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Abstract
Key message Genotype-by-environment interactions of secondary traits based on high-throughput field phenotyping 
are less complex than those of target traits, allowing for a phenomic selection in unreplicated early generation trials.
Abstract Traditionally, breeders’ selection decisions in early generations are largely based on visual observations in the field. 
With the advent of affordable genome sequencing and high-throughput phenotyping technologies, enhancing breeders’ ratings 
with such information became attractive. In this research, it is hypothesized that G × E interactions of secondary traits (i.e., 
growth dynamics’ traits) are less complex than those of related target traits (e.g., yield). Thus, phenomic selection (PS) may 
allow selecting for genotypes with beneficial response-pattern in a defined population of environments. A set of 45 winter 
wheat varieties was grown at 5 year-sites and analyzed with linear and factor-analytic (FA) mixed models to estimate G × E 
interactions of secondary and target traits. The dynamic development of drone-derived plant height, leaf area and tiller density 
estimations was used to estimate the timing of key stages, quantities at defined time points and temperature dose–response 
curve parameters. Most of these secondary traits and grain protein content showed little G × E interactions. In contrast, the 
modeling of G × E for yield required a FA model with two factors. A trained PS model predicted overall yield performance, 
yield stability and grain protein content with correlations of 0.43, 0.30 and 0.34. While these accuracies are modest and do 
not outperform well-trained GS models, PS additionally provided insights into the physiological basis of target traits. An 
ideotype was identified that potentially avoids the negative pleiotropic effects between yield and protein content.

Introduction

Like natural evolution, plant breeding is driven by selec-
tion. Unlike nature, however, breeders are pressed for time: 
They have to achieve performance improvements within a 
few breeding generations, i.e., within a few years. Tradi-
tionally, many selection decisions are based on phenotypic 
observations combined with quality analyses. With the 
advent of ‘genomics’, these ‘breeders’ eye’ decisions became 
enhanced with genomic selection (GS) approaches (Meu-
wissen et al. 2001; Voss-Fels et al. 2019). GS promised to 

improve selection decisions, in particular for traits where the 
‘breeders eye’ has a great potential to fail—e.g., in estimat-
ing yield potential in single row plots where harvest weight 
cannot be reliably determined (Rutkoski et al. 2016).

In parallel to genomics research, the field of ‘phenomics’ 
was growing, increasing both throughput and applicability 
of phenotyping technologies (Walter et al. 2015). These new 
phenotyping technologies are seen as key to bridge the gap 
between lab-determined genotypes and field-observation-
based phenotypes (Crain et al. 2018). Consequently, sec-
ondary traits such as growth dynamics’ traits (Bustos-Korts 
et al. 2019; Millet et al. 2019; Diepenbrock et al. 2021) or 
disease resistance traits (Jia and Jannink 2012) were used 
as covariates in GS, enabling environment-specific predic-
tions. Nevertheless, for small breeding companies, the entry 
hurdles for such phenotype-enhanced GS approaches are 
high, as they are faced with the challenge to simultaneously 
develop a genomics and phenomics workflow.

Alternatively, it was postulated that phenotyping has 
also the potential to directly enhance breeders’ deci-
sions by means of ideotype concepts (Donald 1968). In 
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ideotype-based breeding, one aims to construct a phenotypic 
‘model’ (an ideal plant, thus ideotype) representing a unique 
combination of morphological and physiological attributes 
to optimize crop performance (Martre et al. 2015). Such a 
‘phenomic selection’ (PS)—a selection process for a target 
trait purely based on (highly processed) secondary pheno-
typic traits1—could be particularly useful in early breed-
ing stages where populations are large and plot sizes small 
(Rebetzke et al. 2019).

A common setup in breeding is the use of multi-environ-
ment trials (MET) where one can select for a wide adaption 
of target traits (Smith and Cullis 2018). In a recent study, 
we demonstrated that monitoring soybean METs with high-
throughput field phenotyping (HTFP) can reveal strong 
relations between secondary traits and target traits, allow-
ing to formulate an ideotypes concept (Roth et al. 2022a). 
Now, this knowledge is transferred to winter wheat (Triticum 
aestivum L.), while additionally including overall perfor-
mance and stability considerations. It is hypothesized that 
genotype-by-environment (G× E) interactions of secondary 
traits are less complex than those of the target trait. Under 
this premise, PS trained on MET data will allow select-
ing for overall performance and stability even in a single 

environment—i.e., an early-generation breeding nursery—
assisted by high-throughput phenotyping.

A prerequisite of such an approach is the successful 
implementation of HTFP in METs and breeding experi-
ments. The usefulness of HTFP in breeding is contro-
versial—discussions mainly revolve around the contrast 
between what can be done in phenotyping (i.e., increas-
ing the ‘stamp collection’ of traits) and what is of value 
for breeders (i.e., increasing genetic gain) (Rebetzke et al. 
2019). A close interaction of breeders and ‘phenotypers’ 
is required to avoid the first and achieve the second. The 
‘Trait spotting project’ as collaboration between a Swiss 
plant breeder (Delley Samen und Pflanzen/Agroscope) 
and the ETH Zurich as academic part aimed to foster such 
exchange. As part of the project, a drone-based phenotyping 
platform was developed (Roth et al. 2018b), and methods to 
extract plant height (Roth and Streit 2018), canopy cover/
leaf area index (Roth et al. 2018a), and tiller count (Roth 
et al. 2020) for winter wheat were established. Furthermore, 
it was demonstrated that from these low-level traits one can 
derive three intermediate dynamics’ trait categories, timing 
of key stages (T), quantities at defined time points or periods 
(Q), and dose–response curves (C) (Roth et al. 2021, 2022c) 
(Table 1).

With this classification in mind, existing GS and PS lit-
erature for wheat focuses mainly on the first two catego-
ries. While Rutkoski et al. (2016) and Crain et al. (2018) 
combined GS with category Q traits (vegetation indices and 
canopy temperature measurements at defined growth phases) 
to predict yield, Sandhu et al. (2021) combined GS with 
Q traits (vegetation indices at defined time points) to both 
predict grain yield and protein content. Pure PS approaches 
are rare to find: Herrera et al. (2018) predicted yield on a 

Table 1  Measured (low-level) traits and processed high-throughput field phenotyping (HTFP) traits of three categories, dose–response curve 
parameters (C), timing of key stages traits (T), and quantities traits (Q)

Trait category Acronym Description Source

Low-level PH Plant height Roth and Streit (2018)
LA Apparent leaf area Roth et al. (2020)
Tiller Tiller per area Roth et al. (2020)

C rmax Maximum growth rate at optimum temperature Roth et al. (2022c)
Tmin Base temperature of growth Roth et al. (2022c)
lrc Responsiveness of growth to temperature increase Roth et al. (2022c)

T tPHstart
Start of stem elongation Roth et al. (2021)

tPHstop
End of stem elongation Roth et al. (2021)

tLAmax
Time point when apparent leaf area is maximized Roth et al. (2022a)

t
dLAmax

Time point when apparent leaf area increase is maximized Roth et al. (2022a)
Q PHmax Final height Kronenberg et al. (2017)

LA
tPH15

Apparent leaf area when plant height reaches 15% Roth et al. (2022a)
LAmax Maximum apparent leaf area Roth et al. (2022a)
ntiller Maximum number of tiller Roth et al. (2020)

1 Please note our consciously chosen relaxed definition of phenomic 
selection (PS) in contrast to Rincent et  al. (2018) and Robert et  al. 
(2022): While Rincent et al. (2018) restricted PS to depend on similar 
statistical models as GS, Robert et  al. (2022) went one step further 
and defined the input of PS to be based on near-infrared (NIR) spec-
troscopy data. Unlike NIRs, however, most phenomics’ techniques 
allow resolving environmental-specific phenotypes, calling for other 
statistical models than GS, and widening the scope of PS far beyond 
NIRs data.
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spatial grid as result of environmental indices and phenol-
ogy (Category T). Prey et al. (2020) used spectral indices to 
predict grain yield and confirmed a significant influence of 
the measurement time point (Category T).

While these results are of high value for crop physiolo-
gists and ecologists to broaden their research, they leave the 
main question of breeders unanswered: How well can these 
trait categories be used to complement the selection decision 
of a breeder, and in what way are they complementary to the 
‘breeder’s eye’? This research aims to answer this question 
on the case example of a prediction model trained on several 
year-sites of a variety testing experiment and applied to a 
single-row breeding experiment.

Materials and methods

Field experiments

A variety testing experiment (‘Leistungspruefung’/LP01) 
was performed in two consecutive years at three sites in 
2019 and two sites in 2020, resulting in a total of 5-year-site 
combinations. Respective sites were the field phenotyping 
platform site of ETH Zurich ‘FIP’ (Kirchgessner et al. 2017) 
(Lindau Eschikon; Switzerland; 47.449 N, 8.682 E; 556 m 
a.s.l., managed according to best practice in Swiss agri-
culture (‘ÖLN’)); the plant breeding site of Delley Samen 
und Pflanzen AG ‘Delley’ (Delley, Switzerland; 46.918 N, 
6.979 E; 500 m a.s. l., extensively managed according to 
best practice for growth-regulator and fungicide-free Swiss 
agriculture (‘Extenso’)); and the testing site of the Strickhof 
competence center for food and agriculture ‘Strickhof’ (Lin-
dau Eschikon; Switzerland; 47.445 N, 8.678, 530 m a.s.l., 
managed similar to ‘Delley’ (‘Extenso’)).

The experiments were part of the regular testing of 
advanced breeding material ( ≥ F9) of Agroscope (Nyon, 
Switzerland)/Delley Samen und Pflanzen AG (Delley, Swit-
zerland) and consisted of 45 elite winter wheat genotypes. 
Because of the variety testing character, the set for 2019 
differed from the set for 2020 by nine genotypes, reducing 
the number of unique genotypes per year-site to 36.

Year-sites consisted of plots (experimental units in a row-
range arrangement with spatial coordinates) enriched with 
block factors and genotypes. All year-sites contained four 
replications, except FIP 2020 where only three replications 
were used. Details about the experimental designs, soil, and 
management can be found in the Supplementary Materi-
als. Meteorological data were obtained from a weather sta-
tion next to the experimental field (50 m) for the FIP and 
Strickhof site and from a public Agrometeo weather station 
(http:// www. agrom eteo. ch/, Agroscope, Nyon, Switzerland) 
in proximity (800 m) for the Delley site. Air temperature was 
recorded 0.1 m above ground (FIP/Strickhof) and 0.05 m 

above ground (Delley) every 10 min and averaged per hour. 
Growing degree days (McMaster and Wilhelm 1997) for 
timing of key stage measurements were calculated assum-
ing a base temperature of 0 ◦ C (Porter and Gawith 1999).

In 2020, an additional subset of 110 ears-to-row plots of 
F7 generation lines were monitored at Delley. This single 
ears’ descendants experiment was part of the last nursery 
trial before yield trials. For each line 20 head-to-rows were 
sown at Delley and, in parallel, 10 head-to-rows at Vouvry 
(Switzerland), a location with very high disease pressure 
(powdery mildew, yellow and brow rust, septoria and fusar-
ium head blight). The combination of observations in both 
locations was used to choose the lines for the yield trials 
sown the next year. Around 250 lines were selected between 
approximately 1000 candidate’s lines.

In the subsequent year 2021, the selected lines from the 
F7 generation were cultivated as F8 generation yield plots. 
Yield was tested at four locations (Changins, Delley, Villars-
le-Terroir, Ellighausen) across the Swiss Central Plateau, 
which can be considered the Swiss wheat belt. The experi-
mental plots covered 7.1 m2 (4.75 × 1.50 m) and consisted of 
eight rows with an inter-row distance of 0.16 m. Plots were 
separated by 1.3 m and sown at a rate of 350 seeds m −2 . 
Sowing and harvest took place during the months of October 
and June to July, respectively. The soils are mostly classified 
as Cambisols (World Resource Base, FAO). The mean value 
of four cultivars representing the leading cultivars for each 
Swiss quality class (TOP, 1 and 2), cv. ‘CH Nara’ (class 
TOP); cv ‘Montalbano’ (class TOP); cv ‘Hanswin’ (class 
1); cv ‘Spontan’, (class 2), were used to calculate the rela-
tive yield values.

Manual measurements

For the variety testing experiment, several manual meas-
urements were performed. Beginning of stem elongation 
(GS30) was determined at 3 year-sites (Delley 2019, 2020, 
FIP 2019) in two replications by destructively measuring 
the distance between the basal node and the first extending 
node for three-to-five representative plants per time point 
and plot. When this distance reached ten millimeters, the 
plant was defined to be in the stem elongation stage (Zadoks 
et al. 1974). Heading (GS59) was defined as the time point, 
at which 50% of the spikes fully emerged from the flag leaf 
sheath (Meier 2018) and determined manually at 4 year-
sites (Delley: 2019, 2020, FIP: 2019, 2020). Yield was deter-
mined by harvesting plots with a combine harvester (FIP 
and Strickhof: Nursery- master Elite; Delley: Classic; both 
Wintersteiger, Ried im Innkreis, Austria). Harvested seeds 
were dried at 30–35 ◦ C if necessary, and the harvest material 
pre-cleaned in a stand thresher and weighted. Humidity was 
determined using a HM-400 grain gauge (Harvest Data Sys-
tem, Wintersteiger GmbH, Ried, Austria). Yield was then 

http://www.agrometeo.ch/
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arithmetically normalized to a water content of 15%. For the 
subsequent cleaning in an air separator and the estimation of 
protein content, plot samples of genotypes were merged to 
mixed probes. Protein content was estimated using a diode 
array NIR spectrometer [DA-7200, Perten Instruments 
(today PerkinElmer, Waltham, USA)].

The breeders’ selection notes for F7 lines were based 
on observations in the preliminary F6 generation in 2019 
(one location, Changins) and the F7 lines described in the 
previous section in 2020 (two locations, Vouvry and Del-
ley). In brief, these observations included in the F6 heading 
time, plant height, Zeleny indices, Thousand-Kernel-Weight 
(TKW), specific weight, grain hardness and (on a 1–9 scale), 
lodging, septoria tritici, leaf and stripe rust and grain appear-
ance. In the F7, heading date, plant height, lodging resist-
ance, disease resistance for leaf rust (2 notes) and stripe rust 
(3 notes) and Septoria tritici (1 note) were observed. The 
uniformity of the 20 head-to-rows in the F7 (Fig. 1c), stand 
density, and visual estimations of number of ears and length 
of ears were additional important criterion also taken into 
account for the selection.

HTFP measurements

The variety testing experiment and the F7 generation experi-
ment were both monitored with the unmanned aerial system 
(UAS) platform PhenoFly described in detail in Roth et al. 
(2020). The UAS captured RGB images with high spatial 
overlap that were processed using Structure-from-Motion 
software to digital elevation models and camera exposure 
positions. The flight height was 28 m, flight speed 1.8 m/s, 
percent end lap 92% and percent side lap 75%. Specific 
camera settings (e.g., exposure configurations) can be found 
in Roth et al. (2020). These settings led to a ground sam-
pling distance of 3 mm, restricted motion blur to ≤ 5%, and 
ensured a GCP recover frequency of > 70% for photos that 
showed one or more GCPs. For FIP 2019, 41 flights were 
performed between February 19 and July 10; for FIP 2020, 
44 flights between February 12 and July 15; for Strickhof 
2019, 20 flights between February 22 and July 8; for Delley 
19, 21 flights between February 27 and July 12; for Delley 
2020, 20 flights between April 6 and July 8.

After Structure-from-Motion processing, digital elevation 
models were further processed to plant height (PH) traits as 
described in Roth et al. (2018a). Apparent leaf area (LA) 
and tiller counts were extracted from processed multiview 
ground cover images as described in Roth et al. (2020). 
Based on these three low-level traits (PH, LA, and tiller 
counts) dynamics’ traits of the first two categories, T and 
Q were extracted according to Roth et al. (2021) using the 
P-spline/QMER method for LA and PH and using the GS30-
based growth model method described in Roth et al. (2020) 
for tiller counts (Table 1). Dose–response curve parameters 

were extracted from PH measurements using high-frequency 
temperature measurements taken by the local weather station 
combined with lower-frequency drone-based plant height 
measurements to fit an asymptotic model (Roth et al. 2022c) 
(Fig. 1a). For an overview, all low-level and intermediate 
traits and corresponding literature references are listed in 
Table 1.

Statistics

Adjusted genotype means per year‑site and repeatability 
calculation

Intermediate traits of all three categories (C, T, Q) were pro-
cessed in a stage-wise linear mixed model analysis, where 
the first stage averaged over within-year-site effects and 
the second stage over between-year-site effects (Roth et al. 
2021). For the first stage, the R package SpATS (Rodríguez-
Álvarez 2018) was parameterized with the model

where i = (1,… , 45) is the ith genotype, k = (1,… , 144) the 
kth plot, j = (1,… , 5) the jth year-site, �̂�jk are plot responses 
based on dynamic modeling, �ij year-site genotype responses, 
pc(jk) range numbers of plots (main working direction, e.g., 
for sowing), pr(jk) row numbers of plots (orthogonal to main 
working direction), f(x(jk), y(jk)) a smooth bivariate surface 
in spatial x and y coordinates consisting of a bivariate poly-
nomial and a smooth part (for details see Rodríguez-Álvarez 
2018), and ejk plot residuals with var(e) = �2w−1 , while w 
are weights based on the standard error estimations from the 
previous dynamic modeling step, and �2 the residual vari-
ance parameter. For best linear unbiased estimators (BLUEs) 
calculations, �ij was set as fixed, all other terms as random. 
For repeatability calculations, �ij was set as random. Within-
year heritability (repeatability) was calculated according to 
Oakey et al. (2006).

Overall genotype means and heritability calculation

To calculate overall best linear unbiased predictors (BLUPs) 
and overall heritability for the 5 year-sites, a second stage 
of processing to overall adjusted genotype means (geno-
typic marginal means) was performed with the R package 
ASReml-R (Butler 2018) and the model

where �̂�ij are adjusted year-site genotype means (BLUE) 
from stage 1, � a global intercept, uj year-site intercepts, �i 
genotype responses, (�u)ij genotype year-site interactions, 
and eij residuals with var(e) = �2w−1 , where w are weights 
based on the diagonal of the variance–covariance matrix 

(1)�̂�jk = 𝜃ij + f (x(jk), y(jk)) + pr(jk) + pc(jk) + ejk ,

(2)�̂�ij = 𝜇 + uj + 𝜃i + (𝜃u)ij + eij ,
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from the previous stage, and �2 the residual variance param-
eter. � and uj were set as fixed and all other terms as ran-
dom. Heritability was calculated according to Cullis et al. 

(2006). Genotype year-site interactions (�u)ij were mod-
eled using a heterogeneous variance model for year-sites 
(‘Diag’, allowing for both positive and negative variances), 

Fig. 1  Workflow in high-throughput field phenotyping including data 
acquisition with drones, extraction of low-level traits, dynamic mod-
eling, and predicting target traits (a), collected data for the variety 

testing (b) and F7/F8 breeding experiment (c), and how those datasets 
where used for training and prediction purposes (d–h)
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and alternatively using an uniform variance model (‘Id’). 
The model selection was then made based on the Bayesian 
information criterion (BIC).

Genetic correlation

For the genetic correlation calculation, the univariate model 
of Eq. 2 was extended to a bivariate model (Wright 1998; 
Holland et al. 2001),

where 𝜃t1
ij

 and 𝜃t2
ij

 are adjusted year-site genotype means 
(BLUEs) per trait (trait 1 ( t1 ) and trait 2 ( t2)), �t1 and �t2 
global intercepts per trait, ut1

j
 and ut2

j
 year-site effects per 

trait, �t1
i

 and �t2
i

 genotype responses, and (u�t1)ij and (u�t2)ij 
the genotype responses to year-site interactions per trait. The 
terms �t1 , �t2 , ut1

j
 and ut2

j
 were set to fixed, all other terms to 

random. Note that e and (u�) are confounded, wherefore the 
two terms were summarized in one variance-covariance 
structure. Genetic correlations among traits were then cal-
culated based on the estimated variance and covariance com-
ponents (Holland et al. 2001),

Factor‑analytic mixed model for genotype year‑site 
interaction analysis and overall performance and stability 
calculation

To analyze the severity of genotype year-site interactions for 
individual traits, Eq. 2 was extended with a factor-analytic 
(FA) component for year-site loadings and genotype scores 
based on Smith et al. (2001) with a reduced rank (RR) vari-
ance model (Thompson et al. 2003),

where kf  is the number of factors tested for, � a global inter-
cept, uj year-site intercepts, and (�u)ij lack-of-fit effects for 
genotype year-site interactions modeled using a heteroge-
neous variance model for year-sites (Diag). This FA model 
was applied in ASReml-R to all intermediate traits and 
to the target traits yield and grain protein content. The 5 
year-sites used in this study allowed for a maximum of two 
factors for the FA model, kf = (1, 2) . Note that instead of 
the one-stage approach proposed by Smith et al. (2001), a 

(3)

(

𝜃t1
ij

𝜃t2
ij

)

=

(

𝜇t1

𝜇t2

)

+

(

ut1
j

ut2
j

)

+

(

𝜃t1
i

𝜃t2
i

)

+

(

(u𝜃)t1
ij

(u𝜃)t2
ij

)

+

(

et1
ij

et2
ij

)

,

(4)rg = Corr(�t1, �t2) =
Cov(�t1�t2)

√

Var(�t1)
√

Var(�t2)
.

(5)�̂�ij = 𝜇 + uj + RR(kf )ij + (𝜃u)ij + eij ,

two-stage approach based on year-site BLUEs (Eq. 1) was 
used with residuals e set to var(e) = �2w−1 , where w are 
weights based on the diagonal of the variance–covariance 
matrix from Stage 1, and �2 the residual variance parameter 
(Piepho et al. 2012).

To determine the complexity of G × E interactions, two 
models differing only in the number of factors (FA1–FA2) 
and two based on Eq. 1 were fitted to data, and their perfor-
mance compared based on the Bayesian information crite-
rion (BIC). The BIC was calculated using the full log-like-
lihoods (Verbyla 2019) with the function icREML provided 
therein. The BIC can be seen as an advancement of the 
Akaike information criterion (AIC) that includes a reduction 
of effective sampling size caused by the dependence of the 
response (Müller et al. 2013). For intermediate traits, traits 
where the BIC suggested complex G × E interactions—i.e., 
FA1 or FA2 models—were discarded from further analysis. 
This affected the traits LAtPH15

 and LAmax . As the trait tLAmax
 

is based on LAmax , it was excluded as well.
For target traits, discarding traits with complex G × E 

interactions was not an option, as predicting both target traits 
was among the aims of this work. Therefore, if the BIC sug-
gested a simple linear mixed model without G × E (Id), this 
model was selected, but if any other model was suggested, 
the FA2 model was preferred, as it allows a dissection in sta-
bility and overall performance of the target trait. Effectively, 
this was the case for yield but not for grain protein content.

To estimate the corresponding genotype yield perfor-
mance and stability across year-sites, the FAST approach 
as described in Smith and Cullis (2018) was chosen that 
extracts an overall yield performance (OP) indicator and a 
stability measure (root-mean-squared deviation, RMSD). 
Beforehand, the estimates of loadings were rotated as pro-
posed by Smith and Cullis (2018) using the R-code provided 
in Smith et al. (2021).

Target trait prediction

To predict yield and grain protein content, two approaches 
were tested: Partial least squares regression (PLS) and ran-
dom forest regression (RF). PLS uses a linear multivari-
ate model to relate a matrix of observable variables X to a 
matrix of responses Y (Wold et al. 2001). The underlying 
assumption of correlations among X allows PLS to analyze 
noisy and co-linear data, which makes it particularly useful 
for HTFP. RF on the other hand is an ensemble learning 
method that combines multiple decision trees to one model, 
making it similarly suited for highly correlated HTFP data 
but additionally allowing nonlinear mappings of X to Y . PLS 
was fitted in R (R Core Team 2019) with the package pls 
(Liland et al. 2021), RF with the package ranger (Wright 
and Ziegler 2017).
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To compare the performance of the two algorithms 
(PLS and RF), year-site BLUEs of all three categories (C, 
T, Q) were used as predictors for year-site BLUEs of yield 
(Fig. 1a, c). Cross-validation (CV) included three different 
resampling setups: (1) Unseen environments (unseen E): 
fivefold CV with each fold excluding a whole year-site for 
the training set that is used as test set, (2) Unseen genotypes 
(unseen G): 45-fold CV with each fold excluding a genotype 
for the training set that is used as test set, (3) Unseen geno-
types and unseen environments (unseen G and E): 179-fold 
CV with each fold excluding a complete year-site and a com-
plete genotype while the excluded genotype in the excluded 
year-site is used for the test set. For RF, hyperparameter 
tuning was performed for each resampling step using grid-
search in a tenfold CV for unseen E and unseen G and in a 
leave-one-out CV for unseen G and E. Tuned parameters 
included the number of trees (ntree, lower: 100, upper: 1000) 
and the number of variables randomly sampled at each split 
(mtry, lower: 1, upper: 11). For PLS, the number of com-
ponents (ncomp) was determined beforehand using all data 
points in a tenfold CV per trait.

Both algorithms were then taken to compare the suitabil-
ity of the three trait categories as predictors for OP (Fig. 1a, 
d), yield stability (RMSD) (Fig. 1a, g), and selection deci-
sion (Fig. 1b, e). Models were trained four times: for PLS 
with timing traits only (f(T)), with quantities at defined time 
points only (f(Q)), with dose–response curve parameters 
only (f(C)), and for PSL as well as RF with all three trait 
categories (f(T, Q, C)). The importance of features for PLS 
was extracted based on the summarized scores for all com-
ponents per features, and for RF based on 50-fold permuta-
tion runs per feature.

For the breeders’ selection decision dataset, the response 
is, in contrast to yield, not continuous but categorical. 
Hence, the selection scale (line selected, sister line selected, 
line repeated in next generation, sister line repeated in next 
generation, discarded) was transformed to an ordinal scale 
(3, 2, 1, 0, − 1) that was then treated as regression problem.

Before model fitting, one outlier was removed for the 
yield dataset (LP01) with ntiller > 8000 . For the breeders’ 
selection decision dataset, 354 out of 2200 rows had to be 
removed because the dose–response curve fitting failed to 
converge, resulting in missing values for rmax , Tmin and lrc. 
As optimization metric for PLS and RF, the root-mean-
square error (RMSE) was used, and additionally the nor-
malized RMSE (nRMSE) and Spearman’s rank correlation 
coefficient ( rs ) provided.

Efficiency of selection

To compare a pure breeders’ selection decision approach 
with a HTFP-enriched selection decision approach, a HTFP 
overall yield performance prediction-based threshold was 

evaluated. This threshold was applied to the already per-
formed selection in the F8 generation experiment. The effi-
ciency of selection was then calculated as the ratio between 
selected lines and total number of lines with and without 
applying an additional HTFP threshold to breeders’ deci-
sions. Subsequently, the increase in efficiency was derived as 
the difference between breeders’ selection-based efficiency 
and HTFP-enriched efficiency.

Results

Modeling the dynamic of low‑level traits enables 
to extract heritable but partly correlated 
intermediate traits

Time series of the low-level trait plant height (PH) indicated 
a clear start of growth early in the season, followed by a 
close-to-linear increase phase and a stagnation at a final 
height afterward (Fig. S1a). While the extracted timing of 
key stages traits tPHstart

 and tPHstop
 were detected for all plots of 

the variety testing trials, for the F7 generation breeding trial, 
the sparse flight density in the early season prevented the 
extraction of tPHstart

 for some plots (Fig. S1a, ‘Delley (C), 
2020’). The quantity trait PHmax was reliably detected for all 
plots.

Time series of the low-level trait apparent leaf area (LA) 
showed higher fluctuations between time points and year-
sites than PH time series, but also a clear start of growth fol-
lowed by an exponential growth phase and a decrease phase 
with high fluctuations afterward (Fig. S1b). Despite that for 
some plots two peaks of LA were modeled by the P-spline, 
visual inspections of plots confirmed that the timing trait 
tLAmax

 and quantity trait LAmax were reliably allocated to 
the first peak. Consistently, the time point of maximum LA 
growth tdLAmax

 was detected in the increase phase before the 
first peak (Fig. S1b, ‘FIP, 2019’, ‘Strickhof, 2019’). Unlike 
tdLAmax

 , the quantity trait LAtPH15
 was extracted on a wide 

range between the start of LA increase and tLAmax
.

The extracted dose––response curve parameters for the 
temperature response of stem elongation showed a large 
spread of Tmin and rmax (Fig. S1c). While some plots showed 
almost binary and very unresponsive shapes (Fig. S1c, ‘Del-
ley, 2019’), the curves of others appeared more curvy and 
hence indicated a stronger responsiveness to temperature 
(Fig. S1c, ‘Strickhof, 2019’).

Calculating year-site specific repeatabilities for all inter-
mediate traits revealed strong variations between year-sites 
for certain traits (Table 2), but no clear trait-independent 
systematic effect of year-sites. For example, for Delley 2019, 
the trait lrc showed a below-average repeatability, while 
other traits were not affected. When comparing HTFP traits 
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with manual measurements, the growth stage ratings GS30 
and GS59 showed similar strong variations in repeatability. 
In contrast, yield repeatability was constant and high for 
all year-sites. Repeatability values for grain protein content 
are not available as the measurements were done on mixed 
probes per genotype.

The highest overall heritability was calculated for the 
growth stage rating GS59, followed by grain protein con-
tent and yield (Table 2). For HTFP traits, the heritability 
varied from very low values ( LAmax ) to very high values 
( PHmax ). Notably, the heritabilities of timing of key stage 
traits all settled in the middle range ( h2 = 0.52 − 0.71 ), while 
the ones for quantities and dose–response curve traits were 
at the upper and lower extremes.

When calculating genetic correlations, clear relations 
between HTFP traits and growth stage ratings became vis-
ible (Fig. 2): For GS59, a very strong positive correlation 
was found for LAtPH15

 and a strong correlation for ntiller , indi-
cating that the apparent leaf area in an early growth stage—
which was highly (but not significantly) correlated to the 
number of tillers—is related to the time point of heading. 
For GS30, a very strong positive correlation to tPHstart

 was 
found, confirming the suitability of tPHstart

 as proxy trait to 
determine jointing. The partial interdependence of GS30 and 
GS59 was confirmed by a strong correlation between them.

In addition to the previously mentioned relations, a high 
negative correlation between GS30 and tLAmax

 was found, 
indicating a trade-off between early growth and apparent leaf 
area mid-season. Nevertheless, a vigorous early growth also 
led to an early mid-season development, indicated by the 
strong negative correlation between tLAmax

 and ntiller , by the 
very strong negative correlation between tLAmax

 and LAtPH15
 , 

and by the strong negative correlation between tdLAmax
 and 

LAtPH15
 . Interestingly, tLAmax

 was also negatively correlated 

with the dose–response curve parameter Tmin , indicating that 
high base temperatures of growth are related to an early time 
point where the maximum apparent leaf area is reached. This 
finding was further confirmed by the strong negative correla-
tion between Tmin and GS59.

The strongest relationship was found between tdLAmax
 and 

ntiller . In addition, ntiller was strongly positive correlated to 
LAmax . Consequently, high numbers of tillers were associ-
ated with an early rapid development of apparent leaf area 
and large leaf area mid-season.

For the three dose–response curve traits, Tmin and rmax 
were strongly correlated. While rmax and lrc had a strong 
correlation to PHmax , the correlation of Tmin with PHmax 
was low, indicating that final height was mainly driven by 
growth at optimum temperature and steepness of the tem-
perature response. All other relations between HTFP traits 
showed either only moderate of low correlations or were 
not significant.

G× E interactions for yield are complex, 
but less complex for HTFP traits and grain protein 
content

The courses of meteorological covariates (temperature and 
precipitation) showed large differences between years and 
smaller differences between sites (Fig. 3d). 2019 was charac-
terized by frequent rainfall throughout the season, but 2020 
was characterized by a dry phase between beginning and 
end of April. Precipitation for the Delley site was higher 
than for the FIP/Strickhof sites. Temperature courses for all 
sites were very comparable, but differed between years, with 
hotter periods toward the end of the season in 2020 than in 
2019. Consequently, genotype yields for year-sites (BLUEs) 

Table 2  Repeatabilities 
(regular) and heritabilities 
(bold) for intermediate high-
throughput field phenotyping 
(HTFP) traits of the three 
categories dose–response curve 
parameters (C), timing of key 
stages traits (T), and quantities 
traits (Q) and manually 
measured growth stage (GS) 
traits, yield and grain protein 
content

Category Parameter Delley, 2019 Delley, 2020 FIP, 2019 FIP, 2020 Strickhof, 2019 (All)

C Tmin 0.77 0.82 0.41 0.37 0.72 0.49
lrc 0.18 0.82 0.22 0.25 0.57 0.84
rmax 0.75 0.53 0.26 0.39 0.78 0.44

T tPHstart
0.44 0.32 0.70 0.01 0.91 0.71

tPHstop
0.44 0.38 0.71 0.39 0.80 0.66

t
dLAmax

0.72 0.30 0.73 0.73 0.59 0.56
tLAmax

0.77 0.66 0.85 0.82 0.74 0.52
Q PHmax 0.77 0.62 0.79 0.49 0.94 0.91

LAmax 0.83 0.76 0.93 0.92 0.72 0.36
ntiller 0.78 0.27 0.73 0.50 0.77 0.41
LA

tPH15
0.84 0.54 0.94 0.83 0.85 0.60

Manual GS30 0.89 0.44 0.71 – – 0.90
GS59 0.98 0.84 0.45 0.89 – 0.97
Yield 0.92 0.94 0.94 0.93 0.95 0.92
Grain protein – – – – – 0.93
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varied between year-sites with lowest yields for Delley, 2020 
and highest yields for FIP, 2019 (Fig. 3a).

Yield was further examined using a factor-analytic model 
with two factors (FA2). Estimated genetic correlations for 
common G × E interactions revealed that while some year-
sites were highly related (e.g., Strickhof, 2019 and Delley, 
2020), others had lower correlations (e.g., FIP, 2019 and 
Strickhof, 2019) (Fig. 3b). Calculating overall yield perfor-
mance (OP) and yield stability (RMSD) using the FAST 
approach revealed that the examined genotypes covered well 
the range of measured OP but clustered at low RMSD (cor-
responding to high yield stability) with a few outliers with 
high RMSD (corresponding to low yield stability) (Fig. 3c).

For grain protein content, a simple linear mixed model 
with uniform variance for G × E interactions was suggested 
by BIC, indicating only small G × E effects in the examined 
environments (Table 3). Consequently, no dissection in sta-
bility and overall performance was performed.

For intermediate traits, model selection was performed 
based on BIC following the strategy described in Sect. 2.4.4. 
For most traits, linear mixed models showed better BICs 
than factor-analytic models, indicating non-complex G × E 

interactions (Table 3). Nevertheless, for the two quantity 
traits LAtPH15

 and LAmax , factor-analytic models with one fac-
tor (FA1) performed best. Consequently, those to traits were 
excluded from further analysis. For LAmax , a FA1 model 
with mixed positive and negative loadings was suggested, 
indicating crossover G × E interactions. Consequently, the 
timing trait tLAmax

 that is derived from LAmax was excluded 
as well.

Partial least square as yield predictor shows 
less tendency to overfitting than random forest

The performance of predictors for genotype BLUEs with 
traits of all three categories (C, T, Q) varied strongly 
depending on the resampling strategy (Table 4). In the most 
advantageous situation where only the genotype was unseen, 
RF outperformed PLS with strong correlations and the low-
est RMSE and nRMSE. Nevertheless, when using unseen 
environments as resampling strategy, the correlation dropped 
for both algorithms, indicating severe overfitting. Further 
intensifying the resampling strategy to unseen genotypes 

Fig. 2  Genetic correlations of 
year-site BLUEs for HTFP traits 
and manual growth stage (GS) 
measurements
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Fig. 3  Yield performance of genotypes as BLUEs for individual year-
sites (a), estimated genetic correlation for common genotype by envi-
ronment interactions (b), overall performance versus stability based 

on a factor-analytic mixed model (FA2) (c), and characterization of 
sites with temperature and precipitation for 2019 and 2020 (d)

Table 3  BIC and full log-likelihood for two linear mixed models with different variance components (Id and Diag) and two factor-analytic mod-
els with increasing number of factors (FA1–FA2)

Models that did not converge are marked with (–). Lowest BIC values per intermediate trait are marked in italic, the selected model in bold. Dis-
carded traits are marked with strikeout and reasons indicated in underline
*Indicate factor-analytic models where the first factor has mixed positive and negative loadings

Category C T Q Target trait

Trait r
max

T
min

lrc t
PH

start
tPHstop

t
dLA

max  PH
max  ntiller  Protein Yield

Model BIC
Id − 635 339 397 1309 1450 1490 1741 − 1076 − 779 2363 − 809 85 51
Diag − 662 328 412 1313 1461 1486 1755 (–) − 795 2366 (–) (–) 45
FA1 *− 651 *342 *419 *1322 1467 1507 *1760 − 1066 *− 795 2375 − 845 104 53
FA2 *− 642 *357 *432 *1338 1481 *1521 1774 − 1061 *− 788 *2375 *− 839 120 56
Model Log-likelihood
Id 335.5 − 151.7 − 177.9 − 634 − 704.3 − 727.1 − 852.5 559 410.3 − 1163.1 422.8 − 24.4 − 4.7
Diag 362.2 − 135.8 − 175.2 − 630.7 − 701.7 − 719.4 − 846.5 (–) 413 − 1151.9 (–) (–) 8.5
FA1 364.3 − 137.5 − 173.1 − 629.7 − 694.7 − 719.8 − 841 574.6 438.9 − 1146 461.3 − 23.3 9.9
FA2 367.3 − 137.1 − 172.2 − 627.6 − 693.7 − 719 − 840 579.7 440.5 − 1143.4 466.2 − 20.9 16
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in unseen environments restored the prediction capacity to 
some extent for PLS, but less for RF.

Consequently, PLS was favored for the target traits overall 
yield performance, yield stability, grain protein content and 
breeders’ selection decisions. The hyperparameter of PLS 
(number of components; ncomp) was re-tuned for each trait. 
This resulted in a PLS with one component (PLS(1)) for 
overall yield performance, stability, and grain protein con-
tent, and a PLS with four components (PLS(4)) for selection 
decision predictions.

Quantity traits are good protein content predictors, 
overall performance and yield stability predictions 
profit from traits of all three categories

For overall yield performance (OP) predictions, quantity 
traits (Q) and timing traits (T) contributed the most to both 
a high prediction accuracy ( rs ) and low RMSE (Table 4). 
Using only dose–response curve traits (C) resulted in poorer 
predictors. Nevertheless, combining traits of all three cat-
egories (C, T, Q) could further improve the RMSE in com-
parison with using only Q or T traits.

For grain protein content, Q traits contributed the most to 
a high accuracy and low RMSE. Using only T traits resulted 
in a slightly lower correlations to grain protein content, 
using only C traits in a very poor prediction accuracy. In 
opposite to yield, the performance of a grain protein content 
predictor that combines traits of all three categories (C, T, 
Q) was slightly lower than that of a predictor purely based on 
Q traits. Nevertheless, the combined predictor was favored 
for further analysis to allow a comparison of feature scores 
with other target trait predictors.

For yield stability (RMSD), the prediction performance 
using PLS was inferior to the accuracy for other traits. 
Therefore, RF was reconsidered and could indeed restore the 
prediction accuracy to some extent, indicating that nonlinear 
combinations of traits of all three categories were required 
to predict stability.

Breeders select for overall performance and yield 
stability but select against grain protein content

When predicting the breeders’ selections for individual year-
site BLUEs, the performance was varying strongly (Fig. 4a). 
Clearly, breeders decisions were more related to a perfor-
mance in an ‘optimal’ environment than to a low-yielding 
year-site. Keeping in mind that the F7 generation breeding 
experiment was actually performed in a low-yielding year-
site (Delley, 2020), this capacity for abstraction is impres-
sive: The prediction accuracy was highest for Delley, 2019, 
a year-site with high yield (Fig. 3a) and strong genetic cor-
relations for common G × E interactions with other year-sites 
(Fig. 3b). The lowest prediction accuracy was found for the 
year-site Delley, 2020, a year-site with below-average yield 
and lower genetic correlations for common G × E interactions 
to other year-sites. When predicting breeders’ selections 
based on overall HTFP BLUPs with measured OP, the pre-
dictor performed better than for the best year-site (Fig. 4b).

The consensus of OP predictions and breeders’ selections 
became further visible when predicting OP on single lines 
of the breeding experiment (Fig. 5a). The median predicted 
OP of discarded lines was clearly lower than the one for lines 
that were selected in the F7 and F8 experiments. Lines that 
were discarded after F8 were in-between the two extremes. 
Breeders avoided lines that had a low OP prediction for their 
selection. Nevertheless, some lines with above-average OP 
prediction were discarded.

When predicting yield stability (RMSD), medians of 
selected and discarded lines were close (Fig. 5b). Neverthe-
less, breeders avoided lines with high RMSD in the F7 and 
F8 experiments, with three exceptions. Again, some lines 
with above-average stability predictions were discarded.

Predicting grain protein content for single lines in the 
breeding experiment revealed a lower median grain protein 
content for selected lines than for discarded lines (Fig. 5c). 

Table 4  Spearman’s rank correlation ( r
s
 ), root mean squared error 

(RMSE) and normalized RMSE (nRMSE) of benchmarks with par-
tial least square (PLS) and random forest (RF) regressors for different 
resampling strategies and combinations of timing of key stage (T), 
quantities (Q) and dose–response curve parameter (C) predictors

Task Learner Resampling r
s

RMSE nRMSE

Yield, Year-site BLUEs (t/ha) (%)
 f(T, Q, C) PLS (1) Unseen E 0.17 1.23 20.80
 f(T, Q, C) RF Unseen E − 0.05 1.36 22.90
 f(T, Q, C) PLS (1) Unseen G 0.59 0.88 14.80
 f(T, Q, C) RF Unseen G 0.89 0.73 12.40
 f(T, Q, C) PLS (1) Unseen G and E 1.06 17.80
 f(T, Q, C) RF Unseen G and E 1.09 18.30

Overall yield performance (OP) (t/ha) (%)
 f(T, Q, C) PLS (1) Eightfold rep. cv 0.43 0.49 18.20
 f(C) PLS (1) Eightfold rep. cv 0.32 0.57 21.20
 f(Q) PLS (1) Eightfold rep. cv 0.40 0.50 18.70
 f(T) PLS (1) Eightfold rep. cv 0.43 0.52 19.30

Grain protein content (%) (%)
 f(T, Q, C) PLS (1) Eightfold rep. cv 0.27 0.74 23.90
 f(C) PLS (1) Eightfold rep. cv 0.03 0.81 26.00
 f(Q) PLS (1) Eightfold rep. cv 0.34 0.72 23.20
 f(T) PLS (1) Eightfold rep. cv 0.27 0.75 24.10

Yield stability (RMSD) (t/ha) (%)
 f(T, Q, C) PLS (1) Eightfold rep. cv 0.01 0.12 26.30
 f(T, Q, C) RF Eightfold rep. cv 0.30 0.11 23.50

Selection decision, F7 (–) (%)
 f(T, Q, C) PLS (4) Tenfold rep. cv 0.26 1.21 30.30
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Fig. 4  Prediction of selection 
decision for individual year-
sites versus measured yield 
(a) and prediction of selec-
tion decision versus measured 
overall performance (OP) (b). 
Pearsons’ correlations ( r

p
 ) and 

Spearmans’ rank correlations 
( r

s
 ) are provided, the lines 

denote a linear regression fit

Fig. 5  Predictions for F7 single lines for overall performance (OP) 
(a), yield stability (indicated by a low root-mean-square devia-
tion value) (b) and grain protein content (c), predictions of OP ver-
sus measured yield for the subset of F7 lines that were selected and 

grown on yield plots in the subsequent generation (F8) (d), and effi-
ciency increase if a phenomic selection thresholds would have been 
applied to the breeding program in F7 (e)
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The tendency for low grain protein content was also vis-
ible for lines selected in the F7 experiment but discarded 
in the F8 experiment.

When comparing predicted overall performance with 
yield measured in the F8 experiment, a clear linear rela-
tion for most lines became visible, resulting in an accuracy 
of rs = 0.46 (Fig. 5d). Applying an overall yield predic-
tion threshold that maximizes the efficiency ( ∼ 7.7 t/ha, 
Fig. 5) to the F7 selection experiment would have excluded 
eight genotypes with low yield predictions for the F8. For 
six genotypes, the low-yield prediction was confirmed in 
the F8, but two genotypes would have been excluded by 
mistake (Fig. 5d). In summary, the increase in efficiency 
if enhancing breeders selection decisions with a HTFP-
based prediction threshold would have been in the range 
of 24–28% (Fig. 5e).

Predicting OP, yield stability and grain protein content for 
the selected F8 lines and F7 lines that were—despite their 
positive breeders’ ratings—not selected revealed no clear 
relation of OP versus yield stability (Fig. 7a). This result is 
unexpected, as it is commonly assumed that high-yielding 
genotypes cannot reach their full potential in every envi-
ronment, thus decreasing stability. In contrast, the expected 
antagonistic nature of OP versus grain protein content was 
confirmed (Fig. 7b). Calculating the total harvestable protein 
per area based on these predictions revealed that selecting 
for high protein will inevitably reduce the harvestable total 
protein per area (Fig. 7b, grey lines).

Breeders select differently than HTFP predictors

Extracting PLS scores and RF feature importance of inter-
mediate traits revealed that predictors trained on breeders’ 
selections and on OP focus on different trait categories and 
traits (Fig. 6). The score for HTFP traits that could explain 
breeders’ selections was highest and positive for ntiller , fol-
lowed by a negative score for Tmin , a positive score for lrc, 
and a negative score for tPHstop

 . Consequently, traits of all 
three categories were among the important ones, while the 
most important one was a quantity trait (Q).

For overall yield performance (OP), the highest score was 
also found for ntiller , but the score was less than half the size 
than for the most important one for the breeders’ selections. 
The positive score for the quantity trait ntiller was shorty 
followed by a similarly high score for the dose–response 
curve parameter Tmin , for the timing trait tPHstart

 , and the 
dose–response curve parameter lrc. Notably, in opposite to 
the breeders’ selection, the score for Tmin was positive.

Scores for grain protein content were to a large extent the 
opposite of scores for OP and/or yield stability. The largest 
and negative score was found for ntiller , followed by a nega-
tive score for tPHstart

.
Feature importance values for yield stability were highest 

for the quantity trait ntiller , followed by the two timing traits 
tPHstart

 and tPHstop
 . The feature importance of other traits ranged 

lower, but overall, differences were small, indicating that a 

Fig. 6  Scores for intermediate HTFP traits for the overall perfor-
mance (OP) predictor, grain protein content predictor, and breeders’ 
selections predictors based on partial least squares (PLS) (a) and for 
yield stability (RMSD) predictor based on random forest (RF). Error 

bares in a are 95% confidence intervals based on jackknife variance 
estimates, in b 95% confidence intervals based on 50-fold cross-val-
idation runs
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nonlinear combination of all traits was required to predict 
yield stability.

Selecting for OP and yield stability simultaneously 
requires traits that are not antagonistic for those target traits. 
Such relations were found for the C trait Tmin where the abso-
lute score for protein content was by a factor of 1.8 lower 
than the absolute score for OP. For the T traits tPHstart

 and 
tdLAmax

, the opposite was observed, having lower absolute 
scores for OP than for protein content by a factor of 1.4, 
respectively, 6.1. For Q traits, no promising candidates were 
found.

Discussion

The suitability of HTFP traits to predict overall 
yield performance, yield stability and grain protein 
content

A prerequisite for the indirect selection in breeding experi-
ments is a strong relation of secondary traits to target traits. 
In this work, it was hypothesized and confirmed that for 
a subset of the examined HTFP traits, G×E interactions 
are less complex than for target traits, allowing an effi-
cient selection in early breeding experiments. The low 
G×E interaction of HTFP intermediate traits may be rea-
soned by their close direct relation to the mechanistics of 
growth. In Roth et al. (2021), we elaborated that in particular 
dose–response curve traits (Category C) are less affected by 
G×E, as they can be seen as the driver of G × E themselves. 

Indeed, for the five examined year-sites of this study, all 
three dose–response curve traits showed simple G × E inter-
actions without crossovers.

In contrast, for two out of four quantity traits (Category 
Q) more complex G × E interactions were observed, indi-
cating their limited robustness as environment-independent 
predictors for a target trait. Q traits may be regarded as area-
under-the-curve representatives of growth processes (Roth 
et al. 2021) that are characterized by T and C traits. G × E 
may increasingly build up during such a growth process. 
Consequently, a timing trait (Category T) related to one of 
these category Q trait, tLAmax

 , showed more complex G × E 
effects as well and had to be excluded.

Unlike the intermediate traits, the target trait yield showed 
partly complex G × E interactions and could be separated in 
overall yield performance and yield stability. Wheat yield is 
a trait that can be dissected in physical components, namely, 
number of plants per square meter, number of shoots with 
fertile ears per plant, and number and weight of grains per 
ear (Stern and Kirby 1979). Each of these components is the 
result of dynamic growth processes that are driven by geneti-
cally determined plant demands and environment supplies 
(Triboi et al. 2006). Consistently, traits of all three categories 
were useful predictors of overall yield performance.

For grain protein content, early-season Q and T traits 
were the most useful predictors. N accumulation in grains 
is known to be source determined (Martre et al. 2003). Con-
sequently, genotypic variation in grain protein arises mainly 
from differences in N utilization efficiency and harvest index 
(Le Gouis et al. 2000). Hence, if N is not a limiting factor, 

Fig. 7  Overall yield performance (OP) predictions versus yield stabil-
ity (indicated by a low root-mean-square deviation value) predictions 
(a) and versus grain protein content predictions (b) for the selected 
F8 lines (gray circles) and for possible candidates proposed by phe-

nomic selection that were not considered (black circles). Numbers 
on a, b denote same genotypes, the black dashed line the proposed 
HTFP selection threshold for OP, grey lines and numbers in b denote 
equidistant protein per hectare lines
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genotypic differences may be very small, and increasing 
yield will lead to decreased protein content due to dilution. 
Consistent with this, most intermediate HTFP traits respon-
sible for high protein content were also associated with low 
overall yield potential. The most influential trait ntiller might 
hint on a dilution by an early development of a high number 
of ear-bearing culms. To elucidate such effects will require 
ear counts per unit area, a trait which caught a large inter-
est in the field phenotyping community (David et al. 2021; 
Dandrifosse et al. 2022).

Additional contrasts for protein content may arise from 
an adapted growth duration (Triboi et al. 2006). Consistent 
with this hypothesis, T traits were important as predictors for 
grain protein content as well. In particular, an early start of 
the generative phase ( tPHstart

 ) and a delayed maximum growth 
rate of apparent leaf area timing trait ( tdLAmax

 ) showed high 
scores for the PLS predictor, reinforcing the finding that 
changes in phenology were among the main drivers of grain 
protein content differences.

Formulating an ideotype

As elaborated above, yield and grain protein content are 
negatively related, to a large part explained by a dilution 
of protein by accumulated starch of high-yielding varieties. 
Despite these strong relations between traits, three interme-
diate traits were identified that allow optimizing for protein 
content as well as overall performance: From the C traits, 
the base temperature of growth Tmin , and from the T traits 
the time point traits tPHstart

 where the stem elongation starts 
and tdLAmax

 where the maximum increase rate in apparent leaf 
area is reached.

The most promising ideotype that optimizes overall yield 
performance and grain protein content requires selecting for 
high values for Tmin to increase yield, and an early tPHstart

 to 
increase protein (Fig. 8a, c). As those two traits are geneti-
cally uncorrelated (Fig. 2), an independent selection may be 
easy to achieve. Indeed, in Roth et al. (2022b) we found 
evidence that for the Swiss varieties such an optimization 
has already happened. The reported relations of C, T and Q 
traits of this study are in accordance with the ones reported 

in Roth et al. (2022b), with one exception: While for the 
diverse GABI wheat panel examined in Roth et al. (2022b), 
Tmin was closely related to the phenology traits tPHstart

 and 
tPHstop

 , such a relation was not visible for the Swiss elite cul-
tivar set examined in this work. Consequently, the observed 
effects in the GABI wheat panel may be partly related to 
population effects, further confirming the possibility for 
independent selection of Tmin and tPHstart

.
Alternatively, one could also select for a delayed devel-

opment of apparent leaf area ( tdLAmax
 ) to increase protein 

content (Fig. 8b). Interestingly, a similar ideotype was pro-
posed based on growth dynamics’ HTFP traits in soybean 
(Roth et al. 2022a). Nevertheless, delaying canopy develop-
ment in the late season requires special care: In this work, 
data collection was based on RGB imagery. Delayed T traits 
for apparent leaf area ( tdLAmax

 ) may indicate an advantage 
of ‘stay-green’ genotypes (Thomas and Smart 1993). When 
formulating a corresponding ideotype concept, separating 
functional from ‘cosmetic’ stay-green is essential—only 
if canopies remain highly productive in such a stay-green 
phase a delayed senescence is beneficial. Consequently, 
if including such traits in a PS approach, one may have to 
extend the RGB phenotyping technology and include spec-
tral measurements to monitor the dynamics of senescence 
(Anderegg et al. 2020) and thermal data to extract an indica-
tor for functional stay-green (Anderegg et al. 2021).

Enhancing breeders’ selections with HTFP traits

Training a PLS with breeders’ selection decisions and pre-
dicting year-site specific yield revealed that breeders select 
for an average performance for their TPE. Notably, the train-
ing set was based on selection decisions taken on a year-
site that showed lower-than-average genetic correlations for 
common G × E interactions to other year-sites. Consequently, 
the year-site was unfavorable for breeders as selection base. 
Nevertheless, the breeders managed to select in a year-site 
‘neutral’ manner for overall performance, indicating that 
their selection was based on robust secondary traits with 
little G × E interaction.

Fig. 8  Proposed ideotype to 
select for high overall yield 
performance, yield stability 
and grain protein content based 
on dose–response curve traits 
related to the height develop-
ment of the canopy (a) and tim-
ing of key stages traits based on 
apparent leaf area (b) and plant 
height (c). The optimization 
direction of traits is indicated 
with green arrows
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In opposite to overall yield performance, grain pro-
tein content was a trait on which selection does not seem 
to have a strong effect. While most of the traits showed 
converse effects on protein content and yield, some had a 
stronger effect on either of both. While an indirect selec-
tion for a high grain-protein deviation based on such infor-
mation may be difficult, the information how intermediate 
traits affect these target traits is of major importance for 
breeders. Early vigor for weed suppression for example 
is increasingly important due to the political pressure for 
herbicide-free cropping systems. Thus, an increased vigor-
ous development to achieve a better weed suppression in 
spring may reduce protein content while increasing yield.

For yield stability, breeders’ selections were neutral, 
they did not neglect but also not strongly selected for more 
stable genotypes. Again, with HTFP, breeders selection 
decisions could become enhanced with a stronger focus 
on stability. However, quantifying yield stability will need 
many test environments and genotypes. The 5 year-sites 
included in the present study offer only a limited insight 
into the driving factors of G × E. Implementing HTFP in 
a lager number of sites including future climate sites may 
greatly enhance our understanding about ideotypes with a 
strong resilience to extreme weather conditions.

Introducing a threshold based on overall yield perfor-
mance predictions with HTFP traits could increase the 
efficiency of selection by up to 28%. Predictions for the 
discarded lines in the F7 breeding experiment made evi-
dent that potential candidates with high yield and protein 
potential were present in the breeding program. The pre-
diction accuracy ( r ≈ 0.4 ) of PS trained on a small set 
(45 genotypes) was comparable to those measured in GS 
approaches with large training sets ( > 550 genotypes) 
(Rutkoski et al. 2016; Crain et al. 2018; Sandhu et al. 
2021). If keeping all other parameters of a breeding pro-
gram constant, such an efficiency increase would directly 
translate into genetic gain, making PS for the particular 
case as competitive as GS. The achieved rank prediction 
accuracy of unseen genotypes in an unseen environment 
of 0.46 further underpins this finding.

In addition, PS and GS do not necessarily have to be seen 
as competing—integrative approaches may also be con-
ceivable. Diepenbrock et al. (2021) for example used GS 
to predict parameters of a crop growth model that related to 
the target trait yield, which improved the accuracy of yield 
predictions for unseen genotypes in unseen environments. In 
this work, it was demonstrated that if the TPE is part of the 
PS training set, the non-complex G × E nature of intermedi-
ate HTFP traits may allow comparable target trait predic-
tion approaches without explicitly including environmental 
covariates. In return, this could potentially allow predicting 
intermediate traits directly with GS instead of measuring 
them with HTFP.

Once trained, the presented phenomic selection approach 
can be applied to single-row plots in early generations. Nev-
ertheless, the training set requires to be collected in genera-
tions grown in yield plots. This study was conducted within 
the framework of the Swiss winter wheat breeding program 
of Agroscope/Delley Samen und Pflanzen AG, without 
interfering with it. Starting with the F8 generation, yield 
plots are used in this breeding program. The F8 generation 
is grown in 1 year only, and most of the examined ∼ 200 
genotypes discarded afterward. An essential fundamental of 
the presented approach is to examine G × E interactions of 
target traits (yield, grain protein content) and high-through-
put phenotyping traits. As source for G × E interactions in 
wheat cultivation in Switzerland, the year is as important 
as the location (Fig. 3b). Using the F8 generation as train-
ing would have prevented from examining year-based G × E 
interactions, therefore limiting the power of the training set. 
Consequently, it was taken advantage of the variety test-
ing character of the subsequent F9–F12 generation experi-
ments that are performed in multiple years. Depending on 
the breeding program, the generation that is best suited as 
training and selection set may vary. Importantly, the training 
set has to be as genetically close to the selection set as pos-
sible, while providing sufficient reliable yield measurements 
in multiple locations and years. For the Swiss winter wheat 
breeding program, this prerequisite is fulfilled in the F9–F12 
generation experiments.

Considerations on the added value of PS versus GS 
to support the Swiss winter wheat breeding 
program

The attractiveness of a particular approach for a breeding 
program depends to a large extent on the costs. In the follow-
ing, the economical costs and accuracy increase of PS versus 
GS is evaluated on the case example of the Swiss winter 
wheat breeding program of Agroscope (Nyon, Switzerland)/
Delley Samen und Pflanzen AG (Delley, Switzerland). A 
base assumption is that the design of the program itself 
remains unchanged and that GS and PS could be introduced 
independently at certain breeding stages. Cost estimations 
for GS are based on know-how gained during the implemen-
tation of GS in the Agroscope/Delley Samen und Pflanzen 
AG breeding program. Cost estimations of PS are based on 
annual costs of the Trait Spotting project where two sites per 
year with a total area of 2.160 m2 were monitored.

Given is the winter wheat breeding program with 
300,000, 12,500, 5000, 2500, 900, 220, 60, 30, 36, and 36 
genotypes in the F3–F12 generations (Fig. 8a). Given is 
further that F3 are single plant, F4 single rows, F5 double 
row plots, F6 four-row plots, F7 20-row plots, and F8–F12 
yield plots, while rows have a 0.25 × 1 m and yield plots 
a 1.5 × 5 m area (Fig. 8b). Finally, given is that for F3–F6 
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one location, for F7 two locations, for F8 four locations, 
and for F9–F12 five locations are used (Fig. 8a). The meas-
ured accuracy for yield prediction with PS in this work was 
r = 0.43 , for measuring yield with yield plots r = 0.9 , and 
the provided accuracy for GS in wheat is r = 0.32 (Crain 
et al. 2018).

When using these values to calculate total costs per 
breeding stage, costs for GS in early breeding stages 
(F3–F6) are higher than for PS, as the number of required 
samples are high but the areas to monitor small (Fig. 9b). 
Starting with F7, GS becomes more affordable than PS. 
Finally, starting with F8, yield plots can be used, rep-
resenting the most cost-efficient selection strategy. The 
choice on replicated or unreplicated trials per location may 
influence these findings: If distributing the available rows 
per generation in the Swiss breeding program to unrepli-
cated trials at many locations instead of replicated trials 
at a few locations, PS may be more affordable than GS in 
later generations (Fig. 9). Nevertheless, such an approach 
would most probably require the use of double-haploids 
to ensure the genetic stability. Still, the fact that phenomic 
data in a breeding program is often collected for other 
reasons as well gives PS further justification.

Given that both GS and PS are not yet fully part of a 
breeding program yet, breeders would be more interested 
in the return in accuracy increase if adapting new technolo-
gies than in total costs. When dividing the total costs by the 
expected selection accuracy, costs of increasing the accuracy 
of selection are lowest for PS in early breeding stages, lowest 
for GS or PS in intermediate breeding stages (depending on 
whether locations include replicated trials), and lowest for 
yield trials in late breeding stages (Fig. 9d). In summary, for 
the Swiss winter wheat breeding program, a hybrid GS/PS 
strategy may be best suited to increase the genetic gain, with 
PS focusing on early single and double-row plots.

Conclusion

Using HTFP to extract dynamic traits of three different cat-
egories (C, T, Q) derived from drone-based RGB imaging 
proved to be suitable to allow a prediction of overall yield 
performance, yield stability, and grain protein content. Less 
complex G × E interactions of HTFP traits than those of target 
traits allowed the application of HTFP even in early breeding 
generations with few locations. Traits related to quantities 

Fig. 9  Dimensions of the Swiss winter wheat breeding program and 
an alternative program with unreplicated trials per location (a, c) and 
costs (b) versus accuracy (d) of a genomic selection approach (GS) 

based on genotyping and a phenomic selection approach (PS) based 
on high-throughput field phenotyping (HTFP) and classical yield 
multi-environment trials (MET)
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at defined time points or time periods (Category Q) can be 
seen as proxy traits for yield components and are the result 
of related growth processes, giving them high prediction 
potential for overall yield performance and protein content. 
Timing of key stages (Category T) and dose–response curve 
(Category C) traits are more related to stability. This sug-
gests focusing on such traits when aiming at the mitigation 
of the effect of abiotic stresses. As dose–response curve 
traits have lowest G × E interactions, they potentially allow 
performing predictions on HTFP data from single locations.

The prediction accuracy of phenomic selection (PS) is 
comparable with that reported for genomic selection (GS) 
and allows increasing the selection efficiency by up to 28%. 
While costs of GS mainly depend on the number of geno-
types to sample and continuously decrease with increasing 
generations, PS depends on the area to monitor, making it 
cost-efficient for early breeding stages. Other than GS, PS 
allows analyzing the influence of dynamic traits on target 
traits, providing both insights on existing breeders’ selec-
tion processes but also formulating an ideotype concept for 
further refinements of those. In particular, the C traits base 
temperature of growth, and the T traits start of stem elonga-
tion and time point of maximum apparent leaf area increase 
allowed formulating an ideotype concept that may optimize 
yield, yield stability and protein content.
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