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A B S T R A C T

Timely knowledge of phenological development and crop growth is pivotal for evidence-based decision making
in agriculture. We propose a near real-time approach combining radiative transfer model inversion with
physiological and phenological priors from multi-year field phenotyping. Our approach allows to retrieve
Green Leaf Area Index (GLAI), Canopy Chlorophyll Content (CCC) and hence Leaf Chlorophyll Content (Cab)
from Sentinel-2 optical satellite imagery to quantify winter wheat growth conditions in a physiologically sound
way. Phenological macro stages are based on accumulated growing degree day thresholds obtained from multi-
year field phenotyping covering more than 2400 ratings from roughly 300 winter wheat varieties and reflect
important physiological transitions. These include the transition from vegetative to reproductive growth and
the onset of flowering, which is important information for agricultural decision support. Validation against
a large data set of on-farm trials in Switzerland collected in 2019 and 2022 revealed high accuracy of our
approach that produced spatio-temporally consistent results. Phenological macro stages were predicted for
970 Sentinel-2 observations reaching a weighted F1-score of 0.96. Sentinel-2 derived GLAI and CCC explained
between 77 to 84% and between 79 to 84% of the variability in in-situ measurements, respectively. Here, the
incorporation of phenological priors clearly increased trait retrieval accuracy. Besides, this work highlights
that physiological priors, e.g., obtained by field phenotyping, can help enhancing landscape scale observations
and hold potential to advance the retrieval of remotely sensed vegetation traits and in-season phenology.
1. Introduction

Timely knowledge of crop growth and phenological development is
pivotal for evidence-based decision making in agriculture. Estimating
current and historical growing conditions can increase the resource
use efficiency of inputs such as fertilizer, water or pesticides (Bach
and Mauser, 2018). By determining phenology and growth in a timely
manner, the right amount of these inputs can be applied at the right
time (Pedersen and Lind, 2017; Argento et al., 2021). Therefore, ac-
curate, traceable and timely information about crop growth and phe-
nology is required by many stakeholders in agriculture including agri-
cultural agencies, insurers, individual farmers and actors from the
downstream value-chain. Further, accurate estimation of crop growth
plays a crucial role in global food security such as the GEOGLAM
crop monitor (Becker-Reshef et al., 2020). The authors reported that
the main readership included not only governments but also private
sector actors such as individual farmers, demonstrating the relevance of
information about crop growth at different institutional levels. Another
prominent example of this is the European Union’s crop monitoring

∗ Corresponding author at: Crop Science, Institute of Agricultural Science, ETH Zurich, Universitaetstrasse 2, 8092 Zurich, Switzerland.
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and yield forecasting JRC MARS Bulletin, which has provided crop
growth information requested by stakeholders in business, academia
and governmental agencies since 1993 (van der Velde et al., 2019).

Arguably, knowledge about plant growth and development is in-
valuable for understanding plant-environment interactions not only in
agriculture but in terrestrial ecosystems in general (Zhu et al., 2016).
To gain this knowledge it is essential to develop a holistic understand-
ing of drivers of plant growth and phenology at the landscape scale.
Here, it must be ensured that observed differences between geographic
locations and years are caused by physiological responses of plants to
their environment (Körner, 2021) and not due to differences in data
quality or data processing.

In winter wheat (Triticum aestivum) - one of the world’s most impor-
tant staple crops - three major phenological stages are distinguished:
germination to end of tillering (GE-ET), stem elongation to end of
heading (SE-EH), and flowering to physiological maturity (FL-PM) (Hay
and Kirby, 1991). The transition from tillering to stem elongation marks
the transition from vegetative to reproductive growth and is important
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for the timing of nitrogen fertilizer application. Moreover, the duration
of SE determines the number of fertile florets (González et al., 2003),
while the onset of flowering increases the susceptibility of wheat to
weather-related damage such as hail (Holman et al., 2022). In addition,
functional crop traits such as Green Leaf Area Index (GLAI) or Canopy
Chlorophyll a+b Content (CCC) quantify growth conditions (Gitelson
et al., 2014) and provide inference on secondary traits such as biomass
accumulation (Gitelson et al., 2003), yield (Huang et al., 2015; Chen
et al., 2018; Hashimoto et al., 2022) and nutrient supply (Delloye
et al., 2018). GLAI quantifies the photosynthetically active leaf area
per unit ground area and is directly proportional to gross photosynthe-
sis (Gitelson et al., 2003). The amount of photosynthetically absorbed
radiation is largely determined by CCC, which is the product of the
leaf chlorophyll a+b (Cab) content of green leaves scaled-up to the
canopy (Gitelson et al., 2014).

Conceptual understanding of winter wheat growth and development
stems from multi-year field phenotyping experiments. Field pheno-
typing aims to quantitatively describe plants by a set of observable
morphological, biochemical and physiological traits under natural en-
vironment conditions (Walter et al., 2015). For this purpose, imaging
techniques on handheld and close-range sensing platforms are used,
among others, to enable large sample sizes in trait acquisition of
field crops (Araus and Cairns, 2014). It is important to note here
that field phenotyping goes beyond simply collecting plant traits. In
field phenotyping, plant traits are linked to environmental covariates
such as air temperature or global radiation to provide a more holistic
picture of plant-environment interactions. A covariate often missing
in field phenotyping, however, is the continuous spatial component
as experimental setups are mainly designed to understand genotype-
specific (i.e., variety-specific) responses to meteorological covariates
such as temperature. Differences in spatially continuous variables such
as soil properties or topography and their effect on plant growth are
hardly captured by current phenotyping experiments. Therefore, it
remains often unclear to what degree findings from field phenotyping
experiments are applicable to agricultural landscapes. Remote sens-
ing appears as a logical tool to incorporate the missing continuous
spatial component with wide-area coverage and comparably low costs
of data acquisition and processing (Weiss et al., 2020). Surprisingly,
research in agricultural remote sensing has so far made little use of
concepts and theories from field phenotyping such as temperature-
response curves (Roth et al., 2022b) and applied them on the landscape
scale (Machwitz et al., 2021). For example, many remote sensing
studies do not fully address underlying physiological processes that
control plant growth. Arguably, bringing both fields together has huge
potential (Aasen and Roth, 2022).

In the toolbox of remote sensing, physically-based radiative transfer
models (RTMs) simulate plant spectral properties based on a set of leaf
and canopy traits. However, the inversion of RTMs required to derive
these traits from optical imagery is ill-posed, i.e., an analytical solution
does not exist (Combal et al., 2002; Atzberger, 2004). To cope with
ill-posedness, the usage of prior information has been highlighted to
limit the range and number of potential solutions (Lauvernet et al.,
2008, for example). Still, the usage of physiologically sound priors
available from field phenotyping such as ratings of leaf and canopy
traits has been little. A similar finding can be made for remote sensing
of phenology: Phenology estimates mainly relate to mathematical prop-
erties of time series of spectral indices (de Beurs and Henebry, 2004;
Garonna et al., 2016; Peng et al., 2017; Bolton et al., 2020). Remotely
sensed phenology usually means Land Surface Phenology (de Beurs
and Henebry, 2004) which aims to describe seasonal patterns of veg-
etation development by greenness proxies (Helman, 2018). Most of
these remotely sensed phenology estimates therefore do not allow full
physiological interpretability. As a consequence, these estimates can be
difficult to compare in space and time, which is important for agri-
cultural management. Moreover, most approaches require complete,
2

gap-free time series (Lobert et al., 2023, for instance), which makes it
hardly possible to determine phenological phases during the growing
season in near real-time (Liao et al., 2023). In-season estimates of
phenology are, however, crucial for agricultural decision support due
to the time-criticality of most management operations in agriculture,
such as fertilizing.

To overcome the identified gaps and limitations we propose an
approach combining remotely sensed imagery with multi-year field
phenotyping. We focus on Sentinel-2 (S2) optical satellite imagery
which has been intensively used for agricultural applications (Delloye
et al., 2018; Meroni et al., 2021; Chen et al., 2022). In detail, S2 offers a
high spectral resolution with 13 bands between 442 and 2202 nm. Out
of these, 10 bands with a spatial resolution of 10 to 20 m can be used
for analyzing vegetation parameters. Thanks to the twin constellation of
the S2 A and S2B satellites, the temporal resolution reaches up to three
days in mid-latitudes required to track vegetation dynamics (Frampton
et al., 2013). Geographically, our research focuses on Switzerland.
Switzerland is exemplary for intensively-farmed landscapes. Not only
serves it as a blueprint for other highly industrialized farming systems
but also for small-scale farming structures due to the small average
farm (around 21 ha in 2021, (Federal Statistical Office, 2022)) and field
parcel size.

Our aim is to test if concepts and theories from field phenotyping
experiments can be applied at the landscape-scale using satellite remote
sensing. Thus, we propose to combine the spatio-temporal component
from satellite remote sensing with conceptual understanding about crop
physiology and phenological macro stages from field phenotyping. This
poses two specific research questions:

• First, can field phenotyping and S2 data be used to estimate
phenological macro stages in-season on the landscape scale?

• Second, do physiological and phenological priors from field phe-
notyping improve RTM-based trait retrieval on the landscape
scale?

Our paper is structured accordingly: We describe the field phenotyping,
validation and remote sensing data in Section 2, which are required
for setting up our workflow to combine phenotyping with satellite
remote sensing. We explain the actual model calibration, inference and
validation in Section 3 followed by a presentation of results in Section 4
and a discussion of these in Section 5.

2. Data

Based on our objective, three different types of data are required:
field phenotyping data (Section 2.1), independent on-farm trial data
at the landscape scale (Section 2.2), and S2 remote sensing imagery
(Section 2.3).

2.1. Field phenotyping data

Multi-year field phenotyping data were acquired at different sites
and years in Switzerland and Southern Germany. Table 1 summarizes
the sites from which field phenotyping data was available.

2.1.1. FIP site
Multi-year phenology data were acquired at the FIP field phenotyp-

ing site (Kirchgessner et al., 2017) located at the agricultural research
station of ETH at Lindau-Eschikon (see Table 1 and red star in Fig. 1).
At the FIP site Swiss and European winter wheat varieties from the
GABI wheat panel (Gogna et al., 2022) are grown in two lots (lot
size 36 × 40 m), allowing a randomized plot design with two full
replications. Each lot is subdivided into 398 plots of 1.0 × 1.4 m,
in each of which a different winter wheat variety is grown. The site
is managed according to Swiss regulations for conventional farming.
The site is equipped with a weather station from which temperature
readings were taken.

For the beginning of SE (BBCH 31) data were available from 2020
until 2022 resulting in a total of 357 ratings. For EH (BBCH 59) data

from six years (2015–2020) could be used.
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Table 1
Overview of field phenotyping data used including site name, recorded traits, years, and number of data points (N). Abbreviations: GLAI: Green
Leaf Area Index, CCC: Canopy Chlorophyll Content.

Site Traits Years N Lat [◦] Lon [◦] Reference

FIP Phenology 2015–2022 2190 47.449 8.682 Kirchgessner et al. (2017)

SEON GLAI,
CCC,
Phenology

2014 67 47.429 8.518 Liebisch et al. (2014)

MNI GLAI,
CCC,
Phenology

2017–2022 70 48.267 11.7 Danner et al. (2017);
Danner et al. (2019);
Wocher et al. (2018)

Bramenwies GLAI,
Phenology

2022 909 47.444 8.685 Wildhaber et al. (2023)
Fig. 1. Map of study sites of on-farm trials where in-situ samples for validation were taken in 2019 (dark blue field parcel boundaries) and 2022 (in red). The location of the
FIP phenotyping site (Section 2.1.1) is denoted by a red star. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
2.1.2. SEON
Within the Swiss Earth Observatory Network (SEON) (Liebisch

et al., 2014) GLAI, CCC and phenology was collected in 2014 at dif-
ferent winter wheat field parcels in north-eastern Switzerland (see Ta-
ble 1) at a distance of 20 km to the FIP site (see Section 2.1.1). The data
was sampled on farmers’ fields managed according to Swiss agricultural
practice. Weather data was available from the Swiss Meteorological
Office (MeteoSwiss).

2.1.3. MNI
The Munich-North-Isar (MNI, Danner et al., 2019; Wocher et al.,

2018) dataset contains joined ratings of phenology, GLAI, and CCC
from winter wheat parcels located north the city of Munich, Germany,
from five consecutive years (see Table 1). The winter wheat parcels
were managed according to local agricultural practice. Meteorolog-
ical data was available from a nearby weather station operated by
the German National Meteorological Service (Deutscher Wetterdienst,
DWD).

2.1.4. Bramenwies
A single winter wheat parcel managed according to Swiss conven-

tional standards was monitored in 2022 with high spatial and temporal
3

sampling frequency resulting in 909 readings of phenology and GLAI
(see Table 1). The parcel is located in close proximity (2 km) to the
FIP site. Weather data were available from a nearby weather station.

2.2. On-farm trials

In-situ reference data for validating the S2-derived functional crop
traits and phenological macro stages was collected in 2019 and 2022
in winter wheat field parcels distributed across Switzerland (Fig. 1).
All sites are located in the Swiss midlands characterized by a temper-
ate climate (annual mean air temperature around 10 ◦C) and humid
conditions (annual precipitation sum around 1000 mm). Winter wheat
is the most important staple crop in Switzerland. In Switzerland wheat
is usually sown in October or November and harvested in July the year
after.

Site characteristics are denoted in Table 2 including parcel size,
winter wheat variety, management scheme, and number of sampling
points. In 2022, a total of seven winter wheat parcels at four study
sites was investigated and regularly monitored during the main growing
season (March till June). In 2019, measurements from two winter
wheat parcels located at ‘‘Swiss Future Farm’’ were taken (Fig. 1 lower
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Table 2
Overview about farms and winter wheat field parcels where in-situ samples were taken for validating the S2-derived crop traits. Management
codes: Conv=conventional; Org=organic; N-exp=nitrogen fertilizer experiment.

Location Parcel Year Size [ha] Variety Management # Sampling
Points

Strickhof
Bramenwies 2022 2.04 Montalbano Conv 4
Hohrueti 2022 2.01 Montalbano Conv 5
Fluegenrain 2022 0.95 Cadlimo Conv 3

SwissFutureFarm

Altkloster 2022 4.60 Montalbano Conv 6
Ruetteli 2022 3.49 Montalbano Conv 6
Schuerpunt 2019 2.45 Arnold N-exp 28
Grund 2019 1.97 Arnold N-exp 24

Arenenberg Broatefaeld 2022 1.48 Wiwa Org 4

Witzwil Parzelle 35 2022 11.98 Baretta Conv 6
c

right) on April 15, 2019. These parcels were part of a nitrogen fertiliza-
tion experiment and sub-divided into non-randomized treatment blocks
where the effect of uniform and variable rate nitrogen fertilization on
field heterogeneity was studied. The width of the treatment plots was
15 or 30 m corresponding to one or two times the operational range of
the fertilizer spreader, respectively. The length varied between 40 and
90 m. The treatment zones with a width of 15 m - all of them were
located at the field boundaries - were excluded from analysis. Further
details about the experiment description can be found in Argento et al.
(2022) and a map of the design in Figure A.9.

Meteorological data was acquired from weather stations located
in close proximity to the field parcels operated by the Swiss Federal
Office of Meteorology and Climatology, MeteoSwiss (Arenenberg, Swiss
Future Farm, and Witzwil), and by the AgroMeteo network of the
Federal Swiss Center for Excellence in Agricultural Research, Agroscope
(Strickhof).

2.3. S2 remote sensing imagery

S2 surface reflectance data (processing level 2 A) with a scene-wide
cloud cover of ≤50% were acquired from the Data and Information
Access Services (DIAS) platform CREODIAS1 between 1st of March
and 31st of July 2022 and April to May 2019. All S2 scenes were
atmospherically-corrected using Sen2Cor version 2.10 (payload data
ground segment baseline N0400).

3. Methods

We start with describing how the S2 imagery (Section 3.1) was
pre-processed, phenology (Section 3.2.1) and functional trait data (Sec-
tion 3.2.2) were measured in-situ, and how the meteorological data
were converted to thermal time (Section 3.2.3). Next, we describe
the workflow from (i) model calibration using field phenotyping data
(Section 3.3) to (ii) model inference on S2 imagery (Section 3.4) to
(iii) model validation using data from on-farm trials (Section 3.5). The
source code to reproduce the entire workflow is openly available under
GNU General Public License v3.0 (see Code and Data Availability).

3.1. Processing of S2 imagery

We resampled the 20 m S2 bands to 10 m spatial resolution. All 10
and 20 m bands were used except band 8 (832 nm central wavelength)
resulting in a total of 9 bands considered. Band 8 was disregarded in
favor of band 8 A which has a higher spectral resolution and showed
more accurate results in prior testing. In a next step, we clipped the S2
scenes to the extent of the field parcels using the open-source Python
Earth Observation Data Analysis Library (EOdal, Graf et al., 2022). We
used the scene classification layer (SCL) of the Sen2Cor output to filter
out all pixels except those classified as vegetated (SCL class 4) or bare
soil (SCL class 5) to avoid contamination by clouds, shadows and snow.

1 https://creodias.eu
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3.2. In-situ data processing

3.2.1. Recording of phenology
All measurements of GLAI and CCC at the field phenotyping (Sec-

tion 2.1) and on-farm trial sites (Section 2.2) were linked to phenolog-
ical stages. Phenological stages were expressed using the Biologische
Bundesanstalt, Bundessortenamt and CHemical Industry (BBCH) scale.
At all sites the rating of BBCH stages followed the work by Lancashire
et al. (1991). Here, the rating of the transition between the three
phenological macro stages considered deserves further detail, i.e., the
beginning of SE (BBCH stage 31) and EH (BBCH stage 59).

SE (BBCH 31) was determined by cutting the main tiller lengthwise
and measuring the distance between the first node and the tillering
node following the manual by Pask et al. (2012). If the distance was
>= 1 cm, the stage was recorded as BBCH 31. EH (BBCH 59) was
determined as the stage when the inflorescence was fully emerged. The
beginning of flowering (BBCH 61) was recorded when the first anthers
became visible.

3.2.2. Measurement of functional traits
Green Leaf Area Index. GLAI was measured using destructive sampling
at early growth stages and non-destructively after the onset of stem
elongation (BBCH >33). For destructive sampling, the total surface
biomass of a previously defined ground surface was sampled, with
plants from at least two seed rows. From five to six randomly selected
wheat plants in this sample, we took the top complete developed leaf
(including leaf base) and placed them on a screen with known reference
area. We determined the leaf area of these leaves 𝐴𝑙𝑒𝑎𝑓 by image
segmentation, i.e., separated the leaves from the screen background.
Subsequently, the total biomass as well as the leaves used for segmen-
tation were freeze-dried for at least 48 h and their dry weight was
determined (𝑚𝑡𝑜𝑡𝑎𝑙 and 𝑚𝑙𝑒𝑎𝑓 , respectively). Using 𝑚𝑡𝑜𝑡𝑎𝑙 and 𝑚𝑙𝑒𝑎𝑓 , we
omputed the total leaf area and, using the known ground area 𝐴𝑔𝑟𝑜𝑢𝑛𝑑 ,

the GLAI (Eq. (1)).

𝐺𝐿𝐴𝐼 =
𝐴𝑙𝑒𝑎𝑓 ∗ 𝑚𝑡𝑜𝑡𝑎𝑙

𝑚𝑙𝑒𝑎𝑓

𝐴𝑔𝑟𝑜𝑢𝑛𝑑
(1)

From BBCH stage 33 onwards, this approach was no longer feasible
as the increasing length of the leaves exceeded the reference grid.
We therefore used a LAI-2200C Plant Canopy Analyzer by LI-COR
Biosciences with a 45 degree viewing cap, performing replicates in
three different orientations, each offset by 90 degrees. To avoid contam-
ination of the measurement by direct sunlight, the measurements were
mostly performed in the morning hours or under diffuse (cloudy) light
conditions. A comparison of destructive and non-destructive methods
was performed for individual data points and showed good agreement.
GLAI measurements were continued until the onset of senescence in
the lower leaf layers. Only at the SEON (Section 2.1.2) and MNI
(Section 2.1.3) sites GLAI rating were continued after the onset of
senescence estimating the fraction of non-photosynthetic leaf area by
eye.

https://creodias.eu
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Fig. 2. Empirical relationship between CCC and GLAI (N=137) obtained from field phenotyping data. The upper and lower envelope of the data are plotted fit for the data points
recorded before and after flowering, respectively.
Canopy chlorophyll content. CCC was estimated by destructively deter-
mining leaf chlorophyll content and GLAI. In 2019, the biomass samples
were collected at experimental plots of the nitrogen fertilization exper-
iments by Argento et al. (2022) (see Section 2.2). For each plot, leaves
were randomly selected. In 2022, the entire above ground biomass
of two up to four seed rows at the sampling points was collected at
a pre-defined distance. A randomly selected sub-sample was used for
chlorophyll analysis. In both years, immediately after sampling, the
leaves were frozen. In addition, the area of these leaves was determined
in the same way as for GLAI to determine leaf mass per unit area.
To avoid light damage, samples were stored in the dark. The frozen
samples were weighed in a cooled container and freeze dried. After
freeze drying, the samples were milled and prepared for the extraction.
For this process, 50 mg of the milled sample were mixed with ethanol
(95%, Analytical Grade) and the supernatant was removed from the
sample for the analysis. This step was repeated two times or until the
remaining pellet was of white-yellowish color. In order to determine
the pigment concentration in the supernatant, the absorbance of the
supernatant was measured at 470 nm (𝐴470), 649 nm (𝐴649) and 664 nm
(𝐴664) with a Microtitre plate reader (Infinite® M1000, Tecan) using
a sample volume of 200 μl with two replicates. From the absorbance
the chlorophyll a (𝑐𝑎) and b (𝑐𝑏) and a+b (𝑐𝑎𝑏) content in μg ml−1 was
calculated using the formula provided by Lichtenthaler and Buschmann
(2001):

𝑐𝑎 = 13.36𝐴664 − 5.19𝐴649 (2)

𝑐𝑏 = 27.43𝐴649 − 8.12𝐴664 (3)

𝑐𝑎𝑏 =
1000𝐴470 − 2.13𝑐𝑎 − 97.64𝑐𝑏

209
(4)

The chlorophyll concentration obtained from Eq. (4) was related to
leaf area using the known probe volume (200 μl ethanol) and weight
5

of the sample biomass (50 mg) dissolved in it. Using the LMA of the
leaves the sample biomass was taken from we could then calculate the
leaf chlorophyll content per area in μg cm−2 and scale it up to CCC using
Eq. (9). The required GLAI values were obtained from Eq. (1) based on
the larger biomass samples or LI-COR measurements that were acquired
in parallel to the leaf samples.

3.2.3. Meteorological data processing
We used the daily mean air temperature 2 m above ground (𝑇𝑎𝑏𝑠𝑑)

from weather stations to calculate growing degree days (GDD, Mcmas-
ter, 1997) for winter wheat assuming a base temperature (𝑇𝑏𝑎𝑠𝑒) of zero
degrees Celsius (Eq. (5)). We obtained accumulative GDD (AGDD) by
accumulating all GDDs obtained from Eq. (5) between the sowing and
harvest date as reported by field calendars at the phenotyping (Table 1)
and on-farm sites (Fig. 1).

𝐺𝐷𝐷 =

{

𝑇𝑎𝑏𝑠𝑑 if 𝑇𝑎𝑏𝑠𝑑 > 𝑇𝑏𝑎𝑠𝑒
0 𝑇𝑎𝑏𝑠𝑑 ≤ 𝑇𝑏𝑎𝑠𝑒

(5)

3.3. Model calibration

For establishing physiologically plausible RTM inputs at the leaf
and canopy level we consider correlations between leaf and canopy
parameters (Section 3.3.1) and the dependency of GLAI to phenology
and the dependency of phenology on air temperature (Section 3.3.2).
All these insights are obtained from field phenotyping described in
Section 2.1 using the pre-processing methods explained in Section 3.2.

3.3.1. Physiological priors
CCC and GLAI are closely correlated (Gitelson et al., 2005, 2014,

2022). Following the approach proposed by Wocher et al. (2020) to
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Fig. 3. Implementation of physiological constraints in the LUT (N=50,000) generated without phenological priors. (a) denotes the CCC-GLAI relationship without physiological
constraints and (b) when the empirical relationship from Fig. 2 is enforced to redistribute CCC values. (c) shows the unrestricted relationship between Cab and GLAI and (d) the
relationship when using the CCC values from (b). (e) and (f) show the redistribution of Car based on Cab (from (d)) as suggested by Wocher et al. (2020).
account for the correlation between carotenoid (Car) and Cab content
we established a relationship between CCC and GLAI to increase the
physiological plausibility of RTM inputs using phenotyping data from
the SEON and MNI sites (see Table 1 and Sections 2.1.2 and 2.1.3).

Fig. 2 shows a strong linear relationship between CCC and GLAI
obtained from field phenotyping with Pearson’s 𝑅2 0.94 (N=137). We
fitted a linear regression line to the data points and constructed an
upper and lower envelope encompassing all data points. The linear
regression with obtained coefficients is given in Eq. (6).

𝐶𝐶𝐶 = 0.5755𝐺𝐿𝐴𝐼 (6)

To fit the upper envelope, we used all CCC-GLAI pairs recorded
before flowering (BBCH 61). Thus, we accounted for plant development
during the vegetative (till BBCH 29) and reproductive phase in which
CCC and GLAI are increasing steadily. A linear model was constructed
and is denoted in Eq. (7).

𝐶𝐶𝐶𝑢𝑝𝑝𝑒𝑟 = 0.8544𝐺𝐿𝐴𝐼 (7)

For the lower envelope we used all CCC-GLAI pairs recorded after
BBCH 61. Here, we assume CCC and GLAI to decline with onset
of senescence. We used a second order polynomial to construct the
envelope (Eq. (8)). The reason for choosing a linear and polynomial
model for the upper and lower envelope, respectively, follows the
reasoning by Gitelson et al. (2014): During vegetative growth stages,
the relationship between GLAI and CCC is strongly linear but tends
to become polynomial for reproductive stages after flowering due to
hysteresis effects.

𝐶𝐶𝐶𝑙𝑜𝑤𝑒𝑟 = 0.0763 ∗
(𝐺𝐿𝐴𝐼
1.6819

)2
+ 0.3336 ∗ 𝐺𝐿𝐴𝐼

1.6819
− 0.0551 (8)

Following the approach by Wocher et al. (2020) we used the regres-
sion line and the envelopes to distribute CCC values using a truncated
Laplacian distribution based on GLAI. Fig. 3 illustrates the principle:
The left column in Fig. 3(a, c, e) shows the relationship between
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Table 3
Statistics of GLAI values in 𝑚2𝑚−2 for phenological macro stages and all stages derived
from phenotyping data of winter wheat (N=909). Corresponding BBCH ranges are
denoted in brackets.

Phenology 5% Quantile Median 95% Quantile N

GE-ET (0–29) 0.0 0 .6 2.0 189
SE-EH (31–59) 0.5 4.2 6.5 661
FL-PM (61–99) 0.3 6.3 8.0 166
all (0–99) 0.0 3.8 8.0 909

CCC and GLAI (a), Cab and GLAI (c), and Car and Cab (e), when no
physiological priors are included and the traits are, thus, uncorrelated.
Here, a truncated normal distribution is assumed for Cab (𝒩 (50, 40) μg
cm−2) with a minimum of 0 and maximum of 80 μg cm−2 as suggested
by Danner et al. (2021). Based on the same reference we obtained the
uncorrelated Car samples (Fig. 3e) with a minimum of 0 and maximum
of 15 μg cm−2 using (𝒩 (7.5, 5) μg cm−2). Our proposed workflow starts
at Fig. 3a with the redistribution of the CCC values based on the
empirical relationship from Fig. 2 using Eqs. (6) to (8). The result is
shown in Fig. 3b: Low CCC values do not occur when GLAI values
are high, which is consistent with the literature (Gitelson et al., 2014).
Using the redistributed CCC from Fig. 3b, we redistributed Cab, using:

𝐶𝐶𝐶 (g cm−2) = 𝐶𝑎𝑏 ∗ 𝐺𝐿𝐴𝐼 ∗ 0.01 (9)

which can be rewritten to

𝐶𝑎𝑏 (μg cm2) = 𝐶𝐶𝐶
𝐺𝐿𝐴𝐼

∗ 100 (10)

to calculate Cab from CCC and GLAI. The result is shown in Fig. 3d:
Low Cab values are removed when GLAI is high. In a last step, we
used the redistributed Cab to implement the Car-Cab relation described
in Wocher et al. (2020). The result is depicted in Fig. 3f. Thus, based
on GLAI, CCC, Cab and Car are redistributed and mutually correlated
based on empirical relationships from field phenotyping to establish
physiologically plausible RTM inputs.
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Table 4
AGDD statistics (in ◦C) for begin of SE (BBCH 31) and EH(BBCH 59) derived from field phenotyping data
at the FIP site.

Phenological Stage BBCH Code 5% Quantile Median 95% Quantile N

Begin of Stem Elongation 31 737 803 870 357
End of Heading 59 1382 1487 1602 1833
3.3.2. Phenological priors
Dependency of GLAI on phenology. As described in Section 2.1, CCC at
the canopy as well as Cab and Car at the leaf scale are distributed
based on GLAI (Fig. 3b, d, f). GLAI in turn depends on phenology.
From the SEON, MNI and Bramenwies datasets (see Table 1 and Sec-
tions 2.1.2 to 2.1.4) we analyzed the measured GLAI values using the
5, 50 and 95% quantile. Analysis was carried out for all phenological
stages (BBCH 0–99), as well as for GE-ET (BBCH 0–29), SE-EH (BBCH
31–59) and FL-PM (BBCH 61–99). The obtained descriptive statistics
are shown in Table 3.

Dependency of phenology on air temperature. Air temperature is an im-
portant driver of plant growth and phenological development (Parent
and Tardieu, 2012; Roth et al., 2022a). We used the FIP field pheno-
typing data about the beginning of SE (BBCH 31) and EH (BBCH 59) to
obtain descriptive statistics of the AGDD required for a winter wheat
cultivar to reach these phenological stages. The descriptive statistics
showing the 5, 50 and 95% quantile are summarized in Table 4.

3.3.3. Radiative transfer modeling
We used the PROSAIL RTM (Jacquemoud et al., 2009) coupling the

PROSPECT-D leaf RTM (Féret et al., 2017) with the 4SAIL (Verhoef,
1984) canopy RTM to simulate winter wheat directional reflectance
based on the proposed physiological and phenological priors (Sec-
tions 3.3.1 and 3.3.2). PROSAIL is a one-dimensional RTM based on
the turbid medium assumption meaning that canopies are treated as
two-dimensional layers with scattering and absorbing particles. Three-
dimensional structural effects are neglected. Viewing and illumination
angles were set to scene-specific values. In PROSAIL, chlorophyll con-
tent is a leaf variable, Cab, (i.e., a variable of PROSPECT-D) given in
μg cm−2. For scaling up to the canopy, we calculated CCC (in g m−2)
based on GLAI (Eq. (9)).

Table 5 shows the leaf (PROSPECT-D) and canopy (4SAIL) parame-
ters input into PROSAIL. The range of GLAI values denoted in Table 5
is set to the range found for all phenological phases (BBCH 0–99). For
the phenological macro stages, the range of GLAI values is modified
according to the 5%–95% quantile range denoted in Table 3 (see
Section 3.3.2) to integrate the phenological prior. In all phenological
stages GLAI is distributed uniformly. Leaf parameters Cab and Car are
redistributed based on GLAI as described in Section 3.3.1 to ensure
physiological plausibility of PROSAIL simulations. The remaining pa-
rameters are set to values provided by Wocher et al. (2020) and Danner
et al. (2021), which are also based on in-situ data including winter
wheat samples.

Thus, for each S2 scene we generated four lookup tables (LUTs):
Three LUTs for the phenological macro stages (GE-ET, SE-EH, FL-
PM) and a single LUT for all stages (BBCH 0–99). We used a fully
randomized sampling scheme to generate input pairs of leaf and canopy
parameters from Table 5 to run PROSAIL in forward mode. After
running PROSAIL, we carried out further post-processing: We discarded
simulated spectra that had a physiologically unrealistic blue shift of
the green reflectance peak as proposed by Wocher et al. (2020). In
detail, Wocher et al. (2020) analyzed data from handheld field spec-
trometers, airborne hyperspectral imaging sensors and the ANGERS leaf
optical dataset (Jacquemoud et al., 2003). They observed that green
reflectance peaks of vegetation do not occur at wavelengths < 547 nm.
PROSAIL, however, sometimes simulates vegetation spectra in which
the green peak is shifted towards shorted wavelengths (i.e., < 547 nm).
This may be an indication of physiologically implausible input param-
eter combinations or a modeling artifact. Due to inadmissible shifts of
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Table 5
Parameter ranges and distributions for the combined leaf (PROSPECT-D) and canopy
(4SAIL) RTM (PROSAIL) without phenological priors applied to GLAI. The ranges are
given for uniform distributions (range) or a truncated Gaussian distribution with mean
and standard deviation denoted in brackets. Cab and Car are redistributed on GLAI as
shown in Fig. 3 and explained in Section 3.3.1.

Trait Description Unit Range

PROSPECT-D (Leaf)

N Leaf Structure Parameter [–] 1–2.5 (1.5, 0.2)
Cab Leaf Chlorophyll a+b Content [μg cm−2] redistributed based on GLAI
Car Leaf Carotenoid Content [μg cm−2] redistributed based on Cab
Cant Leaf Anthocyanin Content [μg cm−2] 0.0–5.0 (2.0, 0.8)
Cbrown Brown Pigments [–] 0–1
Cw Equivalent Water Thickness [cm] 0–0.07 (0.04, 0.02)
Dm Dry Matter Content [g cm−2] 0–0.01

4SAIL (Canopy)

GLAI Green Leaf Area Index [m2 m−2] 0–8
ALA Leaf Inclination Angle [deg] 30–70
hspot Hot spot Parameter [–] 0.01–0.5
rsoil Soil Brightness Factor [–] 0–1
psoil Dry/Wet Soil Factor [–] 0–1

the green peak, we discarded around 5% of the simulated S2 spectra.
This is clearly lower than the number of 23% of invalid spectra reported
by Wocher et al. (2020) suggesting that physiological priors reduce the
amount of implausible PROSAIL spectra.

The remaining 1 nm PROSAIL outputs were resampled to the spec-
tral response functions of S2A and S2B provided by ESA. Input param-
eters and simulated S2 spectra were stored in LUTs for RTM inversion.

3.4. Model inference

For inference on S2 imagery, three scenarios were run: The first
scenario setup uses a single RTM parametrization for the entire grow-
ing season (NO-PHENO). In the second scenario we use AGDDs for
estimating the onset of phenological stages and use the LUT of the
macro stage (AGDD-PHENO). The third scenario is essentially the same
as the second but includes spatial detail from S2 pixel-based cost
function values (see Section 3.4.2) to test if differences in phenological
transitions can be detected within the field parcels (AGDD-S2-PHENO).

3.4.1. RTM inversion
For each S2 scene we obtained GLAI, CCC and hence Cab using

the simulated S2 LUTs. We took the median of the 𝑛 best solutions
in terms of the smallest cost function values between observed and
simulated S2 spectra. As cost function we used the root mean squared
error (RMSE) between S2 observed (𝑝) and PROSAIL simulated spectra
(𝑞) considering all 𝜆1,… ., 𝜆𝑚 spectral bands of S2 used (𝑚 = 9, see
Section 2.3):

𝑅𝑀𝑆𝐸 =

√

√

√

√

∑𝜆𝑚
𝜆𝑖=1

(𝑝(𝜆𝑖) − 𝑞(𝜆𝑖))2

𝑚
(11)

Table 6 shows the configurations used for the phenological phases
(scenarios AGDD-PHENO and AGDD-S2-PHENO) and the NO-PHENO
scenario. The configurations were obtained from systematic testing
of different cost functions, LUT sizes and number of solutions of the
inversion (see Table A.9 in Appendix A). We optimized for enhancing
the correlation between modeled and in-situ observed GLAI values in
terms of Pearson’s R-square 𝑅2.
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Table 6
Setup of the LUT-based inversion for the phenological phases including the cost function, LUT size, and the
scenario the LUT was used for (RMSE: root mean squared error, MAE: mean absolute error). The BBCH
ranges are denoted in brackets.

Phenology Cost Function LUT size No. Solutions Scenarios

GE-ET (0–29) RMSE 10000 100 AGDD-PHENO, AGDD-S2-PHENO
SE-EH (31–59) MAE 50000 5000 AGDD-PHENO, AGDD-S2-PHENO
FL-PM (61–99) MAE 50000 5000 AGDD-PHENO, AGDD-S2-PHENO
all (0–99) MAE 50000 5000 NO-PHENO
Fig. 4. Proposed workflow for estimating the transition between main phenological stages in winter wheat based on accumulated growing degree days (AGDD) and GLAI trajectories
from RTM inversion. The red rectangles denote AGDD windows where transitions from tillering to stem elongation and from heading to flowering most likely occur based on
phenotyping experiments. The dashed lines denote the median AGDD for these transitions. Examples of winter wheat canopies at different development stages (expressed in BBCH
codes) are shown in the top row in addition.
3.4.2. Phenology retrieval
In the NO-PHENO scenario a single RTM parametrization was used

for all S2 scenes to derive GLAI and CCC. In the other two scenarios we
had to determine the phenological macro stage to select the appropriate
LUT for RTM inversion. Fig. 4 highlights the procedure for a hypothet-
ical S2-derived trait time series. The red rectangles define the AGDD
ranges identified from field phenotyping (Table 4) where a switch
between the phenological stages most likely occurs. In the AGDD-
PHENO scenario we used the median AGDD obtained from Table 4
to switch between the phenological phases (dashed lines in Fig. 4). In
the AGDD-S2-PHENO scenario we used the value of cost function of
the RTM inversion in addition. I.e., in the AGDD window of beginning
of SE (BBCH31) we compared the median cost function value from
inverting the LUT for the tillering phase (GE-ET, BCCH 0–29) with the
value obtained from SE-EH (BBCH 31–59). If the latter was lower, we
switched from tillering into stem elongation. Otherwise the observation
remained in the tillering phase until either the cost function value from
stem elongation was lower or the end of the critical AGDD was reached.
In that case, a switch was forced. In case no S2 scene was available we
used the same procedure as in AGDD-PHENO.

3.5. Model validation

3.5.1. On-farm trial data processing
Independent measurements of GLAI, CCC and BBCH were recorded

at weekly to bi-weekly intervals at on-farm locations in Switzerland
(see Fig. 1 and Table 2) using the methods described in Section 3.2.
These measurements are used to test the accuracy of models calibrated
on field phenotyping data applied to S2 imagery at the landscape scale
(see Section 3.5.2).
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3.5.2. Comparison of satellite and in-situ data
Modeled GLAI, CCC and phenological macro stages were compared

against on-farm validation data (see Section 2.2). We used a maximum
difference of 20 GDD between in-situ sampling dates and S2 overpasses
which corresponds to a maximum temporal difference of one up to a
couple of days depending on the time of the year. For spatial inter-
section, we constructed a circle with 10 m radius around the point
coordinate of the in-situ measurement. We used the mean of all S2
pixels that overlapped this circle. This is to ensure that the influence
of uncertainties in the positional accuracy of both data sources is
minimized.

We then calculated common error metrics including the root mean
squared error (RMSE), normalized RMSE (nRMSE), normalized absolute
median deviation (NMAD) and 𝑅2 to compare modeled GLAI and CCC
to in-situ samples. We treated the retrieval of the three phenological
macro stages as a classification problem, i.e., a segmentation of the
growing season into three stages, in which the true phenological macro
stage obtained from the BBCH ratings served as target class label. We
calculated the confusion matrix, the F1-score per phenological stage,
i.e., per class, and an adjusted F1-score accounting for class imbalances
to quantify model performance using phenological data from 2022. For
a single class classification problem, i.e., a single phenological phase,
the F1-score is the harmonic mean of precision (positive predictive
value) and recall (true positive rate) calculated from the number of true
and false positives (tp, fp), as well as true and false negatives (tn, fn).

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑝
(12)

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑝 (13)
𝑡𝑝 + 𝑓𝑛
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Fig. 5. Scatter plots between in-situ reference and RTM-derived GLAI for the NO-PHENO (a), AGDD-PHENO (b), and AGDD-S2-PHENO (c) scenarios. The year the data was
collected is denoted by dots (2019) and crosses (2022).
Table 7
Confusion matrix showing in-situ rated and AGDD-PHENO predicted
phenological macro stages for sampling dates in 2022 with S2 imagery
available (N=148).

AGDD-PHENO Predicted

GE - ET SE - EH FL - PM

In
-S

itu
Ra

te
d GE - ET 42 6 0

SE - EH 0 61 0

FL - PM 0 0 39

𝐹1𝑠𝑐𝑜𝑟𝑒 =
2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

(14)

For a multi-class classification problem as in this study, the adjusted
F1-score is calculated from the F1-scores per class weighted by the
number of samples per class. The adjusted F1-score is thus a measure
for the overall performance of the phenological model. Error metrics
were provided for all three experimental setups to test the effect of
phenological priors on RTM inversion accuracy and determine the most
accurate method for phenology estimation.

4. Results

4.1. Phenological macro stages

From a total of 970 S2 observations over the sampling points (Ta-
ble 2), 134 (14%) were located in the AGDD windows determined from
phenotyping (Table 4). The number is based on the requirement that a
S2 observation must be within ±20 AGDD to an in-situ observation. In
the GE-ET to SE-EH transition window 23 out of 80 S2 observations
could be compared to in-situ BBCH ratings. In the second window
(SE-EH to FL-PM) it was 8 out of 54 observations.

The purely temperature-based AGDD-PHENO scenario predicted
nearly all three stages correctly resulting in an adjusted, i.e., multi-
class, F1-score of 0.96. In detail, the class-specific F1-score for GE-ET
was 0.93, 0.95 for SE-EH and 1.0 for FL-PM. The confusion matrix
is shown in Table 7 comparing in-situ rated macro stages to model
predictions. Six out of 42 observations (14%) were wrongly assigned
to the SE-EH stage by the model as can been in the confusion matrix
(Table 7). For the second transition all data points were assigned to the
correct phenological macro stage.

The performance of the AGDD-S2-PHENO scenario was slightly
lower as shown in the confusion matrix in Table 8. This was due to an
additional confusion in the second transition window of three obser-
vations. Still, the adjusted, i.e., multi-class, F1-score of the AGDD-S2-
PHENO model was 0.94 as most observations were assigned correctly
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Table 8
Confusion matrix showing in-situ rated and AGDD-S2-PHENO predicted
phenological macro stages for sampling dates in 2022 with S2 imagery
available (N=148).

AGDD-S2-PHENO Predicted

GE - ET SE - EH FL - PM

In
-S

itu
Ra

te
d GE - ET 42 6 0

SE - EH 0 61 0

FL - PM 0 3 36

based on AGDDs. For the single phenological stages, the F1-score was
0.93, 0.93, and 0.96, for GE-ET, SE-EH, and FL-PM, respectively.

4.2. Functional trait retrieval

4.2.1. Green leaf area index
The accuracy of GLAI prediction increases by adding phenological

priors. Fig. 5 shows scatter plots of in-situ measured GLAI on the 𝑥-axis
and GLAI from PROSAIL inversion on the 𝑦-axis for the three scenario
setups. In the baseline scenario without phenology (NO-PHENO), the
RMSE is 1.15 m2 m−2 (nRMSE: 42.30%) and the NMAD is 0.77 m2

m−2. The scenarios with phenology have lower errors, with the AGDD-
PHENO scenario achieving slightly higher accuracy with an RMSE of
0.85 m2 m−2 (nRMSE 31.25%, NMAD 0.09 m2 m−2) than AGDD-S2-
PHENO, where the RMSE is 0.87 m2 m−2 (nRMSE 31.89%, NMAD 0.08
m2 m−2). In all three cases, modeled GLAI was able to explain between
77 (NO-PHENO) and 84% (AGDD-PHENO and AGDD-S2-PHENO) of the
variance in the in-situ data.

The higher overall accuracy is mainly due to the first phenological
phase (GE-ET), in which the RMSE decreases from 0.6 m2 m−2 (nRMSE
217.52%) in the case of NO-PHENO to 0.16 m2 m−2 (nRMSE: 58.04%)
in the AGDD-PHENO setup (N=42). We assume the increase in retrieval
accuracy was mainly due to optimization in the inversion setup (see
Table 6): When using a larger LUT and a higher number of solutions,
the retrieval error increased to > 100%. The ill-posedness of RTM
inversion, however, makes it difficult to make a conclusive statement.
Without optimizing the inversion setup, the retrieval error was up
100%. In the SE-EH macro stage, the NO-PHENO scenario is slightly
better than the AGDD-PHENO scenario with an RMSE of 0.88 m2 m−2

and 0.95 m2 m−2, respectively (relative errors: 22.08% and 23.75%,
N=67). In the last phenological macro stage, both models performed
similar with an RMSE of 1.07 m2 m−2 (relative error: 23.1%, N=39).
In these two stages, the RTM inversion setup was the same for both
approaches as suggested by the systematic optimization approach.
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Fig. 6. Scatter plots between in-situ reference and RTM-derived CCC for the NO-PHENO (a), AGDD-PHENO (b), and AGDD-S2-PHENO (c) scenario setups. The year the data was
collected is denoted by dots (2019) and crosses (2022).
4.2.2. Canopy chlorophyll content
As with GLAI, the incorporation of phenology shows an increase in

the accuracy of CCC retrieval. Unfortunately, fewer data points (N=59)
are available for validation of CCC. Also, these are limited to the early
growth stages (GE-ET and SE-EH). Fig. 6 shows the in-situ measured
versus modeled CCC. The RMSE of CCC retrieval is about 0.37 g m2

(nRMSE: 55.52%, NMAD: 0.28 gm2) in the two phenological setups
versus an RMSE of 0.66 g m2 (nRMSE 98.62%, NMAD: 0.86 g m2) in
the NO-PHENO baseline. The modeled CCC explained between 79 and
84% of the variance in the in situ values. When looking at the 2019 data
alone (N=29, see cross markers in Fig. 6), an extremely poor retrieval
performance can be observed with an 𝑅2 of around 0.02. AGDD-PHENO
and AGDD-S2-PHENO (Fig. 6b, c) show the same retrieval accuracy as
the data only includes data points for which both models agreed on the
same phenological macro stage.

4.2.3. Spatio-temporal considerations
Fig. 7 shows maps of modeled GLAI (top row), CCC (middle row),

and Cab (bottom row) for selected S2 scenes in 2022 for the Witzwil
site (Parzelle 35) depicting all three phenological macro stages. Traits
are based on the AGDD-PHENO scenario which outperformed the other
two setups in terms of trait retrieval accuracy. Fig. 7 shows the high
correlation between GLAI and CCC when comparing them on a pixel-
by-pixel basis (𝑅2 between 0.97 and 0.99, N=2604 pixels per S2 scene).
The correlation between GLAI and Cab is more variable and shows a
change over the season: for example, 𝑅2 is 0.5 at the beginning of stem
elongation (20220325, second column from left in Fig. 7) and increases
to 0.91 at the last date shown (20220618, right column in Fig. 7). An
increase of trait values starting in March (GE-ET) towards a maximum
in May (FL-PM) can be observed (second column from the right in
Fig. 7) followed by a decrease in the last S2 scene (right column in
Fig. 7) at the onset of senescence. A clear spatial pattern is visible in
the field (upper central part), which can be explained by soil subsidence
and associated water logging (Egli et al., 2020). The observed field
heterogeneity coincides with the experience of the local farmer. The
spatial patterns are similar in all three traits.

Maps for the other field parcels studied in 2022 showing the same
calendar dates can be found in the Appendix A (Figures A.10–A.15).
Moreover, a map of GLAI, CCC, and Cab for April 20th, 2019 is shown
in Figure A.9 for the two field parcels at which different nitrogen
treatments were applied (see Section 2.2).

The high correlation between modeled GLAI and CCC applies to all
field parcels and S2 scenes in 2022. The correlation between GLAI and
Cab is weaker overall. It shows a seasonal change from low correlation
in tillering and beginning of stem elongation to high correlation after
ear swelling (BBCH macro stage 40). In 2019, the aforementioned
poor retrieval accuracy in GLAI and CCC resulted in lower correlation
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between modeled GLAI and CCC (𝑅2 around 0.73). This is lower than
in the independent calibration dataset (see Section 3.3 and Fig. 2).

Fig. 8 shows median GLAI (top row), CCC (middle row), and Cab
(lower row) trajectories derived from the AGDD-PHENO scenario for
all field parcels investigated in 2022. Median trait values are plotted
per S2 image acquisition date in calendar dates (Fig. 8, a) and AGDD
(Fig. 8, b). For all fields, the traits follow plausible temporal patterns.
GLAI values increase steadily from < 1 m2 m−2 at the beginning of
March (GE-ET phase) and reach a maximum in early summer (4 to
5.5 m2 m−2), followed by a decline in the FL-PM phase reaching values
around 1 m2 m−2 in mid and late July. CCC closely follows the seasonal
trajectory of GLAI (Fig. 8, middle row). Cab (Fig. 8, lower row) reveals
a slightly different picture: Cab values start to increase earlier than
GLAI and show only a slight decline towards the end of the season.
This means, the same GLAI value (e.g., 1 m2 m−2) at the start and end
of the season has different Cab levels: Lower Cab levels (< 40 μg cm−2)
at the beginning of the season (around AGDD 700 to 800 ◦C) and higher
Cab levels (>= 40 μg cm−2) during the last phenological macro stage
(FL-PM, around AGDD 2200 to 2500 ◦C).

By comparing calendar dates and AGDDs, some interesting observa-
tions can be made: The GLAI of the organically managed Broatefaeld
plot (Arenenberg site, see Table 2) is lower than the GLAI of the
other fields and shows a delayed increase of the GLAI in the AGDD
scale. Cab levels, however, are similar to the other parcels. In case
of Parzelle 35 (Witzwil site) there is an earlier increase of GLAI with
respect to calendar dates. However, in the AGDD scale, it can be seen
that the wheat in this field lags behind the other fields except for the
aforementioned Broatefaeld parcel and also requires a much higher
cumulative temperature sum (∼2700 ◦C d) to reach maturity. The other
six fields already reach this value around AGDD 2200. Notably, in the
calendar view, all fields reach these low GLAI values at almost the same
time by mid of July when harvest took place (between July 15th at
Broatefaeld and July 27th at Ruetteli, SwissFutureFarm).

5. Discussion

5.1. Phenological macro stages

The AGDD-PHENO scenario based on AGDD demonstrates that the
results obtained from observing the physiological changes in win-
ter wheat in small-scale field phenotyping sites can be applied to
larger agricultural systems at the landscape scale. This means that
it is possible to upscale the findings. We assert that by combining
physically-based models (RTMs) with prior knowledge of physiology
and phenology, we are able to accurately encode the essential physical
and biological principles needed for the transfer of information across
space and time at the landscape scale.
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Fig. 7. Maps of GLAI (top), CCC (middle), and Cab (bottom) derived from the best performing scenario (PHENO-AGDD) for Witzil (Parzelle 35). The maps are obtained from
selected S2 overpasses depicting the three phenological macro stages of winter wheat (AGDD in brackets).

Fig. 8. Trajectories of median GLAI (top row), CCC (middle row), Cab (lower row) values per field parcel with 𝑥-axis plotted in calendar dates (a) (i.e., S2 image acquisition
dates) and accumulated growing degree days (b).
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Due to the dependence on temperature sums, the approach works
in real-time during the season (first research question). Thanks to its
simplicity the proposed approach can be easily adopted for operational
usage since only basic weather station or gridded meteorological data
is required. Information on exact occurrence of phenological transition,
however, is not provided. Given the inherent uncertainty in S2 (Graf
et al., 2023) and temperature data, determining transitions with high
precision (e.g., up to single days) is not considered useful as uncertainty
alone might be in the range of a couple of days. Our approach also
does not allow a more fine-grained view on phenology, such as the
onset of tillering (BBCH 21) or booting (BBCH 41). This is, however,
mainly to lack of corresponding phenological ratings. As Liao et al.
(2023) showed the detection of further phenological macro stages from
remotely-sensed data is possible given calibration data availability.

Our approach differs substantially from previous remote sensing
studies of phenology, which are mostly based on time series analyses of
growing seasons that have already been completed (Zeng et al., 2020).
Phenology estimates in real time are therefore often not possible. In
addition, we circumvent the need to fit a time series to remotely sensed
data points, which is associated with large uncertainties and potential
for error (Younes et al., 2021). Especially in geographic regions with
high annual cloud cover such as the mid-latitudes or tropical regions,
fitting of time series can fail or lead to implausible estimates of phe-
nology. Furthermore, our approach models phenology as stages with
physiological significance, which is often not fully addressed in remote
sensing studies and limits their interpretability as well as applicability
to agriculture.

The AGDD scenarios may encounter limitations when temperature
is not the main driving factor for phenological development (e.g., under
water-limited conditions), or when crops are stressed in some other
ways (Bönecke et al., 2020). Mechanistic crop growth models might
therefore be a more sophisticated and reliable alternative. Moreover,
the AGDD-PHENO scenario cannot detect differences in phenology
within the field as we have a single temperature reading per field.
This was the motivation for adding the cost function value from the
RTM inversion (AGDD-S2-PHENO) to introduce spatial detail from re-
mote sensing. This scenario revealed slightly lower accuracy (Table 8).
Still, due to the small number (𝑁 = 31) of S2 observations with
corresponding in-situ BBCH ratings at the critical AGDD windows (see
Section 4.1), it is difficult to make conclusive assessments. Arguably,
canopy structure might only change gradually during the transition
from one phenological stage to the other and so might the influence on
the spectral properties. Consequently, slight uncertainties in determin-
ing the phenological stage will have limited effect on the trait retrieval.
As Liao et al. (2023) showed that spectral information from S2 data
can indeed be used to reveal spatial differences in phenological macro
stages within wheat fields, we still see great potential in this approach.
However, a more conclusive metric than the value of the cost function
of the RTM inversion needs to be found.

The AGDD windows based on multi-year field phenotyping and a
large number of genotypes are valid for Swiss conditions and those of
neighboring western and central European countries due to European
GABI wheat panel (see Section 2.1.1) and similar environmental con-
ditions in terms of climate and soils. It should be noted that breeding
progress, for example towards climate-resilient varieties, may require
recalibration in the future. On the example of wheat cultivars in
Western Germany between 1952 and 2013, Rezaei et al. (2018) showed
that historical changes in wheat phenology are mainly due to breeding
progress, as modern cultivars require a lower temperature sum to reach
flowering. However, this is only feasible if sufficient data from field
phenotyping from multiple years and geographic locations is available.
The same applies regarding the transferability of our approach to other
important crops such as maize or soybean or future climate conditions.

5.2. Functional trait retrieval

The usage of field phenotyping data improved RTM-based func-
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tional trait retrieval (second research question). S
5.2.1. Retrieval accuracy
Seasonal trajectories of GLAI, CCC, and Cab showed meaningful

patterns (Fig. 8) and reflected large-scale field heterogeneity (Fig. 7).
The use of thermal time as a complement to calendar dates also
creates the basis for making plant growth and phenology comparable
in space and time, since temperature sums represent a common frame
of reference. In the 2019 N-experiment, in which field heterogeneity
was artificially increased the models showed poor performance and
were not able to resolve small-scale field heterogeneity. We attribute
this issue to two main causes: First, the plot design of the experiment
might still be too small compared to the spatial resolution of S2 (see
Section 2.2). Second, the GLAI-CCC relationship (see Fig. 2) used as
physiological prior to calibrate the models was not obtained under
field conditions under which small-scale heterogeneity was exaggerated
artificially. Thus, more calibration data might be required to enable
a more accurate retrieval of CCC under variable field management
conditions.

The relationship between GLAI and Cab shows decoupling at early
growth stages (see Figs. 7 and 8). This is plausible, since large fluctua-
tions in Cab are to be expected at low biomass values in the vegetative
phase (Lemaire et al., 2008). The same applies to the senescence phase
(BBCH > 90). For senescence, unfortunately, we have no validation
data (see Section 3.5) and only few calibration data, since the distinc-
tion between green and brown, i.e., photosynthetically inactive, LAI is
a highly subjective task. Therefore, further calibration and validation
data are needed to model and validate senescence.

It is also important to consider that the inversion result arises
from the aggregation of several solutions, using the entire spectral
information. This can cause variations in the chlorophyll content to
disappear: First, the inversion is more sensitive to changes in GLAI,
as GLAI - unlike chlorophyll - affects all spectral bands (Verrelst and
Rivera, 2017). Second, the aggregation by using the median of the 𝑛
best solutions might suppress small leaf chlorophyll variations similarly
to noise.

Generally, the retrieval accuracy of functional traits is between
values found in studies using S2 data and PROSAIL simulations: For
example, Xie et al. (2019) obtained an RMSE in GLAI of 1.53 m2 m−2

or winter wheat, while Pan et al. (2019) reported an RMSE of 0.43
2 m−2 (nRMSE: 11%), both in Northern China. Using a multi-year
ataset obtained on wheat fields in Belgium, Delloye et al. (2018)
eported RMSE about 0.7 m2 m−2 (nRMSE: 35.86%) when using the
2 red-edge bands for RTM inversion, which was similar to the error
e obtained from all bands (RMSE: 0.72 m2 m−2). For CCC, an error
f 0.35 gm−2 was obtained from all S2 bands resulting in a relative
rror of 26.37%. In a multi-crop approach on winter wheat and maize
n Southern Germany (Estévez et al., 2021) reported an RMSE of 0.48
2 m−2 (nRMSE: 12.94%) in GLAI and of 0.39 gm−2 in CCC (nRMSE:
8.14%). However, their sample size is small (N=14) and only includes
hree winter wheat samples.

Notably, none of the aforementioned studies used physiological or
henological priors from field phenotyping as suggested in this study.
ne might therefore conclude that similar retrieval accuracy can be
chieved without the explicit usage of field phenotyping data. However,
nly in few studies, e.g., by Delloye et al. (2018), GLAI and CCC
ere derived simultaneously, making direct comparisons to our work
ifficult. Moreover, only in few cases have the data used been disclosed,
o we could not directly compare our method with those of other
uthors.

Our findings regarding trait retrieval accuracy might also mean that
ne-dimensional RTMs such as PROSAIL building on the turbid medium
ssumption (Verhoef, 1984) have reached their accuracy limit. Turbid
edium RTMs represent a canopy as a single layer with absorbing and

cattering particles dissolved uniformly in it. Thus, the alignment of
eaves in vertically-structured layers with different optical properties
ound in winter wheat cannot be fully represented (Zhao et al., 2017).

ignificant changes in trait retrieval accuracy might only be possible
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using more sophisticated models, such as RTMs with multiple leaf
layers (Verhoef and Bach, 2007) or three-dimensional RTMs (Jiang
et al., 2022). To do so, the incorporation of further structural and
morphological traits such as leaf angles or the vertical distribution of
leaves in plants from field phenotyping might be beneficial. Advancing
the development of RTMs towards a higher degree of morphological
and physiological plausibility were, however, beyond the scope of this
study.

5.2.2. The role of phenology
The incorporation of phenology increased trait retrieval accuracy.

This is especially due to the possibility to optimize the RTM inversion
setup for the individual stages, i.e., to optimize the size of the LUT,
number of solutions and choice of cost function per phenological macro
stage. Our experiments suggest that optimizing the inversion config-
uration has a greater influence than the actual phenological priors
(see Section 4.2). These findings are consistent with previous studies
about RTM inversion, e.g., by Verrelst et al. (2014). Moreover, it seems
conceivable to adjust the selection of spectral channels per phenolog-
ical stage, since the sensitivity of spectral channels to GLAI and CCC
depends on the phenological developmental stage: For instance, at low
LAI values, the sensitivity to a leaf trait such as Cab is weak (Verhoef
et al., 2018).

Furthermore, our approach allows to consider different traits per
phenological macro stage or to parameterize them with greater atten-
tion. This is possible because the macro stages represent important
physiological transitions in winter wheat, in which different traits are
important to study. For example, during the first stage (GE-ET), green
canopy cover is a trait of great relevance. Canopy cover is used to
quantify, e.g., the interception of radiation (Steven et al., 1986) or to
determine the risk of soil erosion by water (Gabriels et al., 2003). Thus,
in further research, this trait could be modeled for this phenological
macro stage.

5.2.3. An up-scaling problem?
The strength of the linear relationship between modeled GLAI and

CCC is either higher (2022 data, Fig. 7) or lower (2019) than suggested
by the multi-year phenotyping data (Fig. 2). Seemingly, the remotely
sensed GLAI-CCC relationship is over-simplified. This reveals a funda-
mental problem in the derivation of CCC from S2 imagery. While CCC is
conceptually a canopy trait, it is directly related to leaf chlorophyll and
thus to the leaf scale. Therefore, in-situ measurement and RTM-based
estimation of CCC always requires up-scaling, since only the leaf trait
can be measured or modeled. In addition, for both in-situ and RTM CCC
determination, it is assumed that chlorophyll is distributed uniformly in
the canopy. This assumption ignores that chlorophyll content tends to
decrease from the top of the canopy towards the ground due to vertical
distribution of leaves in wheat (Huang et al., 2011) - which again might
call for more complex RTMs.

There is also the question of an appropriate scheme for in-situ
sampling of a leaf trait (Cab) for up-scaling to the canopy (i.e., CCC).
If only leaves from the upper leaf level are taken, this might intuitively
come closer to what the satellite sees, which ultimately measures the
top-of-canopy reflectance. However, this is not representative of the
entirety of the canopy as previously explained. Moreover, since the
entire canopy contributes to the total reflectance (Kuusk, 1995; Wang
and Li, 2013; D’Odorico et al., 2018), albeit decreasing with distance
from the canopy surface, an in-situ leaf sample should also include
leaves from lower tiers. Arguably, this topic deserves more attention
and should be addressed by further research.

5.3. Advancing agricultural remote sensing

By using priors from field phenotyping such as correlations between
13

traits (see Section 3.3) and concepts such as growing degree days or S
the BBCH scale our results are physiologically sound, physically-based
and can be interpreted by agronomist and stakeholders in agriculture.
In-season crop assessment on large scale plays a crucial role in global
food security by providing early warning systems (Becker-Reshef et al.,
2020). The approach presented can be integrated into existing process-
based crop growth models in many of which GLAI is a key state
variable (Delécolle et al., 1992). Further, improved assessment of crop
growth can be used on a local scale by practitioners. Many precision
farming applications rely on remotely sensed data to, e.g., determine
the plant fertilization demand (Argento et al., 2021, 2022). Thus,
improving the plant trait retrieval arguably enhances the accuracy and
efficiency of precision agriculture tools. With our approach, we mitigate
overcome shortcomings identified in the remote sensing literature by
adding a tool to the toolbox of remote sensing that offers improvement
of data and enhanced interpretability. This opens opportunities for fur-
ther interdisciplinary research and will arguably advance agricultural
remote sensing.

Again, our approach is arguably simple and requires only basic
weather station data. Thus, it is suited for operational usage and can be
applied on large spatial scales. In the same way, our approach could be
transferred to other crops given that field phenotyping data is available
to constrain the modeling of growth and phenology. Further research
could address enhancements in RTMs, and focus on more advanced
modeling of crop growth and phenology, e.g., by including dose–
response relationships (Roth et al., 2021, 2022b) and process-based
crop models.

6. Conclusions

Bringing together field phenotyping and remote sensing opens un-
precedented opportunities to deepen our understanding of crop growth
and development. We showed that insights from field phenotyping can
be used to monitor winter wheat growth and phenological macro stages
on the landscape scale by RTM inversion on S2 imagery. The proposed
approach works in near real-time and thus meets the requirements
for many agricultural applications, such as fertilizer and pesticide
scheduling. The use of phenological and physiological priors using
multi-year field phenotyping data improved RTM-based trait retrieval
accuracy and paves the way for improving RTM parametrization and
the selection of traits according to physiological considerations and
environmental covariates. In terms of phenological macro stages, we
demonstrated that accumulated temperature sums from field phenotyp-
ing experiments could be used to identify the three main phenological
macro stages in wheat using S2 imagery. These macro stages have a
physiological meaning and are therefore an improvement compared
to many previous remote sensing attempts to phenology. Our work
enables physiologically sound comparisons between sites and wheat
cultivars which is important to study plant-environment interactions
at the landscape scale.

Further research should address open points regarding the up-
scaling of leaf traits to the canopy and the collection of further cali-
bration and validation data. In addition, more attention should be paid
to a more fine-grained view on phenology. Furthermore, phenological
stages for which little data are currently available such as senescence
should be studied in greater detail. We also see a need for more ad-
vanced canopy RTMs, which should account for vertical and horizontal
gradients in canopies in terms of leaf distribution and morphology.
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