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A B S T R A C T   

Food security and economic stability of many developing countries rely on the resilience of major crops to cli-
matic variability and climatic anomalies. Since climate change forecasts predict an increasing frequency and 
intensity of climatic disturbances, the need to increase our knowledge about the influence of climate variability 
on crop productivity is especially acute for areas with fragile environments such as the semi-arid and sub-humid 
Chaco in South America. We used climate records from recent decades and crop growth models to: (i) identify the 
main climatic variables that have influenced the productivity of soybean and maize which are major crops 
cultivated in the area and (ii) to assess the impact of inter-annual variability of climate variables on the pro-
ductivity of soybean and maize. Simulated soybean and maize grain yields indicated that farmers in Chaco 
should be aware of the high interannual variability in the productivity of these crops. Farmers face a different 
risk cropping maize and soybean depending on the location. The productivity of soybean was below production 
costs in 10–13% of the studied years while the corresponding values for maize were 11–14%. Diversification of 
crop rotations is therefore key to enhance resilience and to increase the likelihood of harnessing favorable 
growing conditions. Management strategies intended to conserve soil water are of paramount importance, 
especially for soybean where anomalies in the precipitation during the first four months after sowing was the 
predictor that explained the highest amount of variance in grain yield (r = 0.58). To mitigate the effect of 
temperature, which essentially is a factor out of direct control of the farmer, the main practice that arose from 
our study is delaying planting dates (e.g., towards late January) to avoid the occurrence of high temperatures 
during the critical stages of the crop.   

1. Introduction 

Many of the current agricultural lands were forests that were cleared 
out to cultivate crops in response to the increasing demand for plant- 
derived products (Dang et al., 2019). The demand for locally suitable 
management needs to be addressed because of the increasing pressure 
for plant products, particularly of areas that are overly sensitive to 
environmental degradation. If the increasing demand of plant products 
is not satisfied with increases in production, the expansion of agricul-
tural frontiers at the expense of natural environments may continue in 

the future. One of the biggest challenges in designing strategies is that 
such areas, by definition, lack a sufficient agricultural history to provide 
guidance about best practices adapted to local conditions. 

The Chaco region, which covers large areas of Argentina, Brazil, and 
Paraguay, registers one of the highest rates of deforestation in the world 
(Kuemmerle et al., 2017). Despite high deforestation rates, Chaco is still 
dominated by native forests (Marchesini et al., 2020). In terms of 
climate, it can be divided into two subregions: the Sub-humid Chaco 
which has a subtropical sub-humid climate with annual precipitations 
between 750 and 950 mm (1901–2011) and the Semiarid Chaco which 

Abbreviations: DAS, days after sowing; ΔMT1–4, average maximum temperature from January to April; ΔMTfilling, average maximum temperature during grain 
filling; ΔD3050–100, number of days with maximum temperatures above 30 ºC during the period 50 and 100 DAS; ΔD3550–100, number of days with maximum 
temperatures above 35 ºC during the period 50 and 100 DAS; ΔP12–4, precipitation anomaly from December to April; ΔWSs-h, water stress index from sowing to 
harvest; ΔQs-h, photothermal coefficient between sowing and harvest (ΔQs-h); ΔP/PET0–50, ratio between accumulated precipitation and potential evapotranspi-
ration between 0 and 50 DAS. 
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has a subtropical semi-arid climate with an average annual precipitation 
between 500 and 750 mm (1901–2011) (Naumann et al., 2004). Pre-
cipitations are concentrated in the summer season, and they present a 
great interannual variability in both subregions, but specially in the 
Semiarid Chaco. This regime allows rainfed farming with high risks of 
droughts and heat-stress (Ricard et al., 2015). Because the highest 
annual temperatures coincides with the rainy season, limitations to crop 
growth and productivity were mainly attributed to water deficits 
(Giménez et al., 2015; Pérez-Carrera et al., 2008). Agricultural devel-
opment and sustainability in the Chaco region is therefore conditioned 
by the precipitation and thermal regime and requires adequate planning 
and proper resource management (Gorleri, 2005). Although exploitable 
yield gaps in the Chaco region have been documented (Merlos et al., 
2015), improving crop productivity needs optimized management in 
relation to sites’ characteristics (Casali et al., 2018). For example, 
Cammarano et al. (2019) showed that in the Mediterranean basin the 
impact of future climate on barley productivity is negative but some 
locations will be less affected than others. 

Food security and economic stability of many developing countries 
such as those in the Chaco region depend on the resilience of major crops 
to climatic variability (Hansen et al., 2019; Kahiluoto et al., 2019). 
Whereas resilience represents the capacity of farming systems to main-
tain sufficient and nutritious food production in the face of environ-
mental perturbations (Bullock et al., 2017; Kahiluoto et al., 2019), 
climate variability is how the climate fluctuates above or below an 
average long-term value according to Dinse (2009). Resilience has 
emerged as a key tool for conceptualizing the vulnerability of farming 
systems to variations in the environmental conditions (Douxchamps 
et al., 2017). Metrics comprise production and nutritional diversity as 
well as socio-economic stability of food supply (Bullock et al., 2017). 
The study of crop responses to the local climatic variability makes it 
possible to anticipate the risks involved and to help design strategies to 
sustain high levels of resilience and productivity (Ray et al., 2015). 
Studies based on historical climate variability are helpful in detecting 
trends, determining interactions, quantifying impacts, and conceptual-
izing hypotheses (Burnham et al., 2011). This is essential because the 
management of crops needs to ensure that agricultural systems are 
sufficiently resilient to cope with the impacts of climate change. Water 
demand patterns of cultivated systems not necessarily follow the sea-
sonality and interannual variability of rainfall (Giménez et al., 2020). 
Past climate data may be particularly useful in areas without agricul-
tural history records since they can be coupled to agronomic simulation 
models to study the association between local climate variability and 
crop yield. Through this approach, grain yields can be estimated and 
management strategies compatible with local climatic conditions can be 
evaluated. This approach has already been used in areas with a long 
agricultural history (e.g., Bell and Fischer, 1994; Lal et al., 1999; Lobell 
et al., 2013, 2005). For example, Lobell et al. (2013) using APSIM and 46 
years of climate data from the Midwestern United States, found a 
negative and marked response in maize yield to temperatures above 
30 ◦C, and a relatively weak response to precipitation. Studies about the 
relationship between climate variability and crop yields usually con-
siders anomalies of climatic variables rather than raw data. Climate 
anomalies are mainly estimated using three approaches: (i) by 
comparing the annual value of the variable with the mean across all the 
available years [e.g., Burnham et al. [18]]; (ii) by comparing the annual 
value with the previous year [e.g., Ray et al. [17], Giménez et al. [19]]; 
or (iii) by comparing the annual value with the linear trend during the 
entire studied period [e.g. Burnham et al. [18]]. Most studies on the 
association between historical climate variability and agricultural pro-
ductivity focused on only one crop, probably because the main goal was 
to elucidate physiological mechanisms. However, the decision of which 
crops to grow and how to distribute the agricultural area among 
different crops that share the same growing season can have important 
consequences on the resilience of agricultural systems. 

Since the semi-arid and sub-humid Chaco regions have a short 

agricultural history (<10–15 years), there are no reliable datasets that 
capture the effects of climatic variability on crop yields. In this sense, 
simulation models are a valuable tool for understanding the adaptation 
of the main crop to the local environment (Battisti et al., 2017; Cam-
marano et al., 2020; Casali et al., 2021). Using this approach and climate 
records from recent decades, the objectives of this study were: (i) to 
identify the main climatic variables influencing the productivity of 
soybean and maize and (ii) to assess the impact of inter-annual vari-
ability in climate variables on the productivity of soybean and maize. 

2. Materials and methods 

2.1. Study area 

The study was conducted in two representative areas of the semi-arid 
and sub-humid Chaco Region: Quimili (27◦38’S, 62◦25’W) and Las 
Breñas (27◦04′S, 61◦04′W), respectively. This region exhibits one of the 
highest rates of deforestation in the world (Kuemmerle et al., 2017). The 
cleared areas are mainly cultivated with maize and soybean (Dominguez 
and Rubio, 2019). 

2.2. Crop modeling 

The models CERES-Maize and CROPGRO-Soybean, which are part of 
DSSAT v4.5 (Hoogenboom et al., 2010), were used to assess the effect of 
climatic variables on maize and soybean grain yields. Both models were 
calibrated previously for the study area with the maize hybrid DK747 
and the soybean genotype A8000 (Casali et al., 2021). Crop manage-
ment parameters were parametrized according to the most frequently 
practices used by local farmers. These were sowing date 31st of 
December, distance between rows 52 cm and plant densities 245,000 
and 60,000 plants ha− 1 for soybean and maize, respectively. Each 
simulation started at the harvest date of the preceding crop, approxi-
mately six months before the sowing date of the target crop. Crop resi-
dues were not incorporated into the soil, assuming no-till practices, 
which is the usual soil-preparation method in the study area. The initial 
soil water content was set to 60% of the soil water storage capacity. 

Soil data were obtained from the SigSE database (Angueira et al., 
2007). The most representative soil profile for each location was used in 
the simulations: August 7 soil series (Entic Haplustol) for Quimili and 
Tizón series (Oxic Haplustol) for Las Breñas (Table 1). 

Daily climatic data (i.e., maximum and minimum temperature, solar 
radiation, and precipitation) from weather stations of INTA (National 
Agricultural Technology Institute) were used for Las Breñas while pre-
cipitation for Quimili was provided by the “Sociedad Rural” (i.e. an 
association of farmers) and maximum and minimum temperature and 
solar radiation were retrieved from NASA-POWER (https://power.larc. 
nasa.gov/data-access-viewer/). We used all available climatic records: 
1994–2014 (21 y) for Quimili and 1967–2014 (48 y) for Las Breñas to 
maximize the likelihood of detecting anomalies. To minimize the sour-
ces of variation and to focus on the identification of climatic effects on 
crop productivity, all simulations were carried out using the same soil 
initial conditions and management practices. Thus, the only parameter 
that changed from year to year were the climatic conditions. For the 
same reason, simulations were carried out without nutritional limita-
tions, including nitrogen. 

2.3. Mixed models 

We tested to which extent variations in climate conditions 
(maximum and minimum temperatures, precipitation, and solar radia-
tion) and extreme events translate into anomalies in the grain yield of 
soybean and maize. The anomalies of simulated grain yields and climatic 
indices were estimated as deviations from an overall trend. Yearly values 
of climatic indices were estimated for a time period corresponding to the 
growing season of the crops, according to the following formula: 
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Δxi =
xi

μ (1)  

where ΔXi is the anomaly of the variable x for the year i, xi is the mean 
value for the growing season for the year i, and μ is the overall mean for 
all the years with available climatic records. For the overall trend, we 
used 21 years of data from Quimili and 48 years of data from Las Breñas. 

Linear mixed models were used to define the models that best 
described the relationship between the anomalies in the simulated grain 
yield and the anomalies in the climatic indices. These models have the 
advantage that can be used with unbalanced data and can cope well with 
missing observations (Smith et al., 2005). Although the goal was to fit a 
parsimonious multivariate model to the data, we began by developing 
simple models for each group of similar climatic variables. This was 
done to get more detailed insights on the characteristics and severity of 
limitations imposed by each type of climatic variable. The groups were: 

a. Temperature and evapotranspiration. Maximum and minimum tem-
perature (ºC) were considered for different periods between January 
and April, and during different phenological phases. In soybean the 
phases were five: VE-R1, R1-R5, R5-R7, E-R7 and planting to harvest. 
In maize, the phases were six: VE-V6, V6 to floral induction, floral 
induction to R1 (i.e., anthesis), R1 to beginning of grain filling, grain 
filling and planting to harvest. Evapotranspiration (mm) was esti-
mated according to the Hargreaves’ approach (Hargreaves and 
Samani, 1985) for four periods (0–50, 0–150, 50–100 and 100–150 
days after sowing; DAS). Here and also for the other groups, the 
rationale of using months, crop growth stages, and DAS (i.e., three 
different temporal scales) was to minimize the risk of missing critical 
information about the constraints because of mismatches between 
temporal scales and climatic events. In total, 27 variables for soybean 
and 29 variables for maize were calculated for this group of 
parameters.  

b. Solar radiation (MJ m− 2). It was estimated for the same periods 
described above. In addition, a photothermal ratio was calculated as 
the ratio between solar radiation and the average temperature above 
the base temperature (i.e., in soybean 6 ºC and in maize 8 ºC). In 
total, 10 variables for soybean and 12 for maize were calculated for 
this group.  

c. Heat stress. Several indices were generated based on the days and the 
degree-days (ºC) above six thresholds temperatures (20, 25, 30, 35, 
40, and 45 ºC) for four periods of the crop cycle (0–50, 0–150, 
50–100, and 100–150 DAS). In total, 48 variables for both maize and 
soybean were calculated for this group.  

d. Water availability and water stress index. Accumulated precipitation 
(mm) in different periods between December and April, and during 
different phases defined by the phenological stages of the crop were 
considered in the simulations. In addition to simpler direct mea-
surements, agro-climatic indices were estimated as the ratio between 
evapotranspiration according to Hargreaves (mm) and accumulated 
precipitation (mm) in four periods (0–50, 50–100, 100–150 and 
0–150, DAS). We additionally considered a water stress index 
included in DSSAT. This index takes into account the ratio of crop’s 
water uptake and transpiration potential (Ritchie, 1998). Therefore, 
it can quantify stress conditions not only based on water availability 

but also accounting for crop’s water demand. We calculated this for 
different periods between December and April, and for different 
phases defined by the phenological stages of the crops. In total, 34 
variables for soybean and 37 variables for maize were calculated for 
this group. 

The anomalies from these environmental variables were calculated 
to identify the most explanatory variables within each of the five groups, 
Pearson’s correlation coefficients between the anomalies of the simu-
lated crop yields and the anomalies of the environmental variables were 
evaluated. Once the main explanatory variables of yield within each 
group were determined, mixed models were fitted. The mixed models 
were of the type:  

Grain yield anomaly=μ+climatic predictor anomaly+year+e                 (2) 

where μ is the average grain yield anomaly, climatic predictor anomaly 
is the anomaly of the climatic variable, year is the effect of year, and e is 
a residual comprising variation unexplained by the previous compo-
nents. The predictor anomaly was set as a fixed effect factor while the 
year was set as a random factor. The most informative climatic pre-
dictors within each group of similar variables were evaluated to identify 
a parsimonious multiple constraint model for each crop. In the group 
solar radiation for soybean, none of the variables showed significant 
correlation with crop yields. Therefore, we run the multiple constraint 
models without a predictor from the solar radiation group. The structure 
of these models was the same as that of simple models but considering 
more than one predictor. In this case, the climatic predictor was set as a 
fixed effect factor while the year was set as a random factor. 

The lme4 package (Bates et al., 2015) of the R software (R Devel-
opment Core Team, 2019) was used to analyze the mixed effects of the 
relationships between anomalies in soybean and maize grain yield and 
climatic predictors. We followed an established protocol (Zuur et al., 
2010) to check for (i) outliers, (ii) homogeneity of variance, (iii) normal 
distribution, (iv) independence, and (v) type of relationship between the 
candidate predictor and the response variable. To verify the assumption 
of homoscedasticity, the graphs of standardized residuals were visually 
inspected for each of the predictive variables. To verify the assumption 
of normality, qq-plots were inspected to compare the distribution of the 
residuals of the model (which was assumed to be normal) with the 
theoretical normal distribution. Possible spatial trends were also 
controlled by evaluating the homogeneity of variances between the two 
sites that we considered (Quimili and Las Breñas). 

The temporal correlation between the residues was evaluated with 
the auto-correlation function (ACF). Multicollinearity between pre-
dictors in multivariate models was assessed with VIF (Variance Inflation 
Factor) from the R package “car” (Fox and Weisberg, 2018) and 
following the criterion that VIF values less than 10, rules out multi-
collinearity problems. To select predictors for the final model, we fol-
lowed the top-down strategy of model selection and multi-model 
inference (Burnham et al., 2011). The multi-model inference approach 
does not rely on the assumption that there is a unique “true model” but 
rather that several plausible hypotheses in the form of models can be 
examined simultaneously to identify one that better summarize which 
“effects” (represented by predictors) can be supported by the available 
data. Selection of model predictors was based on the AIC (Akaike 

Table 1 
Analytical data of the two soil profiles used in the simulations.   

Quimili: Entic Haplustol “7 de Agosto” series Las Breñas: Oxic Haplustol “Tizón” series 

Horizon Ap IIAC IIC1 IIC2 Ap12 A Bw1 Bw2 C Ck1 Ck2 

Depth (cm) 0–15 15–47 47–77 77–200 0–19 19–34 34–51 51–81 81–123 123–144 144–200 
Clay (%) 15 7 9 9 31.5 35.6 36.1 33.7 29.3 27.5 22.4 
Sand (%) 31 52 48 46 21.6 16.2 17.7 24.4 18.5 17.7 18.6 
Organic C (%) 1.32 0.58 0.32 0.32 1.25 0.59 0.27 0.12 – – – 
Total N (%) 0.13 0.09 0.05 0.04 0.13 0.01 – – – – –  
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Information Criterion) criteria (Burnham et al., 2011). Goodness of fit of 
mixed models was assessed with the R2 of adjusted models (Nakagawa 
and Schielzeth, 2013). According to this approach, the marginal R2 

represents the variance explained by fixed factors, while conditional R2 

represents the variance explained by the entire model (fixed and random 
effects). 

3. Results 

3.1. Climatic characterization 

During the 1995–2015 growing season of summer crops (January- 
April) in Quimili, the mean ± standard error maximum and minimum 
temperatures were 30.8 ± 1.3 ºC and 19.7 ± 1.2 ºC, respectively. These 
values were rather similar in Las Breñas for 1968–2015, 31.1 ± 1.3 ºC 
and 19.3 ± 0.9 ºC, respectively (Fig. 1). Solar radiation during the crop 
cycle averaged 19.4 ± 1.1 MJ m − 2 in both locations, whereas average 
precipitation during the crop cycle was lower in Quimili 
(430.9 ± 143.4 mm) than in Las Breñas (519.9 ± 168.5 mm). 

3.2. Soybean 

Average simulated soybean grain yields for Quimili and Las Breñas 
during the study periods were 2519 and 2476 kg ha− 1, respectively 
(Fig. 2). Within the temperature group, the average maximum temper-
ature from January to April (ΔMT1–4) was identified as the best pre-
dictor of soybean yield anomalies (r = 0.48) (Fig. 3). This period covers 
almost entirely the crop cycle from sowing to physiological maturity. In 
the years in which the ΔMT1–4 was 3 ºC above the average maximum 
temperature of 31ºC for that period, the simulated soybean yield was 
600 kg ha− 1 lower than the average of the whole studied period (Fig. 3). 

In terms of the variables related to heat stress, correlations indicated 
that the number of days with more than 35ºC during the period 50–100 
DAS (ΔD3550–100), which coincides with the phenological phases R4 - 
R6, was the best predictor of soybean yield anomalies (r = 0.62). The 
simulated grain yield of soybean was consistently below average when 
ΔD3550–100 was greater than 2.5, what means that the number of days 
during the period between 50 and 100 DAS with maximum temperatures 
above 35 ºC was higher than 20 (Fig. 3). The ΔD3550–100 index showed a 
greater association with the grain yield than the same heat stress index 
calculated for other periods of the crop cycle. None of the variables 
related to solar radiation was significantly associated with anomalies in 
the grain yield of soybean as already mentioned in materials and 
methods. 

Among the variables related to water availability, the precipitation 
anomaly from December to April (ΔP12–4) (Fig. 3) was the predictor that 
explained the highest amount of variance in the simulated yield anom-
alies (r = 0.58). An asymptotic model fitted the data better than a linear 
one (data not shown), probably because responses to precipitation 
diminished after reaching a certain threshold (Fig. 3). The threshold 
values beyond which further increases in precipitation no longer resul-
ted in increases in soybean grain yield were 562 mm in Quimili and 
639 mm in Las Breñas. These thresholds corresponded approximately to 
the average of accumulated precipitation between December and April. 

Among the different periods for which the DSSAT’s water stress 
index was estimated, the index for the entire crop cycle showed the 
higher association (r = 0.92) with the simulated yield anomaly of soy-
bean. Values lower or higher than 0.05 (the average of DSSAT’s water 
stress index in all studied years) were generally associated with grain 
yields above or below, respectively, the average grain yield for the 
whole dataset. The water stress index estimated for shorter periods of 
the crop cycle showed a lower but still significant correlation with the 
simulated yield anomaly (i.e., r = 0.87 in R5-R7 and r = 0.72 in R1-R5). 
The DSSAT water stress index was mainly influenced by three climatic 
variables: the amount of precipitation from December to April (R2 

=0.42), the average maximum temperature between January and April 

(R2 = 0.39), and the number of days with a maximum temperature 
higher than 35 ºC between 50 and 100 DAS (R2 = 0.40) (Fig. 4). When 
the slopes of the three relationships were compared, the higher slope 
was found for the average maximum temperature between January and 
April (slope = 0.0383). The slopes of the relationships between water 
stress index and precipitation and between water stress index and heat 
stress, were considerably lower (− 0.0003 and 0.0078, respectively). 

The predictors with the highest explanatory power for each group of 
variables were considered together in multivariate models (Table 2) that 
allowed the identification of the most influential factors affecting soy-
bean grain yields. Among the models that were considered (Table 2), 
model 1 showed the higher overall fit. This model included variables 
previously identified within the groups for temperature and evapo-
transpiration, heat stress and water stress index: ΔMT1–4, ΔD3550–100 
and ΔWSs-h. These variables showed additive relationships between 
them (Table 2). No variables from the solar radiation and water avail-
ability groups were retained by this model. Model 2 included the same 
three variables plus the variable ΔP12–4. When ΔWSs-h was removed 
from the model (model 5 in Table 2), the AIC value increased dramati-
cally (from − 135 to − 32), whereas removing ΔMT1–4 and ΔD3550–100 
had a lower impact on AIC (from − 135 to − 123). These results indicate 
that ΔWSs-h was the variable with the highest association with soybean 
yield, followed by the variables ΔMT1–4 and ΔD3550–100. 

3.3. Maize 

Simulated maize yields during the 1994–2014 period in Quimili and 
1967–2014 in Las Breñas averaged 7026 and 7314 kg ha− 1, respectively 
(Fig. 2). Among the variables of the temperature group, the maximum 
temperature during grain filling (ΔMTfilling) showed the highest corre-
lation with the simulated maize yield anomaly (r = 0.74) (Fig. 5) fol-
lowed by the average maximum temperature between sowing and 
harvest (r = 0.67). In the years in which the MTfilling was above the 
average of 31ºC, the simulated maize yield was 1792 kg ha− 1 lower than 
the average of the whole studied period (Fig. 5). 

Among the evaluated variables within the heat stress group, the 
number of days with maximum temperatures above 30ºC between 50 
and 100 DAS (ΔD3050–100) had the highest correlation (r = 0.6) with 
maize grain yield anomalies. As expected, the greater the ΔD3050–100 
anomaly, the lower the anomaly value in the simulated grain yield of 
maize (Fig. 5). When ΔD3050–100 exceeded the average number of days 
with maximum temperatures above 30ºC for the evaluated period at 
each site (24 and 29 days in Quimili and Las Breñas, respectively), maize 
grain yields were lower than the average grain yield in 93% of the 
studied years while in 7% of the years yields they were higher than the 
long-term average. In those years when ΔD3050–100 was 50% above the 
average for each site, maize yield was reduced by more than half 
compared to the long-term average. Maximum temperatures during 
other periods of the crop cycle (i.e., 0–50, 0–150, and 100–150 DAS) and 
other temperature thresholds (range tested: 20–45 ◦C) showed lower 
correlation values with maize grain yields. Among the solar radiation 
group, the photothermal coefficient between sowing and harvest (ΔQs-h) 
was the best predictor of the anomalies in the grain yield of maize. 

Variables from the water availability group had lower correlation 
values with the grain yield anomalies of maize than those from the 
temperature, heat stress, and solar radiation groups (Fig. 5). Within the 
water availability group, the predictor that explained the highest 
amount of variance in the grain yield anomalies of maize was ΔP/ 
PET0–50 (ratio between accumulated precipitation and potential 
evapotranspiration between 0 and 50 DAS) (r = 0.37) which averaged 
0.51 in Quimili (ΔP0–50 = 227 mm and ΔPET0–50 = 440 mm), and 0.58 
in Las Breñas (ΔP0–50 = 261 mm and ΔPET0–50 = 445 mm). On the other 
hand, none of the variables related to the water stress index showed a 
significant association with the simulated maize yield. 

When evaluating multivariate models, the most parsimonious model 
(i.e., model 1in Table 3) included the four predictors that were identified 
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Fig. 1. From top to bottom: average maximum temperature, minimum temperature, solar radiation and accumulated precipitation during the crop cycle (January- 
April) in Quimili between 1995 and 2015 (left) and in Las Breñas between 1968 and 2015 (right). The dotted line indicates the average values in each case. 
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within each group of variables. Similarly, to soybean, the predictors had 
additive effects while interactions between them did not significantly 
increase the explanatory power. The relative ranking of these variables 
was determined according to the AIC values of each model after 
removing the target variable from the complete model. The variable 
with the highest predictive power was ΔMT during grain filling 
(ΔMTfilling), whose removal increased AIC by 23.2 units. It was followed 
by ΔQs-h and ΔP/PET0–50, whose removal increased AIC by 14.6 and 6.5, 
respectively. The heat stress variable (ΔD3050–100) was relatively less 
relevant since its removal led to an increase of only 2.2 AIC units. 

4. Discussion 

4.1. Impacts on soybean and maize grain yield 

As expected, there were both coincidences and divergences in the 
influence of climatic variables on yield anomalies between soybean and 
maize. One of the main coincidences was that their yields were influ-
enced in a higher extent by the maximum temperature rather than by 
average temperatures. This effect was observed through both the 
average daily maximum temperatures and the number of days with 
temperatures above certain thresholds, whose timing and values showed 
some variation between both species. In the case of soybean, the average 
daily maximum temperatures during the entire crop cycle (ΔTM1–4) 
showed a closer association with yield (r = 0.5) than the same param-
eter considered within shorter periods. Maximum temperatures 
emerged as a robust predictor of soybean yields on its own since none of 
the variables related to solar radiation was significantly associated with 
soybean yield anomalies. Similarly, Bhatia et al. (2008) found a weak 
association between solar radiation during the crop cycle and the 
simulated grain yields of soybean under limited water supply conditions. 

In the case of maize and in agreement with previous field experiments 
(e.g., Badu-Apraku et al., 1983; Peters et al., 1971), the maximum 
sensitivity to the average daily maximum temperatures was observed 
during the grain-filling period (ΔMTfilling r = 0.74). Higher average 
maximum temperatures resulted in a shorter crop cycle (Fig. 6). A 
shorter crop cycle implies that crops intercept less solar radiation, fix 
less carbon, spend less time during grain filling (as observed in our 
simulations) and ultimately attain less grain yields. Unlike what was 
observed for soybean, radiation appeared as a major factor explaining 
grain yield anomalies in maize as indicated by the impact of the pho-
tothermal quotient in the multivariate summary model (Table 3). 

Another coincidence between both species was that, among the 
group of heat stress variables, the highest correlation with yield anom-
alies was the number of days with maximum temperatures above spe-
cific thresholds during the same period: 50–100 DAS. However, the 
temperature threshold that showed the highest correlation was higher in 
soybean than in maize (35 vs 30 ºC), what suggests a higher tolerance of 
soybean to heat stress. In the case of soybean, the period of maximum 
sensitivity to high temperatures coincided with the phenological stages 
R4-R6 and the observed temperature threshold is in line with Gibson and 
Mullen (1996), who found that soybean yields decrease dramatically 
with diurnal temperatures above 35ºC from flowering to the beginning 
of grain filling. The effects of high temperatures on soybean yields have 
been attributed to their impacts on the rate of photosynthesis and 
respiration (Andrade and Satorre, 2015; Jones et al., 2003; Lal et al., 
1999). Regarding maize, the period of maximum sensitivity to high 
temperatures occurred during the flowering period, which was reported 
as the most sensitive period to several types of stress (e.g., thermal, 
hydric, and light) in determining the number of grains and ultimately 
the grain yield of maize (Ceglar et al., 2016; Grant et al., 1989; Kiniry 
and Ritchie, 1985; Schoper et al., 1987). In the specific case of heat 

Fig. 2. Yield simulated by CROPGRO-Soybean and CERES-Maize models for soybean (top) and maize (bottom) respectively, in Quimili (left) and Las Breñas (right). 
The average is indicated with a dotted line. 
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stress, Rattalino Edreira and Otegui (2012) found more severe effects on 
the grain yield of maize when it occurred around flowering than during 
grain filling. The maximum temperature threshold for heat stress of 
30 ◦C, identified in our maize simulations, agree with Lobell et al. 

(2013), Schlenker and Roberts (2009), and Lobell et al. (2011). 
Among the water stress parameters, the best predictors for soybean 

and maize yields were those directly influenced by temperature, which 
highlights the critical contribution of this factor. In the case of soybean, 

a) b)

c) d)

Fig. 3. Anomaly of soybean yield simulated by CROPGRO-Soybean as a function of a) anomaly of maximum temperature between January and April; b) anomaly of 
days with maximum temperature above 35ºC between days 50 and 100 after planting; c) anomaly of accumulated precipitation between December and April; and d) 
anomaly of water stress between planting and harvest. The anomaly is represented as a straight line of the linear regression between both variables and the cor-
responding R2 value. The squares indicate the values corresponding to Las Breñas, while the circles those of Quimili. Triangles indicate the zeros, which were not 
considered in the regression analysis. The correlation was highly significant (p < 0.001). Dotted lines indicate the anomaly with value 1. The anomaly was calculated 
in relation to the mean values corresponding to 21 and 48 years of data in Quimili and Las Breñas, respectively. Example: a value of 1 on the x-axis indicates that in 
that year the maximum temperature coincided with the historical average and a value of 1.1 indicates that it was 10% higher. 

Fig. 4. Water stress between planting and harvest simulated by CROPGRO-Soybean as a function of accumulated precipitation from December to April (left), 
maximum temperature from January to April (center) and days with maximum temperature above 35ºC between days 50 and 100 after planting (right). The squares 
indicate the values corresponding to Las Breñas, while the circles to those to Quimili. The lines of the linear regressions between the variables and the corresponding 
slopes are presented. The three correlations were highly significant (p < 0.001). 
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the DSSAT water stress index (ΔEHs-h), which considers precipitations, 
water uptake and plant transpiration (tightly regulated by temperature), 
showed the highest correlation (r = 0.70–0.92) with yield anomalies. 
The greater impact of precipitation was observed during the period from 
December (i.e., one month before sowing) to April (ΔP12–4). This in-
dicates that besides water availability during the critical period, as 
previously observed by Giménez et al. (2015) in the Chaco region, water 
stored in the soil before sowing and water availability during the whole 

crop cycle were also important determinants of the effects of precipi-
tation anomalies on soybean productivity. Regarding maize, a ratio 
combining precipitation and evapotranspiration at the early growth 
stages of maize (0 and 50 DAS; ΔP/PET0–50) was the best 
water-associated predictor of the anomalies in the grain yield of maize, 
outperforming the DSSAT water stress index. This indicates that the 
effects of the low precipitation levels on maize yield were regulated by 
the atmospheric demand. When the ratio was greater than 0.5, maize 

Table 2 
General structure of some of the linear mixed models considered to predict the anomaly in the grain yield of soybean simulated by the CROPGRO-Soybean model at a 
locality of the Semi-Arid Chaco (Quimili) and a locality of the Subhumid Chaco (Las Breñas) for 1994–2014 and 1967–2014, respectively. The models differ in the 
predictors included and in the relationships between the predictors (additive or interactive). They are ordered from best to worst goodness of fit according to the 
Akaike information criterion (AIC).  

Removed variables Models AIC Weigth marg. R2 cond. R2 

1. Δpp12–4 ΔSim Yieldi = ΔMT1–4 + ΔD3550–100 + ΔWSp-h+ (Year)i + ϵi  -135.1  0.264  0.89  0.93 
2. None ΔSim Yieldi = ΔMT1–4 + ΔD3550–100 + Δpp12–4 + ΔWSp-h+ (Year)i + ϵi  -133.1  0.097  0.89  0.93 
3. ΔD3550–100 ΔSim Yieldi = ΔMT1–4 + Δpp12–4 + ΔWSp-h+ (Year)i + ϵi  -125.7  0.002  0.88  0.93 
4. ΔMT1–4 ΔSim Yieldi = ΔD3550–100 + Δpp12–4 + ΔWSp-h+ (Year)i + ϵi  -123.7  < 0.001  0.87  0.94 
5. ΔWSp-h ΔSim Yieldi = ΔMT1–4 + ΔD3550–100 + Δpp12–4 + (Year)i + ϵi  -32.0  < 0.001  0.51  0.69 

ΔSim Yield: anomaly of soybean yield simulated by CROPGRO-Soybean; ΔMT1-4: anomaly of maximum temperature between January and April; ΔD3550-100: 
anomaly of the number of days with maximum temperature above 35ºC between days 50 and 100 after planting; Δpp12-4: anomaly of accumulated rainfall between 
December and April; ΔWSp-h: anomaly of water stress between planting and harvest; amd ϵi: error. The anomalies were calculated in relation to the average values 
corresponding to 21 and 48 years of data in Quimili and Las Breñas, respectively. 

a) b)

c) d)

Fig. 5. Anomaly of maize grain yield simulated by CERES-Maize as a function of a) anomaly of the maximum temperature during grain filling phase; b) anomaly of 
the photothermal quotient (Q) between planting and harvest; c) anomaly of the number of days with maximum temperature above 30 ◦C between days 50 and 100 
after planting; d) anomaly of the relation between accumulated rainfall and accumulated evapotranspiration according to Hargreaves between days 0 and 50 from 
planting. The line of the linear regression between both variables and the corresponding R2 value is presented. The squares indicate the values corresponding to Las 
Breñas, while the circles those of Quimili. The correlation was highly significant (p < 0.005). Dotted lines indicate the anomaly with value 1. The anomaly was 
calculated in relation to the mean values corresponding to 21 and 48 years of data in Quimili and Las Breñas, respectively. 
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yields were above average in all years, except in two years. It is also 
noteworthy that whereas the best water availability predictor for maize 
was linked to a restricted period of the crop cycle (i.e., 0–50 days), for 
soybean the best predictor was an index that covered from one month 
before sowing to physiological maturity. This suggest that in maize the 
major impact of drought was through effects on germination, estab-
lishment, and plant density whereas drought at later stages had a lower 
influence on yield anomalies. The differences between soybean and 
maize may be explained by differences in rooting depth (Fernandez and 
Rubio, 2015). 

Finally, the multivariate models that summarized the major climatic 
parameters retained most predictors identified within each group of 
variables. For soybean, the most parsimonious model indicated that 
ΔTM1–4, ΔD3550–100 and the DSSAT’s water stress index measured 
throughout the crop cycle (ΔEHs-h) were the most relevant predictors of 
yield anomalies (Table 2). In the case of maize, the parameters of the 
multivariate models with the highest predictive power were the 
maximum temperatures during grain filling (ΔMTfilling), followed by the 
photothermal quotient (ΔQs-h) and ΔP/PET0–50. 

4.2. Future implications 

A note of caution should be observed in relation to the results of this 
study. Following the proposed objective of identifying the main climatic 
variables influencing maize and soybean yields in the region, the only 
source of variation of our simulations were the climatic parameters. The 

crop sanitary and nutritional conditions were maintained constant and 
assumed to be at the optimum level. Therefore, the representativity of 
the results would be maximal without severe sanitary issues under a 
recommended nutrient management and would be reduced as sanitary 
and nutritional conditions differ significantly from them. Several man-
agements strategies aimed to mitigate the negative climatic effects on 
crop grain yields can be envisaged from our study. Simulated soybean 
and maize grain yield across 69 campaigns were 2497 and 
7170 kg ha− 1, respectively. This indicates that both crops are suitable 
for the climatic conditions of the semi-arid and sub-humid Chaco. 
However, local farmers should be aware of the high interannual vari-
ability in grain yields that stem from the intrinsic climatic variability. 
Our results indicated that they should expect fluctuating economic re-
sults, however with a prevalence of positive economic outcomes. In such 
sense, Fig. 2 data allows to estimate the economic outcomes based on 
production costs expressed in kg of grain. For example, if a production 
cost of 1800 kg of soybean is assumed, negative results (yields lower 
than production costs) occurred in 10% and 13% of the studied years in 
Quimili and Las Breñas, respectively. For maize, assuming a production 
cost equivalent to a grain yield of 5000 kg ha− 1 is assumed, negative 
economic outcomes were observed in 14% and 11% of the years in 
Quimili and Las Breñas, respectively. Therefore, farmers in the area 
assume a lower risk by cropping soybean than maize in Quimili and 
maize rather than soybean in Las Breñas. Given the different sensitivity 
of soybean and maize to climatic variables, having only one crop on the 
farm should be avoided to reduce the risk of serious crop failures 

Table 3 
General structure of some of the linear mixed models considered to predict the anomaly in the grain yield of maize simulated by the CERES-Maize model in a locality of 
the Semi-Arid Chaco (Quimili) and a locality of the Subhumid Chaco (Las Breñas) for 1994–2014 and 1967–2014, respectively. The models differ in the predictors 
included and in the relationships between the predictors (additive or interactive). They are ordered from best to worst goodness of fit according to the Akaike In-
formation Criterion (AIC).  

Removed variables Models AIC Weigth marg. R2 cond. R2 

1. None ΔSim Yieldi = ΔMTfilling+ ΔD3050–100 + Δpp/etp0–50 + ΔQs-c+ (Year)i + ϵi  -103.6  0.139  0.64  0.92 
2. ΔD3050–100 ΔSim Yieldi = ΔMTfilling + Δpp/etp0–50 + ΔQs-c+ (Year)i + ϵi  -101.4  0.048  0.61  0.91 
3. Δpp/etp0–50 ΔSim Yieldi = ΔMTllenado+ ΔD3050–100 + ΔQs-c+ (Year)i + ϵi  -97.1  0.006  0.59  0.90 
4. Δpp/etp0–50 and ΔD3050–100 ΔSim Yieldi = ΔMTllenado+ ΔQs-c+ (Year)i + ϵi  -95.2  0.002  0.57  0.89 
5. ΔQs-c ΔSim Yieldi = ΔMTllenado+ ΔD3050–100 + Δpp/etp0–50 + (Year)i + ϵi  -89.0  < 0.001  0.59  0.88 
6. ΔMTfilling ΔSim Yieldi = ΔD3050–100 + Δpp/etp0–50 + ΔQs-c+ (Year)i + ϵi  -80.4  < 0.001  0.48  0.86 
7. ΔQP-H and ΔMTfilling ΔSim Yieldi = Δpp/etp0–50 + ΔD3050–100 + (Year)i + ϵi  -61.5  < 0.001  0.38  0.75 

ΔSim yield: anomaly of maize grain yield simulated by CERES-Maize; ΔMT filling: anomaly of maximum temperature during grain filling; ΔD3050-100: anomaly of the 
number of days with maximum temperature above 30ºC between days 50 and 100 after planting; Δpp/etp0-50: anomaly of the relation between accumulated pre-
cipitation and accumulated evapotranspiration according to Hargreaves between days 0 and 50 after planting; ΔQp-h: anomaly of the photothermal quotient between 
planting and harvest; and ϵi error. The anomalies were calculated in relation to the average values corresponding to 21 and 48 years of data in Quimili and Las Breñas, 
respectively. 

Fig. 6. Anomaly of the days between planting and harvest of maize, simulated by the CERES-Maize model, as a function of the anomaly of the maximum temperature 
during the grain filling phase (right); and anomaly of the maize yield simulated by CERES-Maize, as a function of the anomaly of the days between planting and 
harvest (left). The lines of the linear regression between the variables and the corresponding R2 values are presented. The squares indicate the values corresponding 
to Las Breñas, while the circles indicate those of Quimili. Both correlations were highly significant (p < 0.001). The anomaly was calculated in relation to the mean 
values corresponding to 21 and 48 years of data in Quimili and Las Breñas, respectively. 
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affecting the whole operation. In this regard, crop diversification ap-
pears to be the key to improving agrosystem resilience and to increase 
the probability of harnessing favorable growing conditions, as observed 
for other regions (e.g. Gaudin et al., 2015). The proportion of each crop 
should be determined according to both a general scheme valid in the 
long term and to information gathered in the specific campaign. For 
example, the proportion of soybean could be increased in those years 
with relative higher soil water contents before sowing. 

Obtained results are in line with a recent work in the same study site 
that showed that both crops markedly differ in their response to climatic 
change projected for the near (2015–2039) and the far (2075–2099) 
future (Casali et al., 2021). Significant reductions in maize yields in 
future climate scenarios (5–42% compared to the baseline 1986–2010) 
were more associated with increased temperatures that shortened the 
crop cycle than with water stress. In contrast, projected temperature 
increases are expected to play a secondary role in determining soybean 
yields and water stress will continue to be an important constraint to 
soybean yield in the context of global warming (Casali et al., 2021). 
Several reports suggest that the interannual climate variability in the 
Chaco Region is strongly influenced by ENSO (El Niño-Southern Oscil-
lation) (Magrin et al., 2007; Patiño and Vicentini, 2007; Tiedemann, 
2011), whose intensity and frequency is expected to increase by global 
climate change (Cleland et al., 2007). In addition, a higher incidence of 
diseases in maize crops have been reported during El Niño periods 
(Torres, 2001). Therefore, future trials in the area should consider the 
need to acquire biotic stress data which is currently unavailable. Ceglar 
et al. (2016) found remarkable spatial differences in the contribution of 
different meteorological drivers to crop yield variability and in the 
timing of the maximum impact; the exact timing of critical periods for 
grain yield determination in maize and the most influential variables 
were highly variable across France. Similarly, the results of this study for 
the Chaco region show that it is necessary to perform local studies, as the 
present one, to identify constraints to crop productivity and suitable 
strategies for the adaptation of local agricultural systems. 

Management strategies intended to conserve soil water are of critical 
relevance in this region as indicated by the role of water-related vari-
ables on simulated grain yields, especially soybean. Available strategies 
that help reduce evaporation rates and ultimately increase soil water 
conservation include no-tillage, optimized fertilization, rotations with 
crops that leave large amounts of residues, and efficient weed control. 
Supplementary irrigation arises as alternative options for increasing 
water availability, especially for soybean. On the other hand, the iden-
tification of the periods of greater sensitivity to climatic parameters 
obtained in our simulations provide a guide to adjust crop management 
strategies. For example, the high relevance of the soil water content at 
sowing time suggests that practices that minimize soil water consump-
tion before sowing soybean can be helpful. For instance, previous crops 
should be terminated at least one month before sowing soybean. To 
mitigate the effect of high temperatures, which is essentially a factor 
beyond the direct control of the farmer, the main practice that emerges 
from our simulations is to delay sowing dates (e.g., to late January) to 
avoid heat stress during critical stages of the crop [57]. 

In terms of plant breeding, new crop varieties should have genetic 
profiles that alleviate losses from the multiple environmental constraints 
that are encountered during the crop lifecycle. At least three breeding 
goals for the local climate conditions emerged from our simulations: (i) 
maize genotypes with longer grain-filling periods may confer advan-
tages to cope with high temperatures; (ii) genotypes with greater water 
use efficiency; (iii) improved photosynthetic traits in maize since the 
photothermal quotient was retained in the models summarizing the 
main drivers in grain yield anomalies. The integration of mechanistic 
understanding, genetic variation, and genome-scale breeding will be 
essential to achieve these goals. Using crop models to elucidate mech-
anistic responses and to design crop ideotypes is an important step to 
raise genetic yield potential in a target environment. Crop ideotypes 
optimized for local climate could provide plant breeders with a road 

map for selection of the target traits and their optimal combinations for 
crop improvement and genetic adaptation. 
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Semiárido y Chaco Serrano, de Santiago del Estero, Argentina. Ecol. Apl. 10 (2), 
51–59. 

Torres, R., 2001. Towards a socially sustainable world economy: An analysis of the social 
pillars of globalization. 

Zuur, A.F., Ieno, E.N., Elphick, C.S., 2010. A protocol for data exploration to avoid 
common statistical problems. Methods Ecol. Evol. 1 (1), 3–14. 

L. Casali et al.                                                                                                                                                                                                                                   

http://refhub.elsevier.com/S1161-0301(22)00011-9/sbref17
http://refhub.elsevier.com/S1161-0301(22)00011-9/sbref17
http://refhub.elsevier.com/S1161-0301(22)00011-9/sbref17
http://refhub.elsevier.com/S1161-0301(22)00011-9/sbref18
http://refhub.elsevier.com/S1161-0301(22)00011-9/sbref18
http://refhub.elsevier.com/S1161-0301(22)00011-9/sbref18
http://refhub.elsevier.com/S1161-0301(22)00011-9/sbref19
http://refhub.elsevier.com/S1161-0301(22)00011-9/sbref19
http://refhub.elsevier.com/S1161-0301(22)00011-9/sbref19
http://refhub.elsevier.com/S1161-0301(22)00011-9/sbref20
http://refhub.elsevier.com/S1161-0301(22)00011-9/sbref21
http://refhub.elsevier.com/S1161-0301(22)00011-9/sbref21
http://refhub.elsevier.com/S1161-0301(22)00011-9/sbref21
http://refhub.elsevier.com/S1161-0301(22)00011-9/sbref22
http://refhub.elsevier.com/S1161-0301(22)00011-9/sbref22
http://refhub.elsevier.com/S1161-0301(22)00011-9/sbref23
http://refhub.elsevier.com/S1161-0301(22)00011-9/sbref23
http://refhub.elsevier.com/S1161-0301(22)00011-9/sbref23
http://refhub.elsevier.com/S1161-0301(22)00011-9/sbref24
http://refhub.elsevier.com/S1161-0301(22)00011-9/sbref24
http://refhub.elsevier.com/S1161-0301(22)00011-9/sbref24
http://refhub.elsevier.com/S1161-0301(22)00011-9/sbref24
http://refhub.elsevier.com/S1161-0301(22)00011-9/sbref25
http://refhub.elsevier.com/S1161-0301(22)00011-9/sbref25
http://refhub.elsevier.com/S1161-0301(22)00011-9/sbref26
http://refhub.elsevier.com/S1161-0301(22)00011-9/sbref26
http://refhub.elsevier.com/S1161-0301(22)00011-9/sbref27
http://refhub.elsevier.com/S1161-0301(22)00011-9/sbref27
http://refhub.elsevier.com/S1161-0301(22)00011-9/sbref27
http://refhub.elsevier.com/S1161-0301(22)00011-9/sbref28
http://refhub.elsevier.com/S1161-0301(22)00011-9/sbref28
http://refhub.elsevier.com/S1161-0301(22)00011-9/sbref29
http://refhub.elsevier.com/S1161-0301(22)00011-9/sbref29
http://refhub.elsevier.com/S1161-0301(22)00011-9/sbref29
http://refhub.elsevier.com/S1161-0301(22)00011-9/sbref30
http://refhub.elsevier.com/S1161-0301(22)00011-9/sbref30
http://refhub.elsevier.com/S1161-0301(22)00011-9/sbref30
http://refhub.elsevier.com/S1161-0301(22)00011-9/sbref31
http://refhub.elsevier.com/S1161-0301(22)00011-9/sbref31
http://refhub.elsevier.com/S1161-0301(22)00011-9/sbref31
http://refhub.elsevier.com/S1161-0301(22)00011-9/sbref31
http://refhub.elsevier.com/S1161-0301(22)00011-9/sbref31
http://refhub.elsevier.com/S1161-0301(22)00011-9/sbref32
http://refhub.elsevier.com/S1161-0301(22)00011-9/sbref32
http://refhub.elsevier.com/S1161-0301(22)00011-9/sbref33
http://refhub.elsevier.com/S1161-0301(22)00011-9/sbref33
http://refhub.elsevier.com/S1161-0301(22)00011-9/sbref33
http://refhub.elsevier.com/S1161-0301(22)00011-9/sbref34
http://refhub.elsevier.com/S1161-0301(22)00011-9/sbref34
http://refhub.elsevier.com/S1161-0301(22)00011-9/sbref34
http://refhub.elsevier.com/S1161-0301(22)00011-9/sbref35
http://refhub.elsevier.com/S1161-0301(22)00011-9/sbref35
http://refhub.elsevier.com/S1161-0301(22)00011-9/sbref35
http://refhub.elsevier.com/S1161-0301(22)00011-9/sbref36
http://refhub.elsevier.com/S1161-0301(22)00011-9/sbref36
http://refhub.elsevier.com/S1161-0301(22)00011-9/sbref37
http://refhub.elsevier.com/S1161-0301(22)00011-9/sbref37
http://refhub.elsevier.com/S1161-0301(22)00011-9/sbref37
http://refhub.elsevier.com/S1161-0301(22)00011-9/sbref38
http://refhub.elsevier.com/S1161-0301(22)00011-9/sbref38
http://refhub.elsevier.com/S1161-0301(22)00011-9/sbref38
http://refhub.elsevier.com/S1161-0301(22)00011-9/sbref39
http://refhub.elsevier.com/S1161-0301(22)00011-9/sbref39
http://refhub.elsevier.com/S1161-0301(22)00011-9/sbref39
http://refhub.elsevier.com/S1161-0301(22)00011-9/sbref40
http://refhub.elsevier.com/S1161-0301(22)00011-9/sbref40
http://refhub.elsevier.com/S1161-0301(22)00011-9/sbref41
http://refhub.elsevier.com/S1161-0301(22)00011-9/sbref41
http://refhub.elsevier.com/S1161-0301(22)00011-9/sbref41
http://refhub.elsevier.com/S1161-0301(22)00011-9/sbref42
http://refhub.elsevier.com/S1161-0301(22)00011-9/sbref42
http://refhub.elsevier.com/S1161-0301(22)00011-9/sbref42
http://refhub.elsevier.com/S1161-0301(22)00011-9/sbref43
http://refhub.elsevier.com/S1161-0301(22)00011-9/sbref43
http://refhub.elsevier.com/S1161-0301(22)00011-9/sbref44
http://refhub.elsevier.com/S1161-0301(22)00011-9/sbref44
http://refhub.elsevier.com/S1161-0301(22)00011-9/sbref45
http://refhub.elsevier.com/S1161-0301(22)00011-9/sbref45
http://refhub.elsevier.com/S1161-0301(22)00011-9/sbref46
http://refhub.elsevier.com/S1161-0301(22)00011-9/sbref46
http://refhub.elsevier.com/S1161-0301(22)00011-9/sbref46
http://refhub.elsevier.com/S1161-0301(22)00011-9/sbref47
http://refhub.elsevier.com/S1161-0301(22)00011-9/sbref47
http://refhub.elsevier.com/S1161-0301(22)00011-9/sbref47
http://refhub.elsevier.com/S1161-0301(22)00011-9/sbref48
http://refhub.elsevier.com/S1161-0301(22)00011-9/sbref48
http://refhub.elsevier.com/S1161-0301(22)00011-9/sbref48
http://refhub.elsevier.com/S1161-0301(22)00011-9/sbref49
http://refhub.elsevier.com/S1161-0301(22)00011-9/sbref49
http://refhub.elsevier.com/S1161-0301(22)00011-9/sbref49
http://refhub.elsevier.com/S1161-0301(22)00011-9/sbref50
http://refhub.elsevier.com/S1161-0301(22)00011-9/sbref50
http://refhub.elsevier.com/S1161-0301(22)00011-9/sbref50
http://refhub.elsevier.com/S1161-0301(22)00011-9/sbref51
http://refhub.elsevier.com/S1161-0301(22)00011-9/sbref51
http://refhub.elsevier.com/S1161-0301(22)00011-9/sbref51
http://refhub.elsevier.com/S1161-0301(22)00011-9/sbref52
http://refhub.elsevier.com/S1161-0301(22)00011-9/sbref52

	Resilient soybean and maize production under a varying climate in the semi-arid and sub-humid Chaco
	1 Introduction
	2 Materials and methods
	2.1 Study area
	2.2 Crop modeling
	2.3 Mixed models

	3 Results
	3.1 Climatic characterization
	3.2 Soybean
	3.3 Maize

	4 Discussion
	4.1 Impacts on soybean and maize grain yield
	4.2 Future implications

	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgments
	References


