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Article Impact statement: Distributions of hotspots of wild bee alpha and ß diversity differ 

by elevation and overlap with existing protected areas. 

 

Abstract 

Wild bees are critical for multiple ecosystem functions but are currently threatened. 

Understanding the determinants of the spatial distribution of wild bee diversity is a major 

research gap for their conservation. Here, we model wild bee α and ß taxonomic and 

functional diversity in Switzerland to (i) uncover countrywide diversity patterns and 

determine the extent to which they provide complementary information, (ii) assess the 

importance of the different drivers structuring wild bee diversity, (iii) identify hotspots of 

wild bee diversity, and (iv) determine the overlap between diversity hotspots and the network 

of protected areas. We use site-level occurrence and trait data from 547 wild bee species 

across 3343 plots and calculate community attributes, including taxonomic diversity metrics, 

community mean trait values, and functional diversity metrics. We model their distribution 

using predictors describing gradients of climate, resource availability (vegetation), and 

anthropogenic influence (i.e. land-use types and beekeeping intensity). Wild bee diversity 

changes along gradients of climate and resource availability, with high-elevation areas having 

lower functional and taxonomic α-diversity and xeric areas harbouring more diverse bee 

communities. Functional and taxonomic ß-diversities diverge from this pattern, with high 

elevations hosting unique species and trait combinations. The proportion of diversity hotspots 

included in protected areas depends on the biodiversity facet, but most diversity hotspots 

occur in unprotected land. Climate and resource availability gradients drive spatial patterns of 

wild bee diversity, resulting in lower overall diversity at higher elevations, but 
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simultaneously greater taxonomic and functional uniqueness. This spatial mismatch among 

distinct biodiversity facets and the existing degree of overlap with protected areas challenges 

wild bee conservation, especially in the face of global change, and calls for better integrating 

unprotected land. The application of spatial predictive models represent a valuable tool to aid 

the future development of protected areas and achieve wild bee conservation goals. 

 

1. Introduction  

 

Wild bees are of great ecological, economic, and social importance (Potts et al., 2016) but are 

threatened by ongoing global change (Goulson et al., 2015). Drivers of wild bee declines 

have long been noted (Goulson et al., 2015) and existing evidence has shown that some 

species have suffered extirpations and contractions of their distribution ranges (Cameron et 

al., 2011). In turn, this has led to a loss of species and a potential erosion of functional 

diversity (Pradervand et al., 2014), challenging the resilience of wild bee communities to 

future changes (Lavorel et al., 2013). Therefore, efficient protection of wild bee taxonomic 

and functional diversity is urgently needed. However, knowledge on wild bee diversity is 

severely constrained, due to existing taxonomic bottlenecks and a lack of comprehensive 

datasets on wild bee occurrence and trait measurements (Nieto et al., 2014, but see 

Woodcock et al., 2014; Polce et al., 2018). This limitation also applies in Europe, one of the 

most studied continents. Europe hosts around 10% of the world bee diversity (ca. 2000 

species; Nieto et al., 2014) but over 56% of the species reported are considered data deficient 

(Nieto et al., 2014). Overall, these shortages in data hamper the development of conservation 
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planning (Guisan et al., 2013; Di Marco et al., 2017), as an understanding of the drivers 

shaping diversity patterns and the spatial distribution of diversity is required to designate 

protected areas for wild bee conservation (Chowdhury et al., 2022).  

 

Biodiversity is a multi-faceted concept that should inform conservation planning (Devictor et 

al., 2010; Villalta et al., 2022). Taxonomic metrics, such as species richness and species 

diversity, are widely used to evaluate the importance of different drivers of wild bee 

diversity, including land-use change (Ekroos et al., 2020), disturbance (Winfree et al., 2009), 

pollution (Moroń et al., 2012) and climate (Bystriakova et al., 2018). Approaches based on 

functional traits, that is, the phenotypic attributes of an individual that determine its fitness 

(Violle et al., 2007), are increasingly being used in combination with taxonomic metrics. 

They help us to better understand the variation in species assemblages along ecological 

gradients (Coutinho et al., 2021) and to predict the consequences for ecosystem functions and 

services (e.g. Fründ et al., 2013). Comprehensive national bee monitoring and functional trait 

datasets are becoming available (e.g. Woodcock et al., 2014; Fournier et al., 2020) for 

specific regions, enabling us to study functional trait gradients at higher resolutions. 

Phylogenetic diversity, a metric of the shared evolutionary history among species (Faith, 

1992), represents another biodiversity facet. Unfortunately, a comprehensive phylogeny for 

bees is still lacking (Hedkte et al., 2013). Similarly, decomposing diversity into its α and ß 

components provides complementary information. Local α-diversity typically provides a 

measurement of diversity (i.e. taxonomic, functional, phylogenetic) at the spatial scale where 

studies are conducted (Socolar et al., 2016). Conversely, ß-diversity represents a 

measurement of the compositional differences between local species assemblages. It is often 
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an important metric to understand diversity change due to, e.g. environmental gradients, and 

to study biodiversity loss and homogenisation (Socolar et al., 2016). Among other 

applications, ß-diversity can help uncover areas harbouring unique species assemblages. 

Thus, the combination of α and ß taxonomic and functional diversity represents an important 

metric to understand diversity change and inform conservation planning (Socolar et al., 

2016). 

 

The determinants of wild bee diversity have been previously explored. Nonetheless, existing 

work has limitations regarding spatial coverage, the diversity facets included, the 

environmental predictors tested, and the completeness of bee diversity data. Recent analyses 

at the global scale have confirmed the bimodal latitudinal bee richness gradient proposed by 

Michener (1979). Specifically, climate and resource availability (i.e. vegetation communities) 

have arisen as the main drivers of bee diversity worldwide (Bystriakova et al., 2018; Orr et 

al., 2021) and regionally (Dzekashu et al., 2022; Sponsler et al., 2022). Moreover, 

anthropogenic stress in the form of land-use change has been shown to negatively impact 

wild bee α- and ß-diversity for Palearctic bees at the continental (Bystriakova et al., 2018) 

and smaller scales (e.g. Moroń et al., 2012; De Palma et al., 2017). For instance, highly 

intensified agricultural and urban areas tend to reduce wild bee diversity by selecting species 

with specific traits that allow them to persist and thrive in those environments, hence 

decreasing both α- and ß-diversity (Collado et al., 2019; Fournier et al., 2020; Villatla et al., 

2022). However, urban areas may harbour a greater wild bee diversity than highly intensified 

agricultural areas (Baldock 2020), and maintain higher ß-diversity values (Fournier et al., 

2020; Villalta et al., 2022). Finally, anthropogenic stress through the influence of managed 
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pollinators (e.g. honeybees), which might compete with wild bees, has rarely been tested at 

large spatial scales, but evidence has shown a gradual replacement of wild bees by honeybees 

across the Mediterranean Basin region (Herrera, 2020). Nonetheless, how the determinants of 

bee distribution act at smaller spatial scales (e.g. countrywide) and the consequences for wild 

bee diversity remain largely unknown, limiting our knowledge of wild bee ecology and our 

capacity to manage and conserve their biodiversity. 

 

Switzerland hosts a relatively high bee diversity compared with other European countries, 

exhibits large gradients in climate and land-use intensity, and is therefore a good location to 

study bee distribution patterns. Bee richness in Switzerland is estimated at 633 species 

(Ascher & Pickering, 2020), 45% of which are threatened (Federal Office for the 

Environment FOEN, 1994). National surveys of bees have a good spatial coverage, which 

enables spatial modelling approaches at relatively high resolutions (e.g. Vitasse et al., 2021). 

The quality and quantity of these data are unparalleled in Europe, as few other countries have 

long-term surveys of bee occurrence and none cover such sharp environmental gradients. 

Switzerland has developed a network of protected areas aimed at the conservation of the 

country‟s biodiversity. Nonetheless, as in other countries, protected areas have mostly been 

designed for plants and vertebrates. Their effectiveness for insect conservation is largely 

unknown (Chowdhury et al., 2022). For instance, how the protected areas cover the 

geographic range of wild bees and their diversity hotspotshas not yet been assessed 
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Here, we studied bee diversity spatial patterns by mapping the distribution of taxonomic and 

functional attributes of bee communities from a unique dataset containing records of 547 wild 

bee species in Switzerland at an unprecedented spatial resolution. We modelled wild bee 

taxonomic and functional diversity using sets of predictors that represent gradients of climate, 

resource availability (i.e. vegetation communities), and anthropogenic stress (i.e. land-use 

composition and beekeeping intensity). We aimed to (i) uncover countrywide taxonomic and 

functional α- and ß-diversity patterns and determine the extent to which they provide 

complementary information, (ii) assess the importance of the different drivers structuring 

wild bee α and ß taxonomic and functional diversity, (iii) identify hotspots of α and ß 

taxonomic and functional diversity, and (iv) quantify the degree of overlap between diversity 

hotspots and the network of Swiss protected areas. 

 

2. METHODS 

2.1 Study location 

This study was carried out in Switzerland, central Europe. Switzerland is a country with 

pronounced elevation gradients , a broad  range of climatic conditions and a variety of land-

use types. Thus, sharp environmental and land-use gradients are characteristic of Swiss 

landscapes, making them ideal for studying the drivers of spatial patterns in community-level 

taxonomic and functional diversity.  
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2.2. Bee occurrence, trait values and community metrics 

Occurrence data were provided by the Swiss Biological Records Centre (http://www.cscf.ch, 

data accessed on 12 April 2020). These data originate from community-level surveys 

performed in 100 m by 100 m plots in 2015-2020, in the context of a project focused on 

updating the red list of the Swiss bees (Müller & Praz, in press, see also Text S1). In total, 

6200 plots were surveyed. All quadrats were sampled several times per year by seasoned 

specialists in bee taxonomy. The number of sampling campaigns per year vary as a function 

of elevation where higher elevation plots were sampled fewer times because of the shorter 

vegetation period. Most of our data was taken in a standardised way. Nevertheless, a minority 

of the samples come from diverse projects that, in some cases, used different methodologies, 

that we included to get a maximal cover of the territory. To minimise the risk of varying 

sampling intensity and ensure the comparability of all our samples, we removed all plots with 

less than 5 species to avoid including under-sampled localities (2730 plots). We also removed 

the plots within the 2 % higher quantiles of species richness to avoid potential over-sampling 

(128 plots). At the end, we used data from 3343 plots, containing 52092 records, that is, wild 

bee species occurrences (mean±sd=15.58±9.81 wild bee species per plot) and a total of 547 

wild bee species (Table S1). The used database includes more than 98% of the species 

predicted to be present in Switzerland based on species accumulation curves (Fig. S1). All 

data used in this study were projected on the same 100 m by 100 m grid covering all of 

Switzerland (see Fig. S2 for methodological framework). The entire dataset can be accessed 

on GBIF (Praz et al. 2022). 

We selected eight functionally relevant traits from the European trait database (compiler: 

Stuart Roberts; pollinator loss module of the EU- FP6 ALARM project, version: 01.2017), 
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for which sufficient data were available (Fournier et al., 2020). Specifically, we used the 

following traits and definitions: (1) intertegular distance (ITD), (2) feeding specialisation; (3) 

tongue length, (4) beginning of the adult flying period (hereafter phenology start), (5) 

duration of the flying period (hereafter phenology duration), (6) nesting mode (hereafter 

belowground), (7) parasitic behaviour (hereafter cleptoparasite), (8) sociality (hereafter 

solitary). Details on the traits can be found in Text S2 and Table 1. 

We derived several α-diversity metrics using the data described above. For taxonomic α-

diversity, we calculated the species richness (S) and the Shannon diversity index (H‟). For 

functional α-diversity metrics, we first standardised all trait values by subtracting the mean 

and dividing by the standard deviation, to ensure that they had the same unit. We then 

calculated the community-weighted mean value (CWM) of each trait, which can be used to 

identify major patterns in trait variation within wild bee communities (Woodcock et al., 

2014). Moreover, we calculated three complementary indices of functional diversity: 

functional richness, evenness and dispersion following Fontana et al. (2016) and Laliberté 

and Legendre (2010). We further calculated ß-diversity metrics in terms of the local 

community contribution to taxonomic and functional ß-diversity (LCBD) using the approach 

of Legendre and Cáceres (2013). This approach provides the ecological uniqueness (e.g. 

taxonomic and functional) of the sites in terms of community composition. Large LCBD 

values indicate sites that have unusual species combinations and/or strongly different species 

compositions in comparison to other sites with low LCBD values (Legendre 2014). For 

further information on the definitions and calculation of the metrics, see Text S3. 
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2.3 Environmental predictors 

2.3.1 Climate  

To infer climate gradients, we considered the main trends in climatic conditions across 

Switzerland using the 19 Bioclim variables of the CHELSA database set at 1x1 km resolution 

(Karger et al., 2017), which provide information about biologically relevant aspects of 

climate for 1979–2013. Using these data, we first ran a PCA with 100,000 randomly sampled 

cells (Table S2). We then projected the remaining cells onto the PCA. The first four PCA 

axes represented the main trends in climate, i.e. temperature, precipitation, climate 

seasonality and temperature range (92% of the total variation, see also Table S2), and were 

selected for further analyses. Finally, the resulting maps were downscaled (from 1 km by 1 

km cells to 100 m by 100 m cells) to match the resolution of the other datasets. See Text S4 

for details on the PCA axes and Fig. S3 for maps corresponding to the PCA results. 

  

2.3.2 Vegetation 

To infer resource gradients, we mapped the major trends in vegetation across Switzerland 

using plant occurrence data from the biodiversity monitoring programme of Switzerland 

(BDM, InfoFlora). The BDM contains about 500 plots distributed regularly across 

Switzerland, which were surveyed between 2015 and 2019 (detailed information about plant 

survey: https://biodiversitymonitoring.ch/index.php/en/). In total, the dataset includes 1,727 

species, representing about half of the Swiss flora.  
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We first ran a PCA of the plant occurrence data, in order to reduce the dimensionality of the 

dataset and capture the main trends in vegetation structure and composition. We selected the 

first four PCA axes, representing 43% of the total variation in plant occurrence, for further 

analyses (PCA1 = 24%; PCA2 = 12%; PCA3 = 4%; PCA4 = 3%, Table S3). All other axes 

explained < 2% of the variation. We then modelled the distribution of the four PCA axes. 

This step was meant to avoid gaps in the datasets and to transfer the vegetation information 

onto the same grid as used for bees. Specifically, each plant PCA axis was modelled 

individually using the raw 19 CHELSA variables as descriptors (Text S5). The random forest 

algorithm was trained on 80% of the data and evaluated on the remaining 20%, stratified 

according to the response variable (function „createDataPartition‟ in R package caret v. 6.0-

86, Kuhn, 2008). Model training and parameter tuning were done using three times three-fold 

cross-validation (function „train‟ in R package caret). The best model was chosen based on 

the root mean squared error (RMSE), mean absolute error (MAE) and R2 measured on the 

trained dataset.  

 

The four plant PCA axes represent the main trends in plant community composition across 

Switzerland. The first PCA axis was highly correlated with climate (> 0.7) and thus excluded 

from the analyses. The other three PCA axes (PCA2–PCA4) represented gradients of plant 

communities: from those dominated by coniferous trees to other communities (named mid-

elevation coniferous), from dry to wet vegetation (named dry–wet), and from woody to open 

plant communities (named forest). See Text S5 for details on the interpretation and Table S3 

and Fig. S4 for results. 
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2.3.4 Land use  

We used land-use and land-cover (LULC) data from Swiss Area Statistics set at 100 x 100 m 

resolution (Fig. S5a, Altwegg & Weibel, 2015), collected in the period 2015 to 2018. For 

modelling, we focused on three of the four principal domains: urban, agricultural and forest 

(see Text S6 for additional details). We calculated the percentage of urban, agricultural and 

forest cells in 200, 500, 1000 and 2500 m radii around each raster cell centre (Fig. S6). In 

addition, we initially considered land-use intensity as an important driver of bee diversity 

using a country-scale land-use intensity map (Meier et al., 2020) based on habitat type and 

environmental data. Due to high collinearity with several predictors (Fig. S7), however, we 

ultimately did not use land-use intensity in the final analyses. 

 

2.3.5 Beekeeping intensity 

To assess beekeeping intensity, we used annual data on the spatial distribution of beekeeping 

locations and the number of hives in Switzerland, which were obtained from the cantonal 

veterinary offices. The considered period was 2012 to 2018. As exceptions, data were only 

available from the period 2012–2014 for the canton of Basel and from 2013–2018 for the 

canton of Vaud. The data from each veterinary office were checked separately, and only 

records of beekeeping locations with reliable coordinates were included. We then calculated 

the number of honeybee hives in 200, 500, 1000 and 2500 m radii around each 100 m by 100 

m raster cell centre (Fig. S8). 
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2.4 Elevation and protected areas 

We used the digital elevation model of Switzerland (DHM25, see swisstopo, 2021) to obtain 

elevation values and to study the elevational patterns of the predictors (Fig. S9). Swiss 

protected areas include different types of spatial objects that vary in the degree of 

anthropogenic influence, with some of them subjected to strict levels of protection and cover 

around 27 % of the surface (Table S4). Hence, we classified the protected areas in two 

groups. First, we considered only those areas that are strictly protected (i.e. protected areas 

sensu stricto). These protected areas include only the biotopes of national importance (dry 

grasslands, fens, bogs, amphibian reproduction sites, floodplains), the Swiss National Park, 

Ramsar areas, forest reserves and private forest and nature reserves (i.e. owned by Pro 

Natura), which cover around 5.6% of the Swiss surface (Table S4, Delarze et al., 2016). 

Second, we considered protected areas with lower degrees of protection and variable land-use 

intensity and anthropogenic interference, referred as protected areas sensu lato (Table 

S4).These areas cover ca. 21 % of the Swiss surface. We also combined the two classes of 

protected areas in a single one (all protected areas). 

  

2.5 Variable selection 

We selected variables that had Pearson intercorrelations < 0.7 (Fig. S3, Dormann et al., 

2013). For the variables that were calculated using 200, 500, 1000 and 2500 m buffers (i.e. 

beekeeping, land use and land-use intensity), we also ran preliminary analyses including all 

variables to assess which neighbourhood windows were the best descriptors of the various 
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bee diversity metrics. We found that the variables calculated at 2500 m around the raster cell 

centre were the best predictors.  

 

After the variable selection, we retained climate (4 PCA axes), vegetation (3 PCA axes), 

beehive density (number of beehives in a 2500 m radius), and land use (percentage of urban, 

agricultural and forest in a 2500 m radius) for further analyses. These variables represent 

gradients in climate, resource availability, habitat amount and disturbance, respectively. All 

variables were scaled and centred prior to analyses.  

  

2.6 Statistical analyses 

All analyses were conducted in the R environment v. 4.0.3 (R Core Team, 2020). All α and ß 

taxonomic and functional diversity metrics (species richness, Shannon diversity, TOP, TED, 

FDis, LCBD taxonomic, and LCBD functional), as well as the CWM of the eight studied 

traits, were modelled using the selected variables (see previous section). Model calibration, 

parameter tuning, and model performance and selection were done following the same steps 

as for the vegetation structure and composition (section 2.3.2). Three algorithms were tested: 

generalised linear models (GLM), neural networks (nnet, Venables & Ripley, 2002), and 

random forests (rf, Liaw & Wiener, 2002). Model performance on the test data was estimated 

with three metrics, that is, the  root mean squared error (RMSE), the mean absolute error 

(MAE) and the R
2
. Random forest analysis produced the best results for each diversity 

metric, having the lowest RMSE and MAE, and the highest R
2
 (random forest R

2
 was always 

> 0.9,  see Table S5 for more detail) and was used to produce country-scale predictions of 



 

 

 

This article is protected by copyright. All rights reserved. 

15 

diversity patterns (Table S5, Figs S10–S11). The importance of each descriptor in the random 

forest models was estimated as the averaged difference across all trees (before and after 

permuting a variable) in root mean squared error (RMSE) computed on the out-of-bag data 

and normalised by the standard error (function „varImp‟, package caret). In addition, we used 

partial dependence plots (PDP) to assess the changes in diversity metrics while limiting the 

influence of other descriptors (Friedman, 2001; Greenwell, 2017). PDPs are especially useful 

for visualising the relationships discovered by complex machine learning algorithms such as 

random forests (Greenwell, 2017). In particular, PDPs help visualise the relationship between 

one specific predictor and the response variable while accounting for the average effect of all 

other predictors in the model. 

 

We identified hotspots of wild bee α and ß taxonomic diversity and functional diversity using 

the predicted maps of the different diversity metrics. Specifically, we retained only those 

cells containing diversity values from the upper 10
th

 percentile of their distribution.  

  

3. Results 

3.1 Wild bee spatial diversity patterns in Switzerland 

We found countrywide patterns in wild bee taxonomic and functional diversity in Switzerland 

(Figs 1 & S13). Specifically, we found wild bee diversity metrics to be strongly structured 

along elevation gradients (Figs 1a–e & S1c–d), with taxonomic and functional α-diversity 

decreasing at higher elevations (> 2000 m a.s.l., Fig. S13a–e). Furthermore, community 

attributes showed high Pearson‟s correlations, not only between species richness and 
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Shannon diversity (r = 0.86, Fig. 2h), but also between species richness and functional 

richness (TOP, r = 0.83). While trait evenness (TED) generally declined with elevation, there 

was also a local maximum at ca. 1300 m a.s.l. (Fig. S13e). The predicted CWM of the eight 

selected traits also showed important shifts with increasing elevation (Figs S12 & S14). 

Specifically, high-elevation wild bee communities had a lower proportion of belowground-

nesting, cleptoparasitic and solitary bee species (Fig. S14a, b, f). Additionally, the proportion 

of short-tongued species (Fig. S14g) and the proportion of generalist species decreased (Fig. 

S14c), while body size increased (Fig. S14d). Taxonomic LCBD and functional LCBD, 

which provided an indication of the ecological uniqueness of the cells, were correlated (r = 

0.63) and negatively associated with α-diversity metrics, such as richness (r = -0.71), 

Shannon diversity (r = -0.83) and FDis (r = -0.80). We found that taxonomic and functional 

uniqueness increased with elevation, resulting in a negative correlation with taxonomic and 

functional richness, with the pattern being stronger for taxonomic than for functional LCBD 

(Fig. 1f–g). 

  

3.2 Drivers of wild bee diversity 

We assessed the importance of each predictor individually from the four categories 

considered, that is, climate, vegetation, land use and beekeeping. Climatic variables, 

represented by the first four axes of the climate PCA, were always among those explaining 

the highest proportion of variance for all responses, followed generally by vegetation, land-

use and beekeeping metrics (Figs 2 & S15). Concerning climate, temperature range (PCA4, 

Table S2) explained a large proportion of the variation in taxonomic and functional α-

diversity metrics (Fig. 2a–e), whereas temperature and precipitation gradients explained a 
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large part of the variation in the taxonomic and functional LCBD ß-diversity (Fig. 2f–g, 

Table S2) and in most CWMs, including the proportion of belowground-nesting, 

cleptoparasitic and solitary bee species, ITD, phenology duration, and tongue length (Fig. 

S15). Higher temperature values (lower PCA scores) enhanced wild bee taxonomic diversity 

and functional richness (TOP, Fig. 3 - climate PC1), but the patterns were less clear for the 

remaining α and ß functional diversity metrics (Fig. 3- climate PC1), as well as for the CWM 

of the studied traits (Fig. S16). Xeric conditions boosted species and functional richness and 

Shannon diversity, as well as functional LCBD ß-diversity (Fig. 3- climate PC2), particularly 

in the lowlands of southwestern (canton of Wallis) and southeastern (canton of Graubünden) 

Switzerland. Finally, wild bee diversity metrics generally decreased in areas with higher 

temperature ranges (Fig. 3, climate PC4). 

  

Wild bee diversity metrics and traits were structured along the three PCA axes depicting 

different gradients of vegetation change. First, changes in the plant communities based on 

their drought tolerance (PCA2, dry–wet, see also Table S3) influenced several wild bee 

diversity metrics. Increasingly drought-tolerant plant communities boosted wild bee species 

richness, functional richness (TOP), Shannon diversity and taxonomic ß-diversity, whereas 

functional evenness (TED) and dispersion (FDis) peaked at intermediate values. Furthermore, 

drylands had more solitary, small and belowground-nesting bees (Fig. S16). Second, changes 

from open vegetation to forest had a small effect on wild bee diversity metrics, with the 

exception of TED, which peaked at intermediate values. Finally, plant PCA2, representing 

plant communities in coniferous forest at mid-elevation (see Table S3) mostly affected TED 

and functional ß-diversity (Fig. 3). 
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Wild bee diversity metrics were influenced differently by the three types of land use 

considered (i.e. agricultural, forest, urban, Figs 2 & S15). Wild bee species and functional 

richness were lowest in landscapes covered ca. 50% by agricultural areas (Fig. 3). 

Landscapes containing higher proportions of agricultural land were associated with reduced 

TED (Fig. 3) and taxonomic LCBD ß-diversity, as well as shorter tongues and a lower 

proportion of belowground-nesting and solitary wild bee species (Fig. S16). Wild bee species 

and functional richness (TOP) increased with larger proportions of forest in the landscape 

(Fig. 3). Conversely, Shannon diversity, TED and FDis peaked in landscapes with 

intermediate levels of forest (Fig. 3). Furthermore, in landscapes increasingly dominated by 

forest, wild bee communities had higher proportions of belowground-nesting and solitary 

species, as well as longer tongues (Fig. S16). Finally, increasingly urbanised landscapes 

enhanced wild bee species and TOP, but reduced Shannon diversity, TED and FDis (Fig. 3). 

Strikingly, the local community contributions to functional ß-diversity (LCBD functional) 

increased when landscapes became more urbanised (Fig. 3) suggesting original combinations 

of traits, whereas taxonomic LCBD remained largely unaffected (Fig. 3). Furthermore, urban 

areas triggered changes in trait values. For instance, the proportion of belowground-nesting 

bees and feeding specialisation decreased as urban area increased, while the proportion of 

cleptoparasitic and solitary bees and the phenology duration increased (Fig. S16). 

  

Finally, beekeeping was the predictor explaining the lowest percentage of variance for all the 

responses modelled (Fig. 2), with some metrics being completely unaffected, such as FDis 

(Fig. 3) and phenology duration (Fig. S16). Nonetheless, species and functional richness and 
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Shannon diversity increased with increasing beekeeping and then stabilised at high values 

(Fig. 3). Interestingly, TED, taxonomic ß-diversity and feeding specialisation decreased with 

larger numbers of beehives in the landscape (Figs 3 & S16). 

  

3.3 Identification of hotspots 

Predicted species richness, Shannon diversity, TOP, FDis and TED were larger in urban areas 

than in forest and agricultural areas (Fig. S17a–e), whereas taxonomic and functional LCBD 

were lower in urban areas (Fig. S17f–g). Nonetheless, because agricultural areas include 

high-elevation alpine meadows, which are typically species poor, we also compared wild bee 

diversity at low (197–1000 m a.s.l., Fig. 4), mid (1000–2000 m a.s.l., Fig. S19) and high (> 

2000 m a.s.l., Fig. S20) elevations. At mid and high elevations, urban land use represents a 

very small proportion of the total land use (Figs S19–S20) and does not represent major 

settlements but other types of urban land use (see Text S6), which hampered comparisons. 

Further, at low elevations, we found that agricultural and urban areas have a similar species 

richness (Fig. 4 In addition, agricultural areas harbour larger Shannon diversity and 

functional dispersion (FDis) (Fig. 4), whereas urban areas have a higher wild bee species 

richness, TOP and TED. ß-diversity was also higher in urban areas (Fig. 4).  

  

3.4 Protected areas 

We assessed the representation of wild bee diversity facets and metrics in protected areas, 

considering different levels of protection. Protected areas followed elevation gradients. When 

considering protected areas sensu lato, we observed a clear positive elevational gradient (Fig. 
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5b), whereas protected areas sensu stricto had a unimodal distribution along elevation 

(peaking at intermediate elevations of 1000–2000 m a.s.l., Fig. 5d). 

 

The majority of  α- and ß-diversity hotspots (cells with the upper 10% diversity values) were 

predicted in un-protected areas (Figure 5, see also Figure S25). This was particularly 

prominent for α-diversity metrics (species richness, Shannon diversity, functional richness 

and dispersion), typically found in the lowlands, with more than 75% of the hotspots 

predicted in unprotected land (Fig 5). In the case of ß-diversity hotspots, the overlap with 

protected areas was substantially higher (Figure 5a & g). For instance, nearly 50% of the 

taxonomic LCBD hotspots, typically found in highlands, were predicted in protected land  

(Fig. 5g).  

 

The overlap between the hotspots of the different diversity facets of wild bee communities 

varied substantially depending on the degree of protection (Fig. 5). We found α-diversity 

hotspots to be better represented within the protected areas sensu stricto (Fig. 5c), with the 

proportion of protected cells containing the highest diversity metrics (e.g. 1-10% of the 

diversity gradient in Fig. 5c) larger than the national average (ca. 5.6 %). Conversely, ß-

diversity hotspots were better represented within the protected areas sensu lato (Fig. 5a). We 

further compared the representation of diversity hotspots between protected areas sensu lato 

and sensu stricto. Hotspots of α-functional metrics were equally distributed in protected areas 

sensu stricto (~49 %, Figure 5g) and protected areas sensu lato (Figure 5g). However, for the 

remaining metrics, diversity hotspots were always found in higher proportions within 
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protected areas sensu lato, specially for ß-diversity hotspots (Figure 5g). Finally, regarding 

the occurrences of the bee species in the community plots, seven species were only sampled 

in protected areas sensu stricto and nine species in protected areas sensu lato (Figure S25).  

  

4. Discussion 

Wild bee diversity metrics followed clear elevation gradients. Species richness, functional 

richness, Shannon diversity and functional divergence declined monotonically with elevation, 

taxonomic and functional ß-diversity increased with elevation, and functional evenness 

followed a hump-shaped relationship. Elevation gradients represent one of the most 

prominent ecological gradients, shifting species assemblages of plants (e.g. Pellissier et al., 

2010) and other taxonomic groups, such as grasshoppers (Pitteloud et al., 2021) and 

bumblebees (Sponsler et al., 2022). Elevation gradients select for specific phenotypes, which 

generates multiple patterns, including mid-elevation peaks (hump shapes), monotonic 

declines and unimodal distributions, depending on the group and context (Rahbek, 1995). In 

any case, the number of wild bee species is typically lower in the highlands of mountain 

slopes, as changes in climatic variables, as well as a shortened phenological season and 

reduced productivity and resource availability, constraint species persistence (Rahbek, 1995). 

  

Nonetheless, high-elevation communities tend to be ecologically unique, as they are 

composed of species that display specific adaptations to survive at high elevation, and 

consequently contribute disproportionately to large-scale taxonomic and functional ß-

diversity (e.g. invertebrates, Fontana et al., 2020; lichens, Nanda et al., 2021). In the case of 
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wild bee communities in temperate latitudes, high-elevation areas contain multiple wild bee 

species, including several high-elevation specialist bumblebee species, which have been 

studied in Switzerland (Pellissier et al., 2013). High-elevation bumblebees are highly 

sensitive to heat stress (Pellissier et al., 2013), which might extend to other high elevation 

bees. Hence, global warming threatens to trigger drastic declines of these taxa due to rising 

temperatures and, potentially, increased competition with migrating bees from lower 

elevation (Pradervand et al., 2014). Such a change has also been observed for plant 

communities (Vitasse et al., 2021) and herbivorous insects (e.g. grasshoppers, Descombes et 

al., 2021). 

  

In agreement with the xeric hypothesis (Michener, 1979), wild bee diversity thrived in warm, 

xeric areas such as dry grasslands. At a global scale, wild bee diversity has been found to be 

highest in these climatic regions (e.g. in Mediterranean-type regions, Orr et al., 2021). Here, 

we demonstrate that it also applies to much smaller spatial scales in the Alps. Xeric areas 

might recreate the conditions where the clade originated in Gondwana (Michener, 1979), and 

bees may therefore possess adaptations to such environments (Michener, 1979). Xeric areas 

tend to have large plant species pools and promote specialised interactions (Minckley et al., 

2000). In the Alps, dry grasslands are well-known biodiversity hotspots but are increasingly 

threatened by climate and land-use change (Boch et al., 2019a). 

  

We found urban and agricultural land-uses to promote distinct diversity metrics. Specifically, 

while Shannon diversity and functional dispersion were higher in increasingly urbanised 
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landscapes, species richness, functional richness and functional evenness were higher in 

increasingly agricultural landscapes. Furthermore, our results showed lower ß-diversity in 

cities than in forest and agricultural areas. This is in line with recent research showing that 

urban features (e.g. technological innovations, gardening techniques) tend to be similar 

among different cities (Alberti, 2015), thereby leading to a convergence and homogenisation 

in the selected phenotypes and species (Groffman et al., 2014). While cities can harbour 

diverse bee communities (Theodorou et al., 2020), they simultaneously exert a strong filter 

for certain traits (Fournier et al., 2020), and might even represent a subset of the species from 

agricultural areas (Banaszak-Cibicka & Żmihorski, 2020). 

  

We did not find clear evidence that beekeeping negatively influences bee diversity, even 

though Switzerland has one of the highest hive densities in Europe, with around 4 hives/km
2
 

in 2019 (Charriere et al., 2018). This might be due to the elevational structure of beekeeping, 

which is far more intense at low elevations where bee richness is also highest. Beekeeping 

might be located in areas with high resource availability. Our data could not incorporate the 

temporal and spatial variability in urban beekeeping, including the movement of hives uphill 

during the summer season. In any case, wild bee declines might be lagged and gradual, thus 

requiring temporal data, as observed in the Mediterranean Basin (Herrera, 2020). This is 

concerning, as beekeeping is changing fast in Switzerland. For instance, urban beekeeping 

doubled in Swiss cities between 2012 and 2018 (Casanelles-Abella & Moretti, 2022). 
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Our study comes with limitations. First, we did not model individual species occurrences but 

focused on community attributes. Although species distribution models (SDMs) provide 

species-specific responses to environmental gradients, they require a sufficient number of 

observations to be reliably applied (Guisan et al., 2013), which in our case would have 

excluded many rare species. Conversely, modelling community attributes makes full use of 

community data and helps to highlight general diversity trends. Nonetheless, wild bee SDMs 

are a necessary next step to further understand bee ecology and forecast changes in 

distribution ranges due to global change drivers (e.g. climate, land use), as has been done for 

a large number of taxa (Isaac et al., 2020). Second, we assessed resource availability 

gradients through vegetation patterns, as we could not use direct metrics of plant diversity or 

nectar/pollen productivity, both important drivers of bee diversity at different scales (Orr et 

al., 2021). Developing high-resolution countrywide maps of plant diversity and nectar/pollen 

productivity, including spontaneous and horticultural non-native plants, will be key to 

improving predictions of wild bee diversity and occurrence. Third, we did not explore wild 

bee phylogenetic metrics, which might have different patterns than functional and taxonomic 

diversities (Devictor et al., 2010), due to a lack of a comprehensive bee phylogeny (Hedtke et 

al., 2013). Fourth, we did not consider the extent of overlap among wild bee diversity, 

ecosystem functions (especially pollination), and nature contributions to people. Finally, we 

did not explore the spatial configuration and connectivity of protected areas, which might 

play a key role in bee biodiversity (Schüep & Hermann, 2011).  

 

Our results call for the implementation of multiple-faceted approaches to inform biodiversity 

conservation planning and strategies. The spatial mismatch in the distribution of the different 
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diversity facets and scales shows the necessity of considering multiple dimensions to study 

and protect biodiversity in all its complexity (Pollock et al., 2020). In that regard, protected 

areas sensu stricto and sensu lato provide complementary protection on different biodiversity 

dimensions. On the one hand, strictly protected areas, which have highly regulated 

anthropogenic intervention and that contain habitats with high plant richness (Delazare et al., 

2016), serve as highly valuable habitat for bee α-diversity. On the other hand, protected areas 

sensu lato, which are mostly located in higher elevations, also represent an important 

infrastructure to protect bee ecological uniqueness, although they experience more 

anthropogenic influence.  

 

Our study points out the role of unprotected land for wild bee conservation. Although α-

diversity hotspots were well-represented in strictly protected areas, these areas cover a small 

surface and some of them are under stress due to global change (Boch et al., 2019a). For 

instance, in Switzerland the habitat quality of dry grasslands is decreasing at an alarming rate 

(Boch et al., 2019a). Furthermore, protected areas sensu lato are often found in high 

elevation, areas that are expected to suffer substantially from changing temperatures. Among 

other, high elevation areas may have modified plant assemblages and be colonised by 

lowland species, which will likely negatively affect high elevation specialist bees 

(Pradervand et al., 2014). Therefore, the existing network of unprotected ecological 

infrastructure (different natural, seminatural and novel habitats) found within anthropogenic 

landscapes (e.g. agricultural areas, cities) or in seminatural habitats represents a key element 

for further safeguarding wild bee diversity, particularly if properly integrated and planned 

within the strictly protected areas. Unprotected areas of value for wild bee conservation 
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include a myriad of habitats, such as flower strips, urban gardens, and ruderal sites, and are 

often quite sensitive to global change drivers, such as land-use change, global warming and 

invasion. It will be important to quantify the specific contributions of this network of 

unprotected areas to wild bee diversity. 

 

The Post-2020 Global Biodiversity Framework draft stressed the importance of protected and 

conservation areas to mitigate ongoing biodiversity loss and set an ambitious goal of 

protecting 30% of all land by 2030 (Convention for Biological Diversity, 2020). Nonetheless, 

without an evaluation on performance of protected areas these actions may ultimately have a 

limited impact on reducing biodiversity declines. Protecting insect diversity is challenging, 

because the spatial distribution of insect multi-facet diversity remains elusive for many 

groups  (Chowdhury et al., 2022). In that regard, our study provides a practical case on the 

already stated importance of spatial predictive models to overcome the distributional gaps 

and contribute to informing the planning and evaluation of biodiversity conservation 

measures (Pollock et al., 2020). To achieve the global conservation goals, countrywide 

prioritisation of existing and future protected areas emerges as a major issue, due to the 

potential spatial mismatch among biodiversity facets and the uncertainty of the conservation 

value of some protected areas under future conditions. Solving these issues represents a 

pressing problem in the face of future global change. 
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Data Availability 

Data on the community metrics are available from ENVIDAT under the doi: 

https://doi.org/10.16904/envidat.337.  

The raw species records data are protected by a code of conduct common to all Swiss 

national data centres. Those data can be ordered via infospecies 

(https://www.infospecies.ch/fr/donnees/) according to this deontology. The dataset is also 

available on GBIF.org (https://doi.org/10.15468/ksfmzj) at a 5km grid squares, according to 

nationally agreed ethical framework. 

The bee trait database is managed and maintained by Stuart Roberts and enquiries and 

requests for data can be made to stuart.roberts@cantab.net. Trait data used in this paper will 

be made available in ENVIDAT once the full database from Stuart Roberts is published in 

Oracle for Research. 

Data on the swissTLMRegio protected areas are available from 

https://opendata.swiss/en/dataset/swisstlmregio-schutzgebiete.  

The DHM25 is available from 

https://www.swisstopo.admin.ch/en/geodata/height/dhm25.html#technische_details. Land-

use data for Switzerland can be obtained by request from the Federal Office of Statistics FOS 

(www.bfs.admin.ch). Plant data are available from infospecies 

(https://www.infospecies.ch/fr/donnees/) as well. Data on beekeeping in Switzerland can be 

obtained from the Cantonal Offices with a confidentiality agreement.
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Table 1. Wild bee traits used in this study. For each trait, we provide the name used in the article, the 

type of trait, the unit for numeric traits, the categories for categorical traits, and a description. See also 

Text S2 for details. 

Trait Name used Type Unit Categories Description 

Intertegular 

distance (ITD) 

  Numeric 

continuous 

mm   The distance across a 

bee's thorax between 

the base of the 

wings, which relate 

to body size and 

mobility 

Tongue length   Categorical   0: long tongue 

1: short tongue 

The community 

level of species that 

have short tongues. 

Indicates the 

diversity of floral 

morphologies, and 

consequently 

resources, a species 

can access 

Nesting 

behaviour 

Belowground Categorical   0:  

aboveground 

1: 

belowground 

The community 

level of species that 

nest below ground 

Cleptoparasite Cleptoparasit

e 

Categorical   0: non-

cleptoparasite 

1: 

cleptoparasite 

The community 

level of species that 

are cleptoparasites 

Sociality Solitary Categorical   0: primitive 

social, 

subsocial and 

eusocial 

The community 

level of species that 

are social. 
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1: solitary 

Phenology 

start 

  Numeric 

discrete 

Wee

k 

1–52 First week of a bee 

species‟ active 

period 

Phenology 

end 

  Numeric 

discrete 

Wee

k 

1–52 Last week of a bee 

species‟ active 

period 

Feeding 

specialisation  

  Categorical   0: monolectic 

and oligolectic 

1: polilectic 

The community 

level of species that 

are polylectic. 

Indicates the dietary 

breath. 

Figures 

 

Figure 1. Wild bee diversity in Switzerland. Maps of taxonomic α-diversity metrics: (a) 

species richness and (b) Shannon diversity. Maps of functional α-diversity metrics: (c) 

functional richness expressed as trait onion peeling (TOP), (d) functional evenness expressed 

as trait evenness distribution (TED), and (e) functional dispersion (FDis). Maps of the local 
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community contributions to (f) taxonomic and (g) functional ß-diversity (LCBD). The four 

values in all maps were obtained from the quantile values of 25%, 50% and 75% for each 

response separately, with yellow indicating higher values and dark purple indicating lower 

values. (h) Pearson correlation matrix (r) among the response variables, with red shades 

indicating positive correlations and blue indicating negative ones. Note that empty (white) 

regions within Switzerland correspond to water bodies (e.g. lakes, rivers). See Supplementary 

Material for maps of the community-weighted means of the considered traits (Fig. S12). 

 

 

Figure 2. Importance of environmental descriptors as predictors of the studied α and ß 

taxonomic and functional community attributes of wild bees in Switzerland. Predictors were 

classified into four main categories: climate, vegetation, land use and beekeeping. Variable 

importance was estimated using the residual sum of squares from random forests models 
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(Breiman, 2001). Longer bars indicate descriptors that are better predictors of community 

attributes. (a) Species richness; (b) Shannon diversity index; (c) trait onion peeling (TOP); (d) 

trait evenness distribution (TED); (e) functional dispersion (FDis); (f) local community 

contributions to taxonomic ß-diversity (LCBD taxonomic); (g) local community 

contributions to functional ß-diversity (LCBD functional). Note that all importance values 

were divided by the maximum value to obtain a comparable range from 0 to 1. Climate and 

vegetation variables represent the PCA axes (PCA 1–4 for climate and PCA 2–4 for 

vegetation, representing 17% of the variation; for details see Methods and Tables S3–S4). 

 

Figure 3. Predicted changes in α and ß taxonomic and functional metrics along multiple 

environmental gradients. The partial dependence plots summarise the marginal effect (i.e. the 
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effect of each specific variable when the others are kept constant) of the predictors 

representing climate (x-axis = PCA axis scores), vegetation (x-axis = PCA axis scores), land 

use (x-axis = proportion of each land-use type in a 2500 m radius) and beekeeping intensity 

(x-axis = number of honeybee hives within a 2500 m radius) on the predicted values of wild 

bee α and ß taxonomic and functional metrics. The y-axis displays the range of predicted 

values of each response variable: (a) species richness, (b) Shannon diversity index, functional 

richness (trait onion peeling TOP), (d) functional evenness (trait evenness distribution TED), 

(e) functional dispersion (FDis), (f) the local community contributions to the taxonomic ß-

diversity (LCBD taxonomic), and (g) the local community contributions to the functional ß-

diversity (LCBD functional). Fitted lines and the 95% confidence interval (depicted with 

shaded bands) were obtained from linear models. Climate and vegetation variables represent 

the PCA axes (PCA 1–4 for climate, PCA 2–4 for vegetation; for details see Methods and 

Tables S3–S4). Information on α and ß taxonomic and functional diversity metrics can be 

found in the methods. Partial dependence plots on the community-weighted means of the 

studied traits can be found in Fig. S16. 
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Figure 4. Flat violin plots and boxplots showing the differences in the α and ß taxonomic and 

functional metrics among the three main land-use types, agricultural, urban and forest, at low 

elevation (197–1000 m a.s.l.). Notches in the boxplots indicate the 95% confidence interval 

of the median. Flat violin plots were created using the raincloud package in R (Allen et al., 

2019). (a) Species richness, (b) Shannon diversity index, (c) functional richness (trait onion 

peeling TOP), (d) functional evenness (trait evenness distribution TED), (e) functional 

dispersion (FDis), (f) local community contributions to taxonomic ß-diversity (LCBD 

taxonomic), and (g) local community contributions to functional ß-diversity (LCBD 

functional). Note that to facilitate the comparison of the boxplots, the figure shows the data 
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between the 10th and the 90th percentiles. (h) Land-use composition (% cover) at low 

elevations. See Figs S18–S23 for additional plots of the α and ß taxonomic and functional 

diversity metrics and of the community-weighted means of the eight wild bee traits at low, 

mid and high elevation. 

 

 

Figure 5. Wild bee diversity and protected areas. Proportion of taxonomic and functional 

diversities included in (a) the protected areas sensu lato, which. including areas with variable 

management intensity and anthropogenic influence and lower protective measures than 

protected areas sensu stricto, and (c) protected areas sensu stricto, i.e.t protected areas that 

include only those with strict protection measures (see also Table S4). For each diversity 
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metric, we ranked each cell from the most to the least diverse using quantile values. The x-

axis (diversity gradient in percentage) depicts a decreasing diversity gradient inversely 

related to the quantiles of the diversity metrics, with lower x-axis values indicating the most 

diverse cells. The y-axis depicts the cumulative proportion of cells belonging to protected 

areas. The horizontal black line indicates the proportion of protected cells in all of 

Switzerland (protected areas sensu lato: ca. 21% of the surface; protected areas sensu stricto: 

ca. 5.6% of the surface). (a) and (c) are based on Devictor et al. (2010). Taxonomic α-

diversity metrics = species richness and Shannon diversity; functional α-diversity metrics = 

functional richness (trait onion peeling TOP), functional evenness (trait evenness distribution 

TED), and functional dispersion (FDis). Taxonomic ß-diversity metrics = local community 

contributions to taxonomic diversity (LCBD taxonomic); functional ß-diversity metrics = 

local community contributions to functional diversity (LCBD functional). Proportion of 

protected cells along an elevation gradient considering protected areas (b) sensu lato and (d) 

sensu stricto. The upper maps show the distribution of the protected areas in Switzerland (in 

grey). (e) Map of α taxonomic and α functional diversity hotspots and their overlap. Hotspot 

cells always contain the upper 10th percentile of the distribution of all α-diversity metrics. (f) 

Map of taxonomic and functional ß-diversity hotspots and their overlap. Hotspot cells always 

contain the upper 10th percentile of the distribution of all ß-diversity metrics. (g) Barplot 

showing the percentage of protected and unprotected cells that contain the upper 10th 

percentile of the distribution of all diversity metrics. Protected cells include both protected 

areas sensu stricto and sensu lato. (h) Within the protected cells in (g), barplot showing the 

percentage of strictly protected (i.e., sensu stricto) and broadly protected (i.e., sensu lato) 

cells containing the upper 10th percentile of the distribution of all diversity metrics.  


