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Abstract
The application of visible and near-infrared (vis–NIR) spectroscopy to character-
ize soil samples has gained growing interest as a fast and cost-effective methodol-
ogy for soil fertility assessment. In order to profit from the full potential of vis–NIR 
spectroscopy, the acquisition of soil spectra directly in-situ would increase the 
possibility to obtain data rapidly and at a high spatial and temporal resolution. 
In the present study, we test and propose the best practice to characterize a set 
of fertility-related parameters (i.e. texture, organic carbon, pH, cation exchange 
capacity and major nutrients) of agricultural soils by measuring vis–NIR spectra 
in the field. To reach this goal, we compare the spectra obtained from different 
scanning positions with two portable spectrometers, that is, a micro-electro-
mechanical systems (MEMS)-based spectrometer and a research-grade vis–NIR 
spectrometer. On the basis of 134 soil sampling points, vis–NIR spectra were re-
corded from: (1) the cutaway side of a soil sample collected with an Edelman 
auger to a depth of 20 cm, (2) the raw soil surface, as well as (3) the cleaned and 
smoothed soil surface. Partial least squares regression (PLSR) calibration models 
were built for the selected soil parameters, scanning positions and different spec-
tral pretreatments for both spectrometers. The model performance was evalu-
ated based on the ratio of performance to interquartile range (RPIQ), the R2, the 
root mean squared error (RMSE) and Lin's concordance correlation coefficient 
(CCC). Overall, the following soil parameters were successfully predicted: clay, 
sand, pH, organic carbon, cation exchange capacity, total nitrogen and exchange-
able magnesium. In contrast, total and exchangeable Ca, K and P, as well as total 
Mg could not be predicted at a satisfactory level for both the spectrometers. The 
best scanning position for the successfully calibrated models was along the cuta-
way sides of the Edelman auger. Although the research-grade spectrometer gave 
better performance indicators for most of the parameters, the calibrations with 
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1   |   INTRODUCTION

In the last decades, the use of visible and near-infrared 
(vis–NIR) spectroscopy for chemical and physical char-
acterization of soil samples has gained a growing inter-
est as a methodology for assessing soil fertility indicators 
(Demattê et al., 2022; Francos et al., 2022). More recently, 
the technical development of portable and affordable 
spectrometers has increased the interest for in-situ char-
acterization of soil quality by vis–NIR spectroscopy (Fathy 
et al.,  2020; Ng et al.,  2020; Sharififar et al.,  2019; Tang 
et al., 2020; Thomas et al., 2021).

Although the concept of soil fertility depends on the con-
text in which it is used (Abbott & Johnson, 2017), multiple 
parameters have been suggested as soil fertility indicators 
for agricultural soils such as texture, pH, organic carbon 
(OC), cation exchange capacity (CEC) and major nutri-
ent content (Bastida et al.,  2008; Doran & Parkin,  1994; 
Gozukara et al., 2022; Karlen & Stott, 1994; Qi et al., 2009). 
The rationale of using spectroscopy is that spectra col-
lected in the vis–NIR range (i.e. 350–2500 nm), as well as 
in the mid-infrared range (MIR, i.e. 2500–25,000 nm), can 
provide information about soil constituents (Dindaroglu 
et al., 2021; Soriano-Disla et al., 2014). Although the effi-
ciency of vis–NIR spectroscopy to characterize soil fertility 
is still a matter of debate when compared with classical 
laboratory analyses, soil spectroscopy has anyway the po-
tential to collect information at high spatial and temporal 
resolution, an opportunity particularly helpful for the im-
plementation of precision agriculture technologies (Breure 
et al., 2022; Li et al., 2022; Semella et al., 2022).

The working principle of soil spectroscopy is the ab-
sorption of infrared light by chemical bonds of the mole-
cules present in the soil constituents. In the vis–NIR range, 
the absorptions are mainly overtone and combination 
vibrations leading to broader peaks, whereas in the MIR 
range absorptions are mainly because of fundamental vi-
brations giving more details to the spectrum, but making 
the extraction of information more challenging (Stenberg 
et al., 2010; Viscarra Rossel et al., 2006). The main chemi-
cal bonds which react to vis–NIR radiation are C-H, C-N, 
O-H, C-O, C-N, N-O, C-C, Al-O, Fe-O and Si-O covalent 
bonds, all of which can be found in molecules associated 
with soil fertility (primary soil parameters) such as clay 

minerals, carbonates, iron-oxides and organic matter 
(Ben-Dor & Banin, 1995; Gozukara et al., 2021; Soriano-
Disla et al., 2014; Stenberg et al., 2010). Calibration models 
for other secondary soil parameters such as micronutri-
ents and trace elements have been trained by several au-
thors but their predictive power is still a matter of debate 
(McBride, 2022; Viscarra Rossel et al., 2022).

The most common protocol for analysing soil samples 
by vis–NIR spectroscopy is to scan the samples after they 
have been air-dried and sieved to <2 mm or, additionally, 
finely ground (Bachion de Santana & Daly,  2022). With 
such a protocol, the samples are certainly uniform and well 
mixed with reduced influence from soil structure variabil-
ity (e.g. voids, stones, bulk density) and, most importantly, 
from soil moisture, but still this protocol requires process-
ing the soil samples in the laboratory. In order to profit 
from the full potential of vis–NIR spectroscopy, the acqui-
sition of soil spectra directly on the field (in-situ) would be 
ideal to collect soil information at a high spatial and tem-
poral resolution. The main challenge for this type of proto-
col lies in the in-situ characteristics of fresh soil, especially 
in relation to soil moisture, which has a strong influence 
on the spectra (Liu et al., 2022; Stenberg et al., 2010; Tang 
et al., 2020; Viscarra Rossel et al., 2009). Other potential 
errors associated with in-situ acquisition of spectra are re-
lated to losses of signal caused by a rough soil surface and 
to soil heterogeneities due, for example, to stones or plant 
residues (Ackerson et al., 2017; Ji et al., 2015).

Recently, mathematical methods have been developed 
to eliminate the influence of in-situ disturbances, such as 
(1) external parameter orthogonalization (EPO), where 
the undesired variability (introduced, e.g., by soil mois-
ture) is analysed and removed from the spectra (Minasny 
et al., 2011; Roger et al., 2003), and (2) direct standardiza-
tion (DS), where the discrepancy between laboratory and 
field spectra is calculated and removed from the dataset (Ji 
et al., 2015). These methodological developments, in com-
bination with the development of compact and less expen-
sive portable spectrometers, provide the potential to make 
use of vis–NIR spectroscopy directly in the field as an effi-
cient and reliable method of soil fertility characterization.

The goal of our study is to test the in-situ vis–NIR spec-
troscopy as a tool to characterize the fertility of agricul-
tural soils while assessing the best scanning methodology 

the MEMS-based spectrometer still resulted in satisfactory predictions. Based on 
these findings, the proposed best practice for obtaining in-situ soil vis–NIR scans 
is to scan along the cutaway sides of a soil core using at least five replicate scans.

K E Y W O R D S

best practice, MEMS spectrometer, soil fertility indicators, soil quality assessment, soil 
spectroscopy, vis–NIR spectroscopy

 14752743, 0, D
ow

nloaded from
 https://bsssjournals.onlinelibrary.w

iley.com
/doi/10.1111/sum

.12952 by Schw
eizerische A

kadem
ie D

er, W
iley O

nline L
ibrary on [07/08/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



      |  3METZGER et al.

directly in the field so to corroborate previous studies (Gras 
et al., 2014; Ji et al., 2016). More specifically, we want to pro-
vide a ‘best practice’ for obtaining reliable vis–NIR spectra 
in the field by answering the following research questions:

1.	 What is the best position to scan the soil in the 
field in order to obtain a good and robust predictive 
capacity of chemometric models tested for a set of 
15 soil fertility-related parameters?

2.	 Do different classes of portable spectrometers (i.e. a 
compact MEMS (micro-electro-mechanical systems)-
based spectrometer and a research-grade spectropho-
tometer) provide the same level of predictive quality for 
the investigated soil parameters?

2   |   MATERIALS AND METHODS

2.1  |  Sampling sites and soil laboratory 
analyses

A sampling campaign was conducted from spring to au-
tumn 2021 in nine experimental fields of Agroscope, the 

Swiss competence center for agricultural research. The 
fields were situated at three Agroscope research sites 
across Switzerland: in Tänikon (Canton of Thurgau), 
in Reckenholz (Canton of Zurich) and in Changins 
(Canton of Vaud) (Figure  1). The experimental fields 
are composed of plots subjected to different agronomic 
treatments such as the amount and type of fertilizer ap-
plication or the soil tillage intensity (Table  1). Within 
each experimental field, one soil sample was collected in 
each of the different treatment plots (= sampling point) 
with an Edelman auger (Eijkelkamp, NL) at a depth of 
0–20 cm in the centre of the treatment plot (n = 134 soil 
samples). The total number of sampling points per ex-
perimental field was variable depending on the number 
of treatment plots.

Soil samples were stored in plastic bags in a cold room 
until they were dried at 40°C for 24 h and sieved to <2 mm 
for further analyses (Guillaume et al., 2021). Soil moisture 
content (105°C for 24 h) was immediately determined grav-
imetrically on a subsample of fresh soil. Using routine labo-
ratory protocols (Table S2.1), the following physicochemical 
parameters were analysed: moisture, clay, sand, organic 
carbon (OC), total carbonates, cation exchange capacity 

F I G U R E  1   Location of the three Agroscope research sites within Switzerland. For the Changins site, the detailed location of the seven 
experimental fields is also reported.
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(CEC), total nitrogen (N_tot), total phosphorus (P_tot), ex-
changeable phosphate (P2O5_OL), total potassium (K_tot), 
exchangeable potassium (K2O_ex), total calcium (Ca_tot), 
exchangeable calcium (CaO_ex), total magnesium (Mg_tot) 
and exchangeable magnesium (MgO_ex).

2.2  |  Spectrometers

Two spectrometers were used for the collection of soil 
spectra: the research-grade Spectral Evolution PSR + 3500 
spectroradiometer (‘PSR’, Spectral Evolution), and a low-
cost, MEMS-based, handheld Fourier-transform (FT) 
NIR spectrometer NeoSpectra Scanner (‘NEO’, Si-Ware 
Systems) (Table 2).

2.3  |  Scanning positions of spectra 
in the field

Vis–NIR spectra were recorded at one position (= sam-
pling point) per plot. First, a core was taken with the 
Edelman auger containing soil from 0 to 20 cm. Both the 
lateral soil surfaces of the extracted core were gently cut 

and straightened with a knife to guarantee good con-
tact before being scanned at five points (serving as spec-
tral replicates) per side with both the PSR and the NEO 
(hereafter called side_a and side_b) (Figure 2a). The soil 
was then extracted from the auger and stored in a plastic 
bag to be processed for laboratory analyses. For the sur-
face_raw scans, the sensors were placed on the soil sur-
face next to the auger hole after manually removing large 
plant residues or stones if present and the soil surface was 
scanned in five points as replicates (Figure  2b). For the 
surface_smooth scans, the previously scanned raw surface 
was smoothed by gently scratching across it with the shoe 
sole, breaking down the aggregates (so ensuring that good 
contact between the scanner and the soil was established) 
and the surface was scanned again in five points as repli-
cates (Figure  2c). With the PSR spectrometer, the scans 
were recorded by means of a contact probe with an inter-
nal light source (5 W tungsten halogen) and auto-shutter, 
auto-exposure and auto-dark correction. The compact 
NEO spectrometer has an internal light source, the instru-
ment was placed with the sapphire window directly on the 
soil, and scans were integrated over 5 s. At each sampling 
point, the spectrometers were calibrated with a white ref-
erence panel (i.e. every 25 scans). The five replicate scans 

Site name
Field 
code

Sampling 
points Crop Soil type

Tänikon HB 12 Winter wheat, sowing Cambisol/ Alisol

Reckenholz ZOFE 24 Potato, harvested Luvisol

Changins 11A 12 Winter wheat, harvested Calcaric Cambisol

Changins 20 12 Corn, emerging Calcaric Cambisol

Changins 24A 24 Oats, harvested Calcaric Cambisol

Changins 29B 10 Corn, emerging Calcaric Cambisol

Changins 29CA 12 Corn, emerging Calcaric Cambisol

Changins 29CL 16 Corn, emerging Calcaric Cambisol

Changins 29D 12 Corn, emerging Calcaric Cambisol

T A B L E  1   List of the research sites, 
code of the experimental fields and 
number of soil samples collected in each 
field. The crop indicates the species 
present at the time or just before the 
soil sampling, soil types are according to 
WRB.

Instrument PSR NEO

Spectral range (nm) 350–2500 1350–2500

Spectral resolution 
(nm)

2.8 @ 700 nm
8 @ 1500 nm
6 @ 2100 nm

16

Spot size (mm) 10 10

Sample scanning Contact probe with fibre optic 
and 5 W tungsten halogen 
light source

10 mm window with 
halogen light source

Detector Si photodiode array 
(350–1000 nm)

InGaAs photodiode 
array (970–1910 nm, 
1900–2500 nm)

FT-NIR optical 
MEMS Michaelsen 
interferometer and 
InGaAs photodetector

T A B L E  2   Technical characterization 
of the Spectral Evolution PSR + 3500 
spectroradiometer (PSR) and the MEMS-
based, handheld Fourier-transform (FT) 
NIR spectrometer NeoSpectra (NEO).
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      |  5METZGER et al.

at each position (side_a, side_b, surface_raw, surface_
smooth) have been then averaged so to form one repre-
sentative scan per scanning position and sampling point. 
In addition, the average of both cutaway soil sides of the 
auger (n = 5 + 5 replicates) was calculated so to assess the 
impact of increasing the number of replicates.

2.4  |  Spectral processing

Data treatment was done using R 2022.02.3 (R Core 
Team,  2022) with the following packages: tidyverse 
(Wickham et al.,  2019), prospectr (Stevens & Ramirez-
Lopez,  2022), asdreader (Roudier,  2017) chemometrics 
(Filzmoser & Varmuza, 2011) and pls (Liland et al., 2021). 
The raw spectra for the PSR are reported in reflectance 
with a wavelength interval of 1 nm, whereas those of the 
NEO are reported with a ca. 13.5 cm−1 (wavenumber) 
resolution which corresponds to ca. 2.5–8.8 nm. To have 
a consistent wavelength interval, the NEO spectra were 
thus resampled to a 2 nm resolution and all spectra were 
transformed into absorbance (A = 1/log R, with R being 
the measured reflectance). To check the stability of the five 
replicate scans, the spectral standard deviation (standard 
deviation across the replicates for each wavelength, then 
the standard deviation thereof along all wavelengths) 
was calculated (Metzger et al., 2020). When the spectral 
standard deviation was below the threshold of 0.01 all the 
spectra were accepted, if not, the scans were plotted and 
visually examined. If the spectra were only spread out but 
they followed the same pattern, they were left in the data-
set, attributing the variability to the heterogeneity of the 
soil in the field. On the other hand, if some replicates were 
clearly not following the same pattern, we argued that this 

reading was not representative of the soil sample (e.g. be-
cause of specular reflection causing sensor errors) so the 
associated spectrum was removed from the dataset while 
the remaining replicates were used for averaging. Because 
of some sensor errors in the NEO, the data from 29 points 
could not be used and they have been removed from the 
dataset. In order to make the calibrations of the NEO and 
the PSR comparable, the same spectra were also removed 
from the PSR dataset, resulting in a total of 104 soil sam-
ples being effectively used. Some examples and a list of the 
removed spectra can be found in the supplementary mate-
rial (SI 1 Outlier selection). After the data were cleaned, 
the resulting replicates of each scanning position (see 
Figure 2) were averaged to be used for future analyses. To 
minimize the influence of the soil moisture on the spec-
tra, the regions known for H2O absorptions, that is, 1350–
1500 nm and 1850–2100 nm (Bowers & Hanks,  1965), 
were removed from both spectral datasets, as well as the 
region of 960–980 nm for the PSR in order to remove the 
irregularities resulting from the sensor transition (see 
Table 2). For the goals of this study, the spectra were not 
further processed to remove the influence of soil mois-
ture (e.g. EPO or direct standardization). Mathematical 
pretreatment of the raw spectra is a common technique 
to enhance the information content of the raw spectra by 
smoothing, normalizing, removing scattering effects and 
enhancing the peaks through derivatization. The follow-
ing mathematical pretreatments were applied to the raw 
spectra (RAW) so to enhance their information content: 
standard normal variate (SNV, [Barnes et al., 1989]), mul-
tiplicative scatter correction (MSC) (Geladi et al.,  1985) 
and three different Savitzky–Golay (SG) smoothings and 
derivatives (Savitzky & Golay, 1964), all fitting a second-
order polynomial (2) over 11 points (11): only smoothing 

F I G U R E  2   Schematic representation of the in-situ scanning protocol of soil samples with: (a) the scanning of the two sides of the 
Edelman auger (hereafter called side_a and side_b), (b) the scanning of the raw surface (surface_raw) and (c) the scanning of the cleaned 
and smoothed soil surface (surface_smooth).
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the spectra (no derivative, SG2110), smoothing and first 
derivative (SG2111) and smoothing and second derivative 
(SG2112). Together with the different scanning positions, 
this led to 24 (4 scanning positions × 6 pretreatments) 
input datasets for each spectrometer.

2.5  |  Modelling and model evaluation

Each of the input dataset was analysed by partial least 
squares regression (PLSR), an established technique to 
relate the spectra to laboratory analyses (Esbensen & 
Swarbrick, 2018). With PLSR, the number of variables (ab-
sorbance at each wavelength) is drastically reduced and the 
system is described by latent variables (LVs) for both the 
predictors (spectra) and the response variables (laboratory 
data) which are then used for multivariate regression. The 
model performance was evaluated through a repeated dou-
ble cross-validation (rdCV) consisting of two nested cross-
validations (CVs): the inner CV to optimize the number of 
LVs and the outer CV to evaluate the model performance. 
This procedure is then repeated 100 times, producing model 
performance indicators for each repetition. The inner CV is 
run as a 10-fold CV and the optimum number of LV is evalu-
ated based on the standard error of prediction (SEP) of that 
loop with the ‘hastie’ method within the ‘chemometrics’ 
package for each iteration and then averaged and rounded 
over the four folds (Filzmoser et al.,  2009; Filzmoser & 
Varmuza, 2011; Hutengs et al., 2019). The best combination 

of mathematical preprocessing and scanning position for 
each parameter was chosen based on the minimum SEP 
that was calculated after the 100 times rdCV. From the 
100 repetitions, the average and standard deviation of the 
coefficient of determination (R2), root mean squared error 
of the prediction (RMSEP), ratio of performance to inter-
quartile range (RPIQ = IQR/RMSEP with IQR being the 
interquartile range (Q3 – Q1) of the laboratory parameter) 
and Lin's concordance correlation coefficient (CCC) as a 
measure of the agreement between predicted and labora-
tory data (Lin, 1989, 2000) were calculated.

3   |   RESULTS

3.1  |  Laboratory analyses and soil sample 
characterization

Our dataset covered a wide range of fertility-related pa-
rameters of Swiss agricultural soils. Some outliers were 
observed in the boxplots for clay because of high values in 
one experimental field (site 29CA where clay was >50%) 
and for OC probably because of organic residue remain-
ing in the soil (Figure 3). On the other hand, the distribu-
tion of carbonates, total calcium, exchangeable potassium 
and magnesium showed a high number of outliers at high 
concentration values. The high values for carbonates and 
total calcium belong to the same research site (HB) char-
acterized by high carbonate content soils. A complete 

F I G U R E  3   Boxplots of the analysed soil parameters showing the median (bold middle line), the upper and lower quartile (box) and the 
outliers (dots) for the examined soil parameters. Outliers are defined as values which are more than ±1.5 × IQR (interquartile range) from 
the upper/lower quartile away. The summary statistics can be found in Table S2.1.
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summary of the laboratory data can be found in the sup-
plementary data (Table S2.1).

3.2  |  Spectral shape and 
absorption features

Clear absorption features were visible around 1400 and 
1900 nm for both instruments, as here reported for one rep-
resentative sampling point (Figure 4). The overall reflectance 
was highest for the surface_smooth scanning positions. 
Conversely, the scans on both sides of the core (i.e. side_a 
and side_b) show the lowest reflectance values, whereas the 
surface_raw spectra showed a reflectance pattern interme-
diate between the smooth surface and the side positions. 
Another absorption feature can be seen around 2200 nm 
which was more detailed in the PSR than in the NEO.

The general shapes and main absorption features were 
very similar between the two spectrometers (Figure  4c). 
From the first absorption feature at 1400 nm, the NEO 
produced a steeper slope and ultimately a higher reflec-
tance before the drop to the 1900 nm absorption feature. 
Over the entire spectrum, the reflectance of the NEO was 
shifted up to higher values, producing higher reflectance 
than the PSR scans.

3.3  |  Spectral calibration results

For the PSR, the best predictions (based on the RPIQ) were 
for CEC (RPIQ 6.26 9 LVs, R2 0.91, RMSEP 19.65 meq/kg), 

extractable MgO (RPIQ 4.4, 9 LVs, R2 0.89, RMSEP 0.08 g/
kg) and clay (RPIQ 3.69, 9 LVs, R2 0.91, RMSEP 3.84%) 
(Table 3). The spectra pretreated with MSC and from the 
side_a (MgO_ex) or side_b (CEC and clay) scanning posi-
tion provided the best results. For the NEO spectrometer, 
the best predictions were obtained also for CEC (RPIQ 5.55, 
8 LVs, R2 0.90, RMSEP 19.84 meq/kg), clay (RPIQ 4.73, 6 
LVs, R2 0.95, RMSEP 2.49%) and extractable magnesium 
(MgO_ex, RPIQ 2.95, 4 LVs, R2 0.78, RMSEP 0.11 g/kg). 
The best combinations of scanning position and pretreat-
ment were for CEC the SG2110 smoothed side_a spectra, 
for clay SG2110 and side_a and for MgO_ex first derivative 
(SG2111) and side_a. The wide range of laboratory values 
for the CEC (see Table  S1) can explain the high RMSE, 
RMSEP and IQR values for both instruments (Table  3). 
The scatter plots of the laboratory values versus the pre-
dicted values for each physicochemical parameter can be 
found in the supplementary data (Figure S2.1-S2.4).

4   |   DISCUSSION

4.1  |  Spectral absorption features

For both instruments, there are clear absorption features 
around 1400 and 1900 nm because of water absorption, a 
result that is typical for vis–NIR spectra of soils because 
of stretching and bending of O-H and overtone and com-
bination vibrations (Liu et al., 2022; Stenberg et al., 2010; 
Tang et al., 2020; Viscarra Rossel et al., 2009). In order to 
reduce the influence of soil moisture on the spectra, we 

F I G U R E  4   Reflectance spectra for the representative sampling point from the experimental field 20 for the PSR (black lines) and the 
NEO (red lines) and different sampling positions.
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removed the areas corresponding to these wavelengths. 
Another absorption feature because of O-H stretching and 
metal-O-H bending can be seen around 2200 nm (Viscarra 
Rossel et al., 2009), particularly in the PSR because of the 
higher spectral resolution compared with the NEO.

The overall reflectance is higher for the surface_
smooth scanning positions because a smooth soil surface 
can reflect a greater fraction of the incoming radiation 
and because the soil surface dries faster than the cutaways 
soil sides in the core (Gras et al.,  2014; Viscarra Rossel 
et al.,  2009). Over the entire spectrum, the reflectance 
of the NEO is shifted up to higher values so producing 
higher reflectance than the PSR scans. This shift has been 
reported also by other studies (Gorla et al., 2022) and is 
likely because of intrinsic instrument properties.

4.2  |  Spectral calibration

Based on a threshold of RPIQ >1.89 and Lins's CC, the 
analysis of the model performance parameters shows that 
out of the 15 soil physicochemical parameters, for seven 
of them a satisfactory model can be calibrated with the 
PSR data. The RPIQ threshold of 1.89, as proposed by 
Ludwig et al.  (2019) and based on Chang et al.  (2001), 
is currently used to distinguish satisfactory from unsat-
isfactory calibrations (Francos et al.,  2022; Greenberg 
et al.,  2020; Leenen et al.,  2022). However, it should be 
kept in mind that these thresholds are arbitrary and must 
be defined in the context of the specific research questions 
(Bellon-Maurel et al., 2010; Reeves & Smith, 2009). Based 
on the above threshold in combination with Lin's CCC, 
the RMSEP and the R2, our study indicates that a satis-
factory prediction can be obtained for the following soil 

parameters: CEC, clay, sand, pH, MgO_ex, OC, N_tot, well 
in accordance with previous studies (Barra et al.,  2021; 
Soriano-Disla et al.,  2014). For CaO_ex and Mg_tot, the 
RPIQ is >1.89 but the values of Lin's CC (<0.8) and R2 
(<0.66) indicate unsatisfactory calibration. The other pa-
rameters that could not satisfactorily be calibrated are 
total and extractable K, total and extractable P, total Ca 
and carbonates in line with the results of previous stud-
ies (McBride, 2022; Viscarra Rossel et al., 2006). Although 
in other studies the carbonates were well calibrated (see 
Barra et al. (2021), the unsatisfactory performance in our 
study is probably related to the high number of outliers, 
similarly to Ca_tot concentration (see Figure 3).

For the NEO spectrometer, satisfactory models could 
be built for six parameters. The parameters are the same as 
for the PSR, with the exception of pH, which has a RPIQ 
of 2.16, but the Lin's CCC (0.62) and the R2 (0.42) suggest 
an insufficient model performance.

4.3  |  In-situ scanning position and 
proposed best practice

Based on the scanning positions leading to the best model 
results for the PSR, we can observe as all the soil param-
eters with satisfactory models (i.e. RPIQ >1.89 show a bet-
ter performance with scans taken from the cutaway sides.

For the NEO spectrometer (Table 3), satisfactory mod-
els with RPIQ >1.89 were obtained for six soil parameters 
with scans taken from the cutaway sides of the soil core.

Based on the model results, scanning along one side of 
the soil core seems the best scanning position and prac-
tice. This practice also offers the most plausible and useful 
results considering that most of the laboratory analyses 

F I G U R E  5   Boxplots of the RPIQ 
(IQR/RMSEP) values of the PSR (full) and 
the NEO (empty) for the best scanning 
position (see Table 3).
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are performed on samples taken at this depth. In addition, 
we must consider that because the soil surface is exposed 
to external inputs (sun, rain, plant residues) the predicted 
values from this position might divert considerably from 
the bulk sample. Thus, scanning the soil along the side of 
a soil core is the preferred position for in field spectra ac-
quisition. This finding corroborates previous studies (Gras 
et al., 2014; Ji et al., 2016) in which the scanning of the 
soil along the core sides appeared as the best field protocol 
using a full-range spectrometer.

Our data show that increasing the number of replicate 
scans on both the sides of the soil core (i.e. the average 
of side_a plus side_b, n = 10) do not improve the per-
formances of the models for the successfully predicted 
parameters. This result is consistent with the expected 
similarity of the two cutaways of the soil core and, in ad-
dition, it allows to reduce the time of the scan acquisition 
by focusing on only one cutaway side.

4.4  |  Comparison of PSR and NEO based 
on the proposed best practice protocol

The RPIQ from the 100 times repeated rdCV of the seven 
successfully calibrated parameters for the PSR and the 
NEO are shown in Figure 5. When the performances of 
the two instruments are compared (Table  3), the PSR 
usually performs better in terms of RPIQ, but, unexpect-
edly, for clay, the RPIQ for the NEO was higher because 
of the decreased RMSEP (3.48% for PSR and 2.94% for the 
NEO, respectively).The reason for that remains unclear, 
but it could be because of the fact that important clay-
associated absorptions are found in the range in which 
the NEO operates (1350–2500 nm) (Viscarra Rossel & 
Behrens, 2010), so that the visible region covered by the 
PSR only contributes as noise. However, for both PSR 
and NEO, the RMSEP values are within the range (2.9–
4%) found by other authors (Viscarra Rossel et al., 2006). 
Overall, the results exhibit a very low bias, especially for 
the PSR (<0.1), while the NEO showed higher biases for 
CEC (−0.58) and clay (−0.29). This bias might be caused 
by the reduced range of the NEO compared with the PSR, 
even if further examinations are necessary to confirm this 
hypothesis.

The high RPIQ values of CEC can probably be ex-
plained by the strong correlation of CEC with OC (Pearson 
r2 = 0.81, n = 134) and clay (Pearson r2 = 0.89, n = 134) 
and the wide range of CEC in the laboratory values (70–
289 meq/kg). Even if the OC does not show such a high 
RPIQ compared with the other parameters, the RMSEP of 
0.37% and 0.41% for both the PSR and the NEO are within 
the range of other publications (Hutengs et al.,  2019; 
Viscarra Rossel et al., 2006).

The NEO spectrometer became available recently, and 
several authors have used it or other MEMS-based spec-
trometers in the context of soil analysis for OC, texture, 
pH and nutrient analysis as well as in comparative studies 
with research-grade spectrometers (Angeletti da Fonseca 
et al.,  2022; Goodwin et al.,  2022; Karyotis et al.,  2021; 
Ng et al.,  2020; Pasquini & Hespanhol,  2021; Sharififar 
et al., 2019; Tang et al., 2020; Thomas et al., 2021). Overall, 
it appears that the NEO spectrometer, as other low-cost 
MEMS instruments, are less performing than the full-
range spectrometers, but that they show a potential for 
future applications (Karyotis et al., 2021; Tang et al., 2020; 
Thomas et al., 2021).

Using the NEO spectrometer in comparative studies 
with research-grade spectrometers (PSR, ASD), other au-
thors have found generally better performances of the 
research-grade instruments, but comparable results for 
some parameters (e.g. texture, pH, carbon) from dried and 
ground samples (Tang et al., 2020; Thomas et al., 2021). Ng 
et al. (2020) started to build a spectral library with spectra 
collected with the NEO spectrometer for several soil pa-
rameters (including texture, carbon, pH and nutrients) and 
they used the predicted results to calculate fertilizer appli-
cation recommendations. In a different approach to soil 
sampling, Angeletti da Fonseca et al. (2022) used the NEO 
spectrometer in combination with a sampling device where 
the dried and ground soil was scanned in a rotating bottle to 
increase the scanned surface (Pasquini & Hespanhol, 2021) 
so improving the prediction of soil OC considerably.

We underline that the influence and the correction 
of field moisture have not been taken into consideration 
for this study because this topic will be specifically ad-
dressed in future studies with additional experiments 
and sampling, once the best practice of in-situ soil scan-
ning has been clarified. This will be one of the chal-
lenges for future routine in-situ analysis of soil fertility 
with vis–NIR spectroscopy, among other challenges 
such as the selection of a representative calibration set, 
the construction of a spectral library or the development 
of a transfer function between in-situ spectra and an 
existing spectral library. Another challenge will be to 
determine the precision and accuracy of the predicted 
measurements by different types of vis–NIR spectrome-
ters for agricultural decision support, especially if many 
soil indicators are considered and evaluated in classes 
instead of using continuous values (Flisch et al., 2017; 
Sinaj et al., 2017; Wall & Plunkett, 2016).

5   |   CONCLUSIONS

Our study has clearly demonstrated the feasibility of 
using portable vis–NIR spectrometers to measure, 
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in-situ, a set of soil fertility indicators such as clay, OC, 
N_tot, pH and CEC. We have found that, in the field, the 
best scanning position for soil samples is along cutaway 
sides of a 20 cm long core where the PLSR models can 
be calibrated successfully (RPIQ >1.89). By comparing 
two different instruments, we showed that the PSR spec-
trometer performed better than the NEO spectrometer 
(higher RPIQ). However, it was still possible to success-
fully calibrate the cheaper NEO spectrometer for the 
same soil parameters as the PSR spectrometer, with the 
only exception of pH.
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