

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra Federal Department of Economic Affairs, Education and Research EAER

Agroscope

Crop response to soil potassium under diverse pedoclimatic conditions in multiple environments – implications for fertilization recommendations

Juliane Hirte & Frank Liebisch

22 June 2023 | LTE conference Rothamsted

Potassium (K) nutrition and plant water balance

- optimal K supply alleviates water stress of arable crops
- maize yields are reduced by 1 t ha⁻¹ for every 100 mm reduction of spring precipitation at low soil K

Crop response to soil K | LTE Conference Rothamsted 2023 Juliane Hirte

Frei et al., in preparation

Potassium (K) nutrition and plant water balance

Climate suitability for agriculture:

- annual temperature ↑, heat waves ↑,
 summer precipitation ↓ Source: MeteoSwiss
- summer crops increasingly suffer from water shortage Henne et al. 2018
- irrigation demands for maize may increase by up to 40% Holzkämper et al. 2020

Holzkämper et al. 2020

Revisiting K fertilization recommendations?

Crop response to soil K | LTE Conference Rothamsted 2023 Juliane Hirte

K fertilization recommendations in Switzerland

1. Soil K testing exchangeable K

HNO₃

2. Yield calibration yield ~ soil K + soil clay

Mehlich3 BaCl₂ AA-EDTA, AA, AL Bray H_2O H_2O-CO_2

missing for Switzerland

Madaras and Koubova 2015 Zebec et al. 2017 Fontana et al. 2022

Principles of crop fertilization in Switzerland (PRIF) 2017: www.prif.ch

Crop response to soil K | LTE Conference Rothamsted 2023 Juliane Hirte

AAE10-K	Tongehalt der Feinerde (%)							
mg K/kg	< 10	10-19,9	20-29,9	30-39,9	≥ 40			
0-19,9	1,5	1,5	1,4	1,4	1,2			
20-39,9	1,5	1,4	1,4	1,4	1,2			
40-59,9	1,4	1,4	1,3	1,2	1,0			
60-79,9	1,4	1,2	1,2	1,2	1,0			
80-99,9	1,2	1,2	1,2	1,0	1,0			
100-119,9	1,2	1,2	1,0	1,0	1,0			
120-139,9	1,2	1,0	1,0	1,0	0,8			
140-159,9	1,0	1,0	1,0	1,0	0,8			
160-179,9	1,0	1,0	1,0	0,8	0,8			
180-199,9	1,0	1,0	0,8	0,8	0,6			
200-219,9	1,0	0,8	0,8	0,8	0,6			
220-239,9	0,8	0,8	0,8	0,6	0,6			
240-259,9	0,8	0,8	0,6	0,6	0,4			
260-279,9	0,8	0,6	0,6	0,6	0,4			
280-299,9	0,6	0,6	0,6	0,4	0,0			
300-319,9	0,6	0,6	0,4	0,4	0,0			
320-339,9	0,6	0,4	0,4	0,0	0,0			
340-359,9	0,4	0,4	0,0	0,0	0,0			
360-379,9	0,4	0,0	0,0	0,0	0,0			
380-399,9	0,0	0,0	0,0	0,0	0,0			
400-419,9	0,0	0,0	0,0	0,0	0,0			
≥ 420	0,0	0,0	0,0	0,0	0,0			

Acker- und Futterbau

3. Soil fertility classification

- 1. model yield response to soil test K for arable crops in Switzerland
- 2. evaluate importance of pedoclimatic covariates for yield response models
- 3. derive critical soil test K values for fertilization recommendations
- 4. review Swiss fertilization guidelines with respect to changing climatic conditions

Crop response to soil K | LTE Conference Rothamsted 2023 Juliane Hirte

STYCS long-term fertilizer experiments Hirte et al. 2021

- 6 sites
- 4 replicates
- 6 K fertilization levels (0-167%)
- yields, available nutrients
- soil and climate variables

Agroscope

Pedoclimatic conditions

Pedoclimatic conditions

Yields and soil K

AAE10

Crop response to soil K | LTE Conference Rothamsted 2023 Juliane Hirte

Yield response to soil K – Mitscherlich model

Crop response to soil K | LTE Conference Rothamsted 2023 Juliane Hirte

Soil test K [mg kg⁻¹]

Agroscope

Importance of pedoclimatic covariates

Crop response to soil K | LTE Conference Rothamsted 2023 Juliane Hirte

Critical soil test K

- for zero K fertilization
- at 95% maximum yield
- soil test K below which
 - fertilization is recommended

Changing critical soil K with changing covariates

Crop response to soil K | LTE Conference Rothamsted 2023 Juliane Hirte

V Review Swiss fertilization guidelines

und F	utterbau	Clav	, cont	ent			Acker- und F	utterbau	Clay	, cont	ent	
AE10-K		City content						Ciuy	content			
ng K/kg	< 10	10-19,9	20-29,9	30-39,9	≥ 40		mg K/kg	< 10	10-19,9	20-29,9	30-39,9	l
0-19,9	1,5	1,5	1,4	1,4	1,2		0–19,9	1,5	1,5	1,4	1,4	
20-39,9	1,5	1,4	1,4	1,4	1,2	\\/boot	20-39,9	1,5	1,4	1,4	1,4	l
40-59,9	1,4	1,4	1,3	1,2	1,0	vvneat	40-59,9	1,4	1,4	1,3	1,2	Î
60-79,9	1,4	1,2	1,2	1,2	1,0	Parlov	60–79,9	1,4	1,2	1,2	1,2	
80-99,9	1,2	1,2	1,2	1,0	1,0	Barley	80-99,9	1,2	1,2	1,2	1,0	
100–119,9	1,2	1,2	1,0	1,0	1,0		100-119,9	1,2	1,2	1,0	1,0	
120–139,9	1,2	1,0	1,0	1,0	0,8	Maize –	120-139,9	1,2	1,0	1,0	1,0	0
40-159,9	1,0	1,0	1,0	1,0	0,8		140-159,9	1,0	1,0	1,0	1,0	
160–179,9	1,0	1,0	1,0	0,8	0,8		160-179,9	1,0	1,0	1,0	0,8	Î
180–199,9	1,0	1,0	0,8	0,8	0,6	Potato	180-199,9	1,0	1,0	0,8	0,8	
200–219,9	1,0	0,8	0,8	0,8	0,6		200-219,9	1,0	0,8	0,8	0,8	
220-239,9	0,8	0,8	0,8	0,6	0,6		220-239,9	0,8	0,8	0,8	0,6	
240-259,9	0,8	0,8	0,6	0,6	0,4		240-259,9	0,8	0,8	0,6	0,6	
60-279,9	0,8	0,6	0,6	0,6	0,4		260-279,9	0,8	0,6	0,6	0,6	0
80-299,9	0,6	0,6	0,6	0,4	0,0		280-299,9	0,6	0,6	0,6	0,4	0
300-319,9	0,6	0,6	0,4	0,4	0,0		300-319,9	0,6	0,6	0,4	0,4	

Crop response to soil K | LTE Conference Rothamsted 2023 Juliane Hirte

PRIF 2017 14

Coming back to be the objectives

- model yield response to soil test K for arable crops in Switzerland

 -> crop-specific models?
- evaluate importance of pedoclimatic covariates for yield response models

 -> investigate clay mineralogy and CEC on the 6 sites and / or role of texture as
 covariate for fertilization recommendations
- derive critical soil test K values for fertilization recommendations
 -> do critical values at zero fertilization reflect agricultural practice?
- review Swiss fertilization guidelines with respect to changing climatic conditions
 -> adjustments for summer crops might become necessary in future

Acknowledgements

Conceptualization, initiation and long-term coordination

René Flisch, Walter Richner

Field and sample management and lab analyses

Hansueli Zbinden, Ernst Brack, Samuele Peduzzi, Katrin Casada, Karin Meier-Zimmermann, civil servants + interns, Diane Bürge, Martin Zuber, Agroscope service lab and many more

Data curation and analysis

Barbara Orth, Serge-Etienne Parent, Manuel Schneider, Jonathan Frei

Funding and support

Agroscope, Jochen Mayer, Shiva Ghiasi, Research group Water Protection and Substance Flows

Thank you for your attention

Juliane Hirte juliane.hirte@agroscope.admin.ch

Pedoclimatic conditions

Agroscope

18