting images.
Overall, CC estimates increased up to about 67 DAS and
remained constant thereafter (Figure 1). Therefore, for further
CC analysis the first 20 measurement time points were used
until the canopy was closed and the constant phase started.
After spatial correction to reduce the effects of field hetero-
geneity at the plot level, OYcanopy cover was calculated for each
mixture composition and each time point. In this case, the
OYcanopy cover refers to deviations of mixture CC from expec-
tations derived from the average of component pure stand
CC. OYcanopy cover was calculated for each time point, and
overyielding estimates were also overall positive and peaked
around 50 days after sowing (DAS) (Figure 3).

As with the grain yield data, the two-way mixtures exhib-
ited highest OYcanopy cover, higher than the three-way and
four-way mixtures. Maximal differences in OYcanopy cover
between the different mixture levels were observed during the
phase of maximal growth of the canopy (Figure 3). Given that
patterns of overyielding in mid-season canopy cover measure-
ments were similar to those of final grain yield measurements,
we next determined correlation between these two entities
(Figure 4A).
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F I G U R E 1 Overview of the canopy cover development. Middle: Development of canopy cover (spatially corrected values), shown in percent
over time (in days after sowing [DAS]) on plot level. The colors indicate the different mixture levels (pure stand to five-way mixtures). Top and
bottom: Images of two plots that were taken at three time points, indicated by vertical lines (at 32, 53, and 95 DAS). Examples were chosen to show a
two-way mixture (top; Hus-Lio) and a four-way mixture (bottom; Del-Can-Hus-Zor). For each plot the Red-Green-Blue color space (RGB) image
and the corresponding segmented image in plant and soil fraction are shown (black represents plant pixels).
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6 of 12 TSCHURR ET AL.

F I G U R E 2 Grain yield overyielding estimates (OYgrain yield) per mixture composition are displayed in percent (y-axis). The different mixtures
(x-axis) are sorted according to the highest (left) to the lowest estimates (right). Positive values indicate overyielding, negative values indicate
underyielding. The colors indicate different mixture levels (number of partners in a mixture). Further data are shown in Supplemental Figure A.2.

F I G U R E 3 The overyielding of canopy cover (OYcanopy cover) per plot (spatially corrected) is displayed in percent over time. Positive values
show an overyielding, negative values an underyielding effect. The colors indicate different mixture levels (number of partners in a mixture). The
bold lines in corresponding colors represents the average of the different mixture levels.

The Pearson correlation coefficient between the end-of-
season OYgrain yield and the OYcanopy cover at each measure-
ment time point increased over time up to 50 DAS, remained
high until 60 DAS and then decreased (Figure 4). At its max-
imum at 50 DAS, the Pearson correlation coefficient between
the two entities was 0.48 (Figure 5). In related terms, we
assessed the potential of OYcanopy cover to predict OYgrain yield

using a simple linear model (OYgrain yield as a function of
OYcanopy cover). As shown in Figure 4B, the p-value from
the linear models were minimal at 50 DAS. Significant p-
values values were obtained between DAS 40 and 64 (p-value
below 0.05; grey line Figure 4B). In other words, predict-
ing OYgrain yield from OYcanopy cover was effective over an
extended time period, around the time of maximal growth.
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TSCHURR ET AL. 7 of 12

F I G U R E 4 Panel A shows the correlation and -log(p-value) of the linear model which compares OYcanopy cover on each day (until DAS 75) to
final OYgrain yield for each mixture (spatially corrected) in percent. The highest correlation (in panel A) and the smallest p-value (in panel B) was
found at 50 DAS (vertical lines). The grey line in panel B represents a p-value of 0.05 below which an effect was considered as significant.

F I G U R E 5 Top panel: The correlation
between OYgrain yield at 50 DAS in percent and
OYcanopy cover in percent is shown with a
correlation coefficient of 0.48. The colors
indicate different mixture levels (number of
partners in a mixture). The grey line represents
the fit of the linear model. Lower panel: The
distribution of the residuals from the linear
model is shown, where OYgrain yield was
modeled as a function of the OYcanopy cover, with
a p-value of 0.0025 and normal distributed
residuals (see Supplemental Table A.3).

4 DISCUSSION

In our experiment with five different oat varieties, combined
into mixtures with different complexity levels (two way to
five way), we found that mixture performance could be pre-
dicted from component pure stand yields, though only with
moderate accuracy. This result is consistent with findings

from a large wheat variety mixture experiment (Forst et al.,
2019), and lends support to the notion that “good mixtures
require good components.” At the same time, we estimated
significant end-of-season overyielding in mixtures, with an
average of 2.3% across all mixtures and estimates ranging
from -2.5% (underyielding) to +7.9% (overyielding). These
values are also well in line with various previous experimental
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studies with cereal mixtures (Borg et al., 2018; Kristoffersen
et al., 2020; Locmele et al., 2017; Manthey & Fehrmann,
1993; Reiss & Drinkwater, 2018). At the same time, and con-
trary to expectations, overyielding estimates were highest for
two-way mixtures and decreased with increasing number of
components. This contradicts the more common result from
ecological experiments, where more varieties or species most
often show higher yield (Caldeira et al., 2005; Tilman et al.,
2001). Increased diversity often has positive outcomes in
ecosystems, however, these may not always be adaptable to an
agricultural setting (Barry et al., 2020; Chacón-Labella et al.,
2019). This observation is difficult to reconcile with ecolog-
ical theories and observations and would need further testing
to be generalized. Potential explanations of such a pattern
might be sought by examining patterns of competition and
complementarity amongst varieties in mixtures (Justes et al.,
2021; MacLaren et al., 2023), and by quantifying the relative
gains of different genotypes in the mixtures by the additive
partitioning method used to analyze biodiversity experiments
(Loreau & Hector, 2001; Li et al., 2020). However, this would
require designs that allow for the identification of individual
genotypes in mixtures, which is challenging. In any case and
regardless of the underlying drivers of overyielding, the pre-
sented method shows potential for simplifying the search for
“optimal” variety combinations from a larger set of possible
mixing partners.

When using HTFP to dynamically monitor crop stand
development throughout the season, patterns of overyield-
ing were found to be similar for final yield and for canopy
cover estimates at multiple time points and already during ear-
lier stand development. During the period of maximal crop
growth, OYcanopy cover estimates were significantly positive,
highest for two-way mixtures, and decreased with increasing
mixture complexity. Finally, mixture OYcanopy cover estimates
during this period were correlated well with end-of-season
OYgrain yield, and could in principle be used to predict the
latter. This has several implications: (i) It suggests that, at
least to some extent, positive interactions amongst mixture
components occur already at an early stage and positively
influence the establishment of a denser canopy, which (ii)
likely improves the interception of light during full stand
establishment and growth, leading to higher resource use dur-
ing the season and higher yield at the end of the season. Since
HTFP could be used to dynamically measure a larger variety
of traits over time (Araus et al., 2018; Kronenberg et al., 2017;
Roth et al., 2021), such approaches could therefore strongly
improve our understanding of the processes through which
diversity benefits are mediated. Though not relevant in our
experiment, which was managed so that the crop had exhib-
ited only very limited weed pressure, an increased canopy
cover during stand establishment could also increase the weed
suppressive potential of mixtures, a property that has been of
central interest in previous cereal mixture experiments (Kiær

et al., 2009). Finally, (iii) HTFP offers rapid and scalable
methods to screen for and develop high-performing variety
mixtures, as discussed below.

Developing high-performing mixtures is typically con-
cerned with the difficult problem of finding specific com-
binations of varieties that bring an added diversity value,
for example, increased yield or yield stability as driven by
positive plant–plant interactions. Without predictive meth-
ods, this “combinatorial problem” quickly escalates in terms
of complexity: it often requires prohibitively large experi-
mental designs, because the number of possible mixtures
grows exponentially with the number of available components
(e.g., 𝑛 × (𝑛 − 1)∕2 possible mixtures for two-way combina-
tions sampled from n possible varieties). Here, HTFP could
simplify the search for particularly good compositions, by
allowing a rapid and scalable screening for positive interac-
tions during early stand development. In this paper, we have
described a significant relation between the canopy cover
overyielding (OYcanopy cover) and grain yield overyielding
(OYgrain yield). Canopy cover of evaluation plots (as described
here) or even single rows (for upscaling, see below) can typ-
ically be assessed relatively easily using HTFP, facilitating
screening for beneficial interactions between combined vari-
eties. However, there may also be some caveats. According to
our results, measurements at 50 DAS best predicted end-of-
season overyielding, although correlations between the two
entities were also high at different measurement time points.
In other cases, optimal time points for measurement may
differ between years or field sites, which would require the
production of separate calibration datasets. Defining an opti-
mal time in relation to the physiological stage of the crop (e.g.,
between booting and shooting) may alleviate this problem.
Once such issues are solved, variety mixture screening meth-
ods could be implemented in efficient and economic ways
(since the crop would not need to be grown to full maturity),
for example, by growing multiple generations per season,
or even by performing screens in between two crops as an
alternative to a cover crop. Furthermore, in order to gain rep-
resentative data, plot size could be varied according to the
respective trait (Rebetzke et al., 2014). Estimation of yield is
usually done in relatively large plots (1.25 × 6 m) while other
traits such as canopy cover, plant height or plant indices can
be readily measured in micro-plots (e.g., 1.25 × 1.75 m) or
even single rows (Anderegg et al., 2020, 2021; Kronenberg
et al., 2021; Roth et al., 2023). Using micro-plots or single
rows, the number of evaluation units on a specific area can
be a multiple (e.g., 3–4x) compared to a situation where yield
plots are the measurement units. Finally, the duration of this
experiment was 127 days, while summer oat in Switzerland
usually grows around 5–6 months (∼150–180 days), from
February until August. Theoretically, two to three generations
for an experiment could take place within this time span, in
case an early measurement of CC at 50 DAS is found to be
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generally informative. Together with increases in plot num-
bers (due to smaller plots), this could increase the screen-
ing throughput even further.

In our study, two-way compositions most consistently
exhibited overyielding, though the generality of such a pattern
for oat variety mixtures will require testing across multiple
environments and years. Restricting the focus on identifying
optimal two-way mixtures (e.g., optimal in terms of yield and
overyielding) would further simplify the development of pre-
dictive tools or rapid evaluation methods to determine mixture
benefits. For example, assembling 20 varieties into all possi-
ble combinations, and considering pure stand and two-way up
to five-way mixtures, would result in 21,699 compositions,
of which only 190 are two-way mixtures. Mixture develop-
ment may also be facilitated by using HTFP to rapidly monitor
other traits, for example, plant height, senescence dynamics or
color-based indices, or by predicting other mixture benefits
from such data, such as yield stability or disease suppression
(Anderegg et al., 2019). Finally, HTFP combined with addi-
tional multi-spectral imaging may ultimately achieve a high
prediction accuracy of mixture benefits solely from traits mea-
sured in pure stands (Schweiger et al., 2021). Such approaches
may be complemented by the development of further pre-
dictive tools, for example, based on crop models (Gu et al.,
2022).

5 CONCLUSION

This study demonstrates the potential of HTFP to investi-
gate different partners and complexities of variety mixtures.
Unlike higher-order mixtures, all two-way mixtures exhibited
end-of-season overyielding, and independently of the respec-
tive varieties used. However, the generality of such a pattern
for oat variety mixtures would require broader sampling and
testing. A significant correlation between the OYgrain yield and
OYcanopy cover at earlier crop development stages was found.
This shows the potential of non-destructive measurement for
canopy cover overyielding as an early predictive trait for
beneficial mixture compositions. In this experiment, early
measurements at 50 DAS appeared to be the optimal time
point for such canopy cover measurements, that is, within the
period in which the fastest increase in canopy cover occurred.
Our work shows that HTFP provides a rapid and scalable tool
to screen for and develop high-performing variety mixtures
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