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Introduction

Farmers seek optimal combinations based on genotypes and agronomic man-
agement that can consistently deliver outputs close to the potential of their
on-farm environments, while minimizing the risk of uneconomical outcomes.
An improved understanding of the environmental context for attainable crop
performance can enhance on-farm resource use efficiency. Genotype (G) perfor-
mance often varies across environments (E), leading to variance differences and
rank changes among genotypes (Crossa et al., 2004). Environmental information
can be applied to identify appropriate groupings of the environments sampled
in multi-environment trials (METs) and to quantify their relationships to the
target production environment and to assist interpretations of plant responses
to the environments, G×E interactions.

The fact that crop performance is strongly influenced by the environment,
made researchers consider weather variables to better explain (Heslot et al.,
2014) or predict (Jarqúın et al., 2014) genotypic performance. Prediction of the
genotypic value of a candidate genotype in a specific environment is especially
desirable for unobserved environments, i.e. environments for which genotypic
data do not exist. However, many important environmental parameters that
are required for the interpretation of experimental results and the outcomes of
prediction models are not captured routinely in METs.

The objectives of this study were to i) to determine critical points for the
development of an approach to recommend wheat genotypes registered in a
national catalog to farmers, ii) identify suitable predictors for the environmental
dimension of G×E interactions and ways that they can be captured routinely
in multi-environment trials (METs).

Materials and methods

The datasets used in this study to train and validate a model to predict geno-
typic performance came from three wheat (Triticum aestivum) varieties trial
networks (referred to as W40, W42, and W43, hereafter) designed to evaluate
genotypes in the context of different production strategies. The experimental
sites were distributed across the wheat main production area of Switzerland.
Field trials within each site and year were arranged as lattice designs with three
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replications (i.e. there were three plots with the same genotype at each site).
The genotypes included released varieties, advanced lines, lines evaluated for
registration in Switzerland and lines that were bred in Europe and registered or
submitted for registration in Switzerland. These genotypes changed throughout
the duration of the study, except for a core group of six (W40), five (W42), and
four (W43) genotypes.

To estimate environmental limiting factors we used an approach that deter-
mines how suitable is a site for wheat cropping (Holzkämper et al. 2014). Six
climatic factors (minimum temperature, average temperature, maximum tem-
perature, average photothermal quotient, water availability, and period length)
represent major crop limitations in each of four phenological phases. The four
phenological phases considered to estimate the limiting factors were: i) planting
to 3-leaf stage; ii) 3-leaf stage to double ridge; iii) double ridge to anthesis; and
iv) anthesis to physiological maturity.

We use ridge regression (RR)-BLUP (Endelman, 2011) to account for the
high-dimensional nature of environmental effects on the grain yield:

y = u1 + We + ε,

where y is a y is a vector of predicted/adjusted grain yields of a variety, u is the
population mean, 1 is a vector of ones, e is a vector of environmental limiting
factors that is distributed as N(0, σ2

eK) where K is the kernel similarity matrix,
W is the matrix that relates e to the adjusted grain yield, and ε is a vector of
residual errors. The model was fitted by maximizing the restricted log-likelihood
and using the exponential option, among the possible kernels.

Cross-validation was done by considering the prediction of the performance
of genotypes in environments that were not included for model-building which
is also referred as leave-one-site-out validation (Saint Pierre et al., 2016). Pre-
diction accuracy of the RR-BLUP models was assessed by computing Pearson’s
correlation (r) between models’ prediction and observed values.

Results
Table 1 shows average Pearson correlation coefficients and standard errors be-
tween observed and predicted grain yields according to a leave-one-site-out cross-
validation scheme. Averaged across all sites and genotypes in W40, the adjusted
coefficient of determination (R2) and RMSE were 0.18 and 14.80, respectively.
Corresponding values in W42 were 0.12 and 13.02. In W43, R2 and RMSE were
0.12 and 11.54. The results demonstrated a satisfactory level of accuracy (av-
erage r=0.45) for grain yield predictions within W40. Levels of accuracy were
lower for the other varieties trial networks W42 (r=0.27) and W43 (r=0.34).
When the prediction accuracies resulting from the cross-validation were consid-
ered in terms of genotypes within W40 (Table 2), correlation coefficients ranged
from 0.32 (CH Camedo) to 0.62 (Zinal) in W40.

Although the level of accuracy depends on the used dataset, the average
prediction accuracies (r=0.45 for W40, r=0.27 for W42, and r=0.34) we ob-
tained with a leave-one-site-out cross-validation scheme are within the range of
the results reported in recent studies using the same cross-validation scheme;
r=0.53 (Lopez-Cruz et al., 2015), r=0.51(Jarq́ın et al., 2014), r=0.30 (Heslot et
al., 2014), and r=0.21-0.52 (Saint Pierre et al., 2016). Although, higher predic-
tion accuracies would be desirable, such approaches materialize the opportunity
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Table 1: Average correlations (r) and standard error of the mean (SE) between
observed and predicted values according to a leave-one-site-out validation. Pre-
diction of grain yield were obtained using data from all other sites and excluding
that for the site for which correlations are presented.

Site W40 W42 W43
r SE r SE r SE

Assens 0.52 0.14 ni ni
Changins 0.27 0.19 0.23 0.28 0.28 0.21
Ellighausen 0.60 0.12 ni ni
Grangeneuve 0.53 0.13 0.21 0.28 0.32 0.29
Liebegg ni 0.12 0.34 0.10 0.25
Lindau 0.75 0.09 0.51 0.15 0.86 0.06
Moudon 0.74 0.07 0.33 0.19 0.80 0.07
Neuhausen ni 0.28 0.28 0.06 0.27
Portalban 0.09 0.22 ni ni
Riedholz ni 0.29 0.28 -0.03 0.27
Sulzkünten 0.66 0.10 ni ni
Vouvry 0.01 0.24 ni ni
Zollikofen 0.34 0.18 0.20 0.22 0.37 0.19
ni=genotype not included in the network.

Table 2: Average correlations (r) and standard error of the mean (SE) between
observed and predicted values according to a leave-one-site-out validation pre-
sented according to genotypes.

Genotype W40 W42 W43
r SE r SE r SE

Cambrena 0.53 0.11 0.26 0.18 ni
CH Camedo 0.32 0.15 0.31 0.17 0.58 0.25
Forel 0.50 0.01 0.13 0.20 0.10 0.20
Levis 0.41 0.13 0.14 0.20 0.13 0.20
Montalto 0.56 0.11 ni ni
Zinal 0.62 0.09 0.22 0.18 0.11 0.20
ni=genotype not included in the network.

to deliver recommendations with a quantitative basis. The way environmental
variables are defined in genotype prediction models is not trivial in for envi-
ronmental classification. More details about the latter will be given in the
presentation.
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