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A B S T R A C T   

Achieving food security through intensive agricultural practices on low fertility soils is challenging as crop pro-
ductivity is increasingly curtailed by the loss of soil structural stability and rapid depletion of soil organic carbon 
(SOC). As such, the conversion from traditional mono-cropping to legume-cereal intercropping, especially with 
integrated fertilization, may increase crop yields with the least ecological footprint. We set up a 2-year field 
experiment in a split-plot design with cowpea-maize monoculture and intercropping under different organ-
ic–inorganic fertilization regimes, including no fertilization (control), organic input only (compost), chemical input 
only (NPK), and multi-nutrient enriched compost (NPKEC). We observed that intercropped maize had a signifi-
cantly higher biomass yield compared to the corresponding monoculture when fertilized with NPKEC fertilizer. 
However, cowpea biomass yield differences between monoculture and intercropped plots were comparable under 
all fertilization regimes. In contrast, the grain yield advantage of both maize and cowpea was significantly enhanced 
under the intercropping system compared to monoculture, with NPKEC showing the most significant effect among 
all fertilization regimes. When comparing the relative contribution of the fertilization regime to SOC, the NPKEC 
fertilizer provided the highest SOC-sequestration (0.30 Mg C/ha yr− 1). At the same time, the effect of the cropping 
system on C-sequestration showed that intercropping provided the highest C-sequestration (0.17 Mg C/ha yr− 1) 
compared to monocultures of both crops. Although compost application significantly increased mineral associated 
(MAOC) and particulate associated organic carbon (PAOC) concentrations compared to unfertilized control plots, 
NPKEC fertilization with intercropping system was the most effective combination causing the greatest increase of 
both soil C pools over time. Based on redundancy analysis (RDA), the positive association of MAOC and PAOC with 
C-sequestration suggests the importance of both organic fractions as primary C reservoirs conducting SOC storage. 
Importantly, although compost alone in association with intercropping had a lower C-sequestration, it was asso-
ciated to a better soil structure as confirmed by its positive relationship with macro-and micro-aggregation, water 
stable aggregates (WSA), and mean weight diameter (MDA). Overall, our results indicate the importance of 
restoring soil structure in degraded soils through appropriate land management solutions, such as stoichiometri-
cally balanced fertilization practices (NPKEC) and crop diversification (intercropping), in order to achieve sig-
nificant gains in SOC storage and, ultimately, improve crop productivity.  

Abbreviations: SOC, Soil organic carbon; NPK, Chemical input; NPKEC, Multi nutrient enriched compost; MAOC, Mineral associated organic carbon; PAOC, 
Particulate associated organic carbon; RDA, Redundancy analysis; WSA, Water stable aggregates; MM, Maize monoculture; CC, Cowpea monoculture; MC, Maize- 
cowpea intercropping; SSP, Single super phosphate; BD, Bulk density; MWD, Mean weight diameter; Mic_agg_F, Micro aggregate fraction; Mac_agg_F, Macro 
aggregate fraction; SOC_S, Soil organic carbon stocks; C-seq, Carbon sequestration. 
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1. Introduction 

Globally, the agricultural system is facing a sustainability crisis to 
meet the rising food demand of 9 billion people by 2050 (van Dijk et al., 
2021). From now on, crop yields will need to increase by more than 70 % 
to address this looming food security challenge (Hunter et al., 2017; 
Putelat et al., 2021). Indeed, agricultural intensification (i.e., mono- 
cropping and excessive chemical inputs) can lead to land degradation, 
a decline in freshwater resources, and frequent disease outbreaks, 
resulting in unstable crop yields (Jang et al., 2021). For this reason, the 
application of sustainable agricultural practices can serve as an effective 
tool for sustainable land management while ensuring higher crop pro-
ductivity on regular basis. 

Soil organic carbon (SOC) is of paramount importance for achieving 
and maintaining high crop productivity (Bünemann et al., 2018), as SOC 
is central to the maintenance of several physical, chemical, and bio-
logical functions of soils (Page et al., 2020). Indeed, rapid depletion of 
SOC could result in poor crop productivity due to its close association 
with soil fertility (Yadav et al., 2018; Sharma et al., 2021). As such, 
increasing and/or maintaining SOC content in agricultural soils should 
be a top priority, as this can greatly contribute to achieving several 
important sustainable development goals, including resilience to 
climate change and food security (Rumpel et al., 2020). Soil can be an 
important sink of atmospheric CO2; however, the potential of agricul-
tural soils to store more C, better known as C sequestration, depends 
primarily on farming practices, nutrient inputs, and climatic conditions 
(Waqas et al., 2020; Gross and Glaser, 2021). So far, the use of unsus-
tainable agricultural practices has led to significant depletion of SOC 
(25–75 %) worldwide (Lal, 2013), which would otherwise have 
contributed to soil fertility and productivity (Liang et al., 2021) and 
positively impacted various ecosystem services (Bossio et al., 2020). 
Globally, arable soils can accumulate 0.25–1.0 Mg C/ha yr− 1 (Lal, 
2018), if appropriate land use management practices are adopted (Alam 
et al., 2019). 

Soil structural stability is a crucial indicator of soil quality due to its 
significant role in water and nutrient retention as well as in C storage 
(Chen et al., 2021). In this context, soil aggregation is one of the major 
components of soil structure as it provides SOC physical protection from 
decomposition (Ozlu and Arriaga, 2021). According to the traditional 
model of aggregate formation, the provision of C substrate ensures ad-
hesive strength for silt and clay particles that form micro-aggregates 
(Zhou et al., 2016), whereas the formation of macroaggregates from 
microaggregates is primarily facilitated by various metabolites of plant 
and microbial origin (Baumert et al., 2018). In recent years, intensive 
mono-cropping coupled with mechanical interventions has led to the 
deterioration of soil structure, which could reduce the stability of ag-
gregates, resulting in poor soil fertility and restricting the normal growth 
of crops (Zhang et al., 2020). 

In semi-arid regions, frequent soil structural disturbances and rapid 
SOC depletion combined with poor fertility have led to widespread 
degradation of agricultural land (Prăvălie et al., 2021). In most cases, 
the use of mineral fertilizers is the best strategy to improve nutrient 
availability in these low fertility soils, although this is often at the 
expense of low nutrient use efficiency by crops and soil structure 
degradation, further leading to poor soil quality (Buvaneshwari et al., 
2020; Xu et al., 2020). In addition, the irregular distribution of rainfall 
and frequent droughts pose another major challenge by exacerbating the 
impact of declining SOC content on crop productivity. Indeed, it is 
important to note that the type of fertilizer and cropping systems have 
been shown to influence both the degree of soil aggregation and the fate 
of C stability in agroecosystems (Wan et al., 2020; Jin et al., 2021). 
Hence, it is imperative to find a suitable crop rotation as well as an 
effective fertilization regime that favor higher aggregate stability, SOC 
accrual, and better nutrient supply, which ultimately has a positive 
impact on crop yields. 

The quest for higher crop yields and better soil quality brings 

intercropping, i.e., the simultaneous cultivation of two or more crops in 
a mixed sequence, back into contention in order to improve food sup-
plies, human health, and environmental quality (Tilman, 2020). On 
average, intercropping can produce about 15–25 % more food on a given 
surface of cropland area compared to mono-cropping (Vandermeer, 
2011). Among the major cereals, maize (Zea mays L.) is the most 
commonly intercropped staple food crop in the world, especially in 
cropping systems with limited external inputs and extensive land frag-
mentation (Lopez-Ridaura et al., 2021). Integrating legumes with ce-
reals as intercrops can be an important component of ecological 
intensification to promote sustainable agricultural development, as their 
interspecific facilitation leads to better resource utilization and higher 
yield stability than monocropping (Xu et al., 2022; Zhang et al., 2022). 
Grain legumes are the most popular intercrops in the Indus-Ganges re-
gion, mainly to ensure food security and provide a better source of in-
come for smallholder farmers. Cowpea (Vigna unguiculata L.), also 
known as an orphan legume, is one of the most neglected minor crops in 
global cropping systems due to its limited use and supply constraints 
(Cullis and Kunert, 2017). Despite its enormous potential as a multi-
purpose crop to meet dietary protein and livestock feed needs, it has so 
far received little attention from researchers and industry. Above all, 
cowpea is better suited to nutrient-poor soils and thrives well under 
harsh climatic conditions than most legume crops (Horn and Shimelis, 
2020; Kumar and Bhalothia, 2020). Indeed, this supports the fact that 
cowpea can be a vital component of legume-cereal intercropping in 
semi-arid regions, where achieving higher crop productivity with soil 
conservation measures is key to future food security scenarios. 

Nevertheless, such production gains in an intercropping system may 
be limited if intensive fertilization and agronomic practices continue 
(Brooker et al., 2015). Therefore, the choice of fertilization must also be 
carefully considered, especially in semi-arid regions, where low organic 
matter together with low fertility is one of the main obstacles to optimal 
crop production. In this context, the integration of organic–inorganic 
material, such as compost with mineral fertilizers, can be an effective 
means not only for improving the availability of yield-limiting nutrients, 
but also for using a value-added amendment to improve soil structure 
and C storage. Previous studies have found a positive effect of organic 
fertilization on soil structure stability and SOC content, suggesting its 
importance in improving SOC stocks and stability while neutralizing 
both the land degradation and CO2 emissions challenges (Zhang et al., 
2020; Liu et al., 2021). However, the impact of different organ-
ic–inorganic fertilization practices on soil C pools, aggregate stability, 
SOC sequestration, and crop yield in intercropping systems is yet to be 
fully clarified. 

To this goal, we conducted a short-term (2-year) intercropping trial 
of a cowpea-maize combination under different compost-based, organ-
ic–inorganic fertilization practices in order to replace historical mono-
cultures in a degraded semi-arid agroecosystem. Our main objectives 
were:  

1) To assess the impact of different fertilization regimes in combination 
with cropping system on crop yield, SOC-sequestration and SOC pool 
distribution (i.e., PAOC and MAOC) on a degraded semi-arid soil  

2) To disentangle the relevance of improved soil structural stability and 
SOC sequestration for higher crop productivity under different 
fertilization regimes and cropping systems 

2. Materials and methods 

2.1. Study site 

A two-year- field experiment with farmers’ participation was con-
ducted in the Faisalabad district (31̊33′ N, 73̊ 07′ E) in the Punjab 
province of Pakistan during the 2015–16 and 2016–17 cropping seasons. 
The study site, a sandy clay loam soil (Haplic Cambisol), has been 
traditionally used for intensive mono-cropping (i.e., wheat-maize) over 
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the last two decades (IUSS, 2014). Soil texture and particle size distri-
bution were determined using the Bouyoucos hydrometer method 
(Bouyoucos,1962). Soil pH and EC were analyzed using a soil-to-water 
ratio of 1:5 (w/v) with a portable combination meter (HI9813-5, 
Hanna, Germany). Total soil N content was determined by the Kjeldahl 
digestion and distillation method (Bremner and Tabatabai,1972). 
Extractable NO3

–-N and NH4
+-N were extracted with 2 M KCl and 

analyzed colorimetrically on microplates using the vanadium chloride 
method (NO3

–) and the salicylate nitroprusside method (NH4
+) as 

described by Mulvaney et al. (1996). Total phosphorus (P) in soil was 
determined by the molybdenum-antimony blue method, whereas 
available P concentration (i.e., NaHCO3-P and H2O-P) was determined 
sequentially by the modified method of Sui et al.1999. Soil total and 
available potassium (K) (i.e., ammonium acetate extracted-K and water 
extractable-K) concentrations were determined following the method 
adopted by He et al. 2016. Overall, soil of the study site contains an 
inherently low organic matter content and is characterized by poor 
fertility (Supplementary Table 1). 

The mean annual temperature varies between the highest 50 ̊C in 
summer (August) and the lowest 5 ̊C in winter (January). Summers are 
scorching hot and humid, determined mainly by the prevailing 
monsoon, while winters are predominantly cold and dry. An irregular 
annual precipitation pattern characterizes the experimental site, ranging 
from the highest (175 mm) in summer to the lowest (93 mm) in winter, 
with the monsoon seasons (July-September) making the most significant 
contribution to the total annual rainfall (average: 138 mm). 

2.2. Compost, fertilization and experimental design 

A composite nutrient (i.e., NPK) enriched compost was prepared 
from collected mixed food wastes as described by Roohi et al. (2020). 
Briefly, compostable feedstock was ground to obtain a uniform particle 
size (2 mm) after initial air and oven drying. Sawdust (1:10) was added 
as a bulking agent for optimum moisture conditions and microbial 
proliferation. Composting was performed over a period of 9 weeks in an 
on-site fabricated reactor system at a flow rate of 30 L min− 1 with 
repeated agitation at 15 min h− 1. An automated temperature sensor was 
used to record the average temperature twice a day during the meso-
philic and thermophilic phases of composting. For fertilizer enrichment 
in the maize plots, NPK was added at the rate of 350–200-200 g kg− 1 

compost, whereas the cowpea compost was supplemented with NPK at 
the rate of 5–12-12 g kg− 1 compost. In the present study, compost was 
applied at a rate of 500 kg ha− 1 to compensate for the experimental 
soil’s low organic matter content and poor fertility status. Both the 
physical and chemical properties of compost products were assayed as 
described previously by Gómez-Muñoz et al. 2017, whereas lignocellu-
losic composition of compost was determined according to methods 
adopted by Sluiter et al. 2010. Different physico-chemical characteris-
tics of raw and NPK enriched compost are presented in Supplementary 
Table 2. 

The experimental design consisted of three cropping systems, i.e., 
maize monoculture (MM), cowpea monoculture (CC), and maize- 
cowpea intercropping (MC), and four fertilization regimes, i.e., no fer-
tilizer (control), synthetic mineral fertilizer (NPK), organic fertilizer 

Table 1 
Multiple analysis of variance (MANOVA) for crop yield, soil physical stability, C-sequestration and associated pools affected by cropping system (MM: maize 
monoculture, CC: cowpea monoculture, MC: maize intercropped with cowpea) and fertilization regimes (Control: no fertilization, Compost: organic fertilization, NPK: 
mineral nitrogen, phosphorus, potassium fertilization, NPKEC: multi-nutrient enriched compost fertilization).  

Nutrient   Compost  Control  NPK    NPKEC  
System MC CC MM MC CC MM MC CC MM MC CC MM 

PAOC 3.36 ±
0.05 

3.08 ±
0.05 

3.17 ± 0.1 2.17 ±
0.07 

1.69 ± 0.05 1.87 ±
0.05 

2.23 ±
0.08 

1.73 ±
0.03 

1.9 ± 0.05 4.89 ±
0.14 

4.09 ±
0.07 

4.1 ±
0.06 

MAOC 4.78 ±
0.32 

4.0 ±
0.16 

4.16 ±
0.13 

2.5 ±
0.12 

2.19 ± 0.07 2.23 ±
0.09 

2.55 ±
0.13 

2.12 ±
0.08 

2.27 ±
0.11 

6.01 ±
0.05 

5.06 ±
0.22 

5.22 ±
0.32 

SOC 9.9 ±
0.30 

8.8 ± 0.2 9.1 ± 0.1 6.4 ± 0.2 5.6 ± 0.20 5.8 ±
0.1 

6.5 ±
0.2 

5.5 ±
0.10 

5.9 ± 0.1 12.5 ±
0.1 

10.7 ±
0.3 

10.8 ±
0.4 

SOC_S 2.2 ±
0.08 

1.98 ±
0.05 

2.03 ±
0.04 

1.45 ±
0.03 

1.28 ± 0.03 1.32 ±
0.01 

1.47 ±
0.03 

1.27 ±
0.02 

1.33 ±
0.03 

2.72 ±
0.04 

2.36 ±
0.07 

2.39 ±
0.07 

C_Seq 0.46 ±
0.04 

0.35 ±
0.02 

0.37 ±
0.02 

0.08 ±
0.01 

0.01 ± 0.0 0.02 ±
0.01 

0.09 ±
0.01 

0.02 ±
0.01 

0.03 ±
0.01 

0.72 ±
0.02 

0.54 ±
0.04 

0.55 ±
0.03 

CN 18.1 ±
0.3 

17.6 ±
0.4 

17.6 ± 0.3 16.1 ±
0.7 

15 ± 0.50 15 ± 1.4 16.4 ±
0.3 

15.1 ±
0.5 

15.2 ± 0.7 19.3 ±
0.6 

17.7 ±
0.4 

17.9 ±
0.6 

BD 1.48 ±
0.02 

1.5 ±
0.02 

1.5 ± 0.01 1.51 ±
0.02 

1.53 ± 0.02 1.52 ±
0.02 

1.51 ±
0.02 

1.53 ±
0.02 

1.52 ±
0.01 

1.45 ±
0.01 

1.48 ±
0.01 

1.47 ±
0.01 

Mac_agg_F 46.7 ±
1.4 

38 ± 1.1 41.2 ± 1.2 37.1 ±
1.0 

33 ± 0.9 34.9 ±
1.3 

37.2 ±
1.1 

34.3 ±
1.0 

36.5 ± 1.1 49.5 ±
1.5 

39.3 ±
1.2 

42.5 ±
1.2 

Mic_agg_F 30.3 ±
1.5 

24.8 ±
1.2 

26.6 ± 1.3 23.4 ±
1.2 

21.1 ± 1 22.7 ±
1.1 

23.6 ±
1.2 

21.6 ±
1.1 

23.3 ± 1.1 29.6 ±
1.4 

26.3 ±
1.3 

26.9 ±
1.3 

WSA 39.6 ±
1.5 

33.8 ±
1.1 

35.1 ± 1.4 25.5 ±
1.0 

23.2 ± 1.1 24.1 ±
1.1 

26 ± 1.0 23.5 ±
1.0 

25 ± 0.9 43.2 ±
1.3 

36.8 ±
1.5 

38.1 ±
1.2 

MWD 0.73 ±
0.02 

0.68 ±
0.02 

0.71 ±
0.02 

0.49 ±
0.02 

0.41 ± 0.01 0.44 ±
0.01 

0.5 ±
0.02 

0.41 ±
0.01 

0.46 ±
0.01 

0.77 ±
0.02 

0.7 ±
0.02 

0.72 ±
0.02  

Data 
transf. 

Test Nutrient System Interaction MC CC MM compost control NPK NPKEC 

PAOC  ANOVA *** *** ** b a a b a a c 
MAOC log ANOVA *** *** ns b a a b a a c 
SOC log ANOVA *** *** ns b a a b a a c 
SOC_S log ANOVA *** *** ns b a a b a a c 
C_Seq  Perm Test *** ns ns    b a a c 
CN  KW *** ns ns    b a a b 
BD  ANOVA *** ns ns    ab b b a 
Mac_agg_F  ANOVA *** *** ns c a b b a a b 
Mic_agg_F  ANOVA *** ** ns b a ab b a a b 
WSA  ANOVA *** *** ns b a a b a a c 
MWD log ANOVA *** *** ns c a b b a a b 

Particulate-associated organic C (PAOC); Mineral-associated organic C (MAOC); Soil organic carbon (SOC); Soil organic carbon stocks (SOC_S); C storage rate (C_Seq); 
C:N ratio (CN); Bulk density (BD); micro- (Mic_agg_F) and macro- (Mac_agg_F) aggregate fraction; Water stable aggregates (WSA); Mean weight diameter (MWD). 
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(compost), and NPK enriched compost (NPKEC), that were laid out in a 
split plot design and replicated four times. Cropping systems were 
established on main plots (22 × 6 m), while subplots (6 × 5 m) received 
selected organic–inorganic fertilization regimes. Maize (Zea mays L. cv. 
Pioneer P1543) and cowpea (Vigna unguiculata L. cv. White Star) were 
sown on the elevation ridges after soil preparation with a disk plow. In 
the intercropping system, two rows of maize followed by two rows of 
cowpea were established for a total of 8 intercropped rows. An inter-
plant distance of 20 cm with a row spacing of 70 cm was uniformly 
maintained in both crop systems. All experimental plots were laid out in 
an East-to-West orientation to ensure uniform sunlight distribution for 
each cropping system (Fig. 1). 

All NPK fertilization was done with urea (N), single superphosphate 
(SSP), and potassium sulfate (K). Due to the lower fertilizer requirement 
of legumes, cowpea received 25–60-60 kg ha− 1 of NPK fertilizer, while 
maize was fertilized with 175–100-100 kg ha− 1 of NPK. In the NPK 
treatment, all P and K fertilizers and half of the recommended N fertil-
izer were uniformly applied and plowed into the soil before sowing the 
maize. Moreover, the other half of the N fertilizer was used in two parts 
at stem elongation and then at flowering stage. On the other hand, 
cowpea received all the designated NPK as basal fertilizer before sowing. 
In the case of composite NPKEC, all the recommended fertilization was 
applied at the time of seeding because the nutrients enriched with 
compost are generally released slowly into the soil. The total amounts of 
nutrients applied in each treatment are shown in Supplementary 
Table 3. During the growth period, weed emergence was routinely 
monitored and mechanically controlled by hand sorting before sched-
uled irrigation. Every week, canal water was supplied as the primary 
source of irrigation for both mono and intercrop experimental plots. A 

flood irrigation method was employed across all experimental plots. At 
the head of the ridge, a cut-throat flume (90 cm × 20 cm) was installed 
to apply a measured amount of irrigation water to each cropping system, 
as described by Skogerboe et al. (1993). To avoid water loss, the first two 
rows, either in monoculture or in the intercropping system, were irri-
gated at once, while the water outlets of the other rows remained closed 
(Fig. 2). Water requirement for the selected cropping systems was 
calculated based on soil moisture depletion in the root zone one day 
before the scheduled irrigation as described by Abyaneh et al (2017). 
The flow rate of irrigation water from the installed cut-throat flume 
(diameter = 10 in.) into the experimental plot was calculated to be 0.062 
± 0.004 m3/sec. The average irrigation application efficiency was 
determined to be 63 ± 3.91 % and 65 ± 3.65 % for 2016 and 2017, 
respectively. For the maize crop, the total delta of water was 7403.47 m3 

ha− 3 in 2016 and 7982.34 m3 ha− 3 in 2017, including pre-soaking 
irrigation. On the other hand, the entire delta of water for cowpea was 
6428.52 and 6641.80 m3 ha− 3, including pre-soaking irrigation during 
2016 and 2017, respectively. 

2.3. Crop productivity data collection 

At the time of physiological maturity, i.e., during the first week of 
August each year, three adjacent rows of maize and cowpea were 
selected for monocrop and intercrop harvesting. In both systems, the 
first guard row on each side of the plot was excluded for data collection 
to avoid the edge effects of the treatment plot. All harvested samples 
were air-dried for two weeks and manually separated by threshing to 
calculate crop yield. The productivity of each cropping system was 
determined by summing plant biomass and grain yield during a cropping 

Fig. 1. Schematic representation of the layout of the experiment involving different fertilization regimes and cropping systems.  
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year and expressed as Mg/ha yr− 1 at standard plant moisture. At the 
time of yield calculation, average moisture content of maize and cowpea 
samples was 8.5 ± 0.47 % and 6.4 ± 0.36 %, respectively. 

2.4. Soil sampling 

At the end of the experiment, soil samples were collected from each 
treatment as well as from the control plot. In each plot, soil samples from 
0 to 20 cm depth (4 random cores per plot) were taken with an Eijkel-
kamp auger and then pooled to obtain a representative composite 
sample sufficient for the targeted analysis. On the same day, collected 
samples were rifled through to pick out any visible coarse material and 
root segments before being passed through a 2-mm screen. After sieving, 
the samples were placed in labelled zip-lock plastic bags and immedi-
ately taken to the laboratory. 

2.5. Soil structural stability indicators 

Whole soil bulk density (BD) was determined on undisturbed soil 
samples using a standard core sampler (Schipper and Sparling, 2000). 
For estimation of BD, ratio of soil mass to core volume was determined 
after oven drying at 105 ̊C for constant weight. The wet sieving method 
was used for physical fractionation of the different soil aggregate sizes 
(Six et al., 1998). Briefly, a 200 g subsample of air-dried soil was placed 
on a nest with two sieves representing macro aggegates (greater than 
250 µm) and micro aggregates (greater than 53 µm). Both sieves were 
then slowly immersed in 5 mL of deionized water for 7-mins and gently 
shaken vertically by hand until a cycle of 50 repetitions was achieved in 
2 min. After sieving, the aggregate fractions remaining on each sieve 
were precipitated with 1 M CaCl2 solution for 24 h, while the sieved 
material (<53 µm) was considered as finer silt/clay fractions. After 
separation of aggregates, the samples were dried at 60 ̊C and weighed 
according to aggregate size classes, mean weight diameter (MWD), and 
water stable aggregates (WSA) as described by Zhang et al. (2014). 

2.6. Soil carbon pools and sequestration 

Soil organic carbon (SOC) was determined following the chromic 
acid wet-oxidation method of Walkley and Black (1934). We used a fixed 
depth approach for the estimation of SOC stock (SOCs, Mg C/ha) by 
summing up the SOC content of the top-soil layer (0–20 cm) using the 
following equation (Qiu et al., 2015). 

SOCs =
CCt × SD × BD

100
(1)  

where: CCt is the carbon content of top layer (g kg− 1 soil), SD is the soil 
depth (cm), and BDt is bulk density of top layer soil (Mg/m− 3). 

The C sequestration rate (Mg C/ha yr− 1) under different fertilization 
regime as well as cropping systems was calculated as indicated in 
equation (2): 

C sequestration rate =
Cf − Cb

t
(2)  

where Cf and Cb are SOCs (Mg C/ha) at the end and at the beginning of 
the experiment, respectively, and t is year of the experimentation. 

For functionally distinct SOC fractions, mineral and particulate 
associated organic carbon (MAOC and PAOC, respectively) were sepa-
rated based on the modified wet-sieving method of Marriott and Wander 
(2006). Briefly, 20 g of air-dried soil was homogenized with 50 mL of 5 
% sodium hexametaphosphate solution. To ramp up the dispersion 
process, the soil mixture was transferred to a horizontal shaker at 180 
rpm for 15 h. Afterwards, the dispersed soil in the form of slurry was 
screened using a 53 µm sieve and rinsed with a continuous and steady jet 
of deionized water. Both sieve retained (PAOC) and passing down 
(MAOC) fractions were oven dried at 60 ◦C for 24 h, weighed separately, 
and assayed for their respective SOC fractions. 

2.7. Statistical analysis 

All statistical analyses were performed using R software 3.6.1 (R 
Core Team, 2020). The effects of fertilization regime and cropping sys-
tem on soil and yield data, as well as the effect of years on yield data 
were assessed by ANOVA (function aov), and results are presented in 
boxplots (function boxplot). Interactions between factors were removed 
from the model if they were not significant. ANOVA model assumptions 
were tested by the Shapiro and Bartlett tests, and data were log- 
transformed if necessary. For C:N ratio, data were not normally 
distributed even after log-transformation, and treatment effects were 
tested separately using Dunn tests (function dunnTest in FSA package). 
Because of the consistency of the year effect across treatments, biomass 
and grain data in Fig. 3 and in the text are presented as the average of 
both years even though year was kept in the models. A redundancy 
analysis (RDA) was performed with the rda function to address the 
relationship between soil structural stability and SOC pool variables 

Fig. 2. Illustration of irrigation scheme for cowpea and maize based monoculture and intercropping system.  
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constrained by cropping system and fertilization regime factors. Sig-
nificance of axes and constraining factors was assessed by Monte Carlo 
permutation test (1000 permutations) using the anova function. Varia-
tion partitioning between treatments as performed with the varpart 
function. If not specified, all discussed differences are significant, at least 
at p-value < 0.05, and values are presented as mean ± standard error 
(SE). 

3. Results 

3.1. Effects of fertilization regime and cropping system on crop 
productivity 

In 2017, the average biomass (16.1 Mg ha− 1) and grain yield (7.2 Mg 
ha− 1) of maize across all treatments were 6 and 7 % higher than in 2016. 
The difference was similar for cowpea biomass (5.6 Mg ha− 1 yr− 1) and 
grain yield (1.8 Mg ha− 1 yr− 1). The effect of years was constant for all 
treatments, as indicated by the absence of interactions with the fertil-
ization regime and with the cropping system (Fig. 3). 

For maize, biomass yield was comparable in monoculture and 
intercropped plots receiving NPK fertilizer (Fig. 3a); however, relative 
yield differences were significant compared to the control (Fig. 3c). 
Compost application significantly reduced biomass yield across both 
cropping systems compared to NPK fertilizer, although yield recovery in 
intercropped plots was significantly higher than in monoculture plots. 
Importantly, NPKEC application improved biomass yield in mono-
culture plots, while yield increase was further expanded in intercropped 
plots (20.1 ± 0.4 Mg ha− 1 yr− 1), producing the highest biomass yield 
regardless of fertilization regime or cropping system. 

For cowpea, biomass yield in intercropped plots was, on average, 4.3 
± 0.3 % higher than in monoculture plots, and this difference did not 
depend on the fertilization regime (Fig. 3b). The NPK fertilizer always 
had a significantly higher biomass yield than the control. Moreover, in 
response to compost application, a significant decline in biomass yield 
was observed compared to NPK fertilizer. Overall, NPKEC application 
accounted for the highest increase in biomass yield when compared to 
all the other fertilization regimes. 

In intercropped maize, grain yield was significantly higher regardless 
of fertilization regime compared to monoculture (Fig. 3c). When 
comparing the effects of different fertilizers, maize grain yield was 
significantly higher in plots that were fertilized with NPK than in those 
that received no fertilizer; however, compost alone yielded less than 
NPK fertilizer. Overall, NPKEC application had the most significant in-
fluence on grain yield, increasing grain yield by 64 ± 4 % and 69 ± 4 % 
across monoculture and intercropped plots, respectively, compared to 
control. 

Similarly, when cowpea was intercropped under different fertiliza-
tion regimes, the yield advantage was significant compared to mono-
culture, with the highest increase in NPKEC (Fig. 3d). Further, NPK 
application significantly contributed to higher grain yields in both 
cropping systems compared to control. Compost alone, on the other 
hand, significantly reduced cowpea grain yield when compared to NPK 
application. Nevertheless, cowpea grain productivity responded signif-
icantly to NPKEC, resulting in the highest grain yield (monoculture 2.03 
± 0.04 vs intercropped 2.30 ± 0.05 Mg ha-1 yr− 1) among the different 
fertilization regimes. 

Fig. 3. Effects of fertilization regime (Control: no fertilization, Compost: organic fertilization, NPK: mineral nitrogen, phosphorus, potassium fertilization, NPKEC: 
multi-nutrient enriched compost fertilization) and cropping system (MM: maize monoculture, CC: cowpea monoculture, MC: maize intercropped with cowpea) on 
biomass and yield of maize (a and c) and cowpea (b and d). Histogram bars are the mean (±standard deviation) of years 2016 and 2017 (n = 8) as the factor year did 
not interact with the other factors. Lower-case letters represent significant differences between bars when the interaction between fertilization and system was 
significant and kept in the ANOVA model (a, c and d). Upper-case letters represent differences between fertilization treatments in the absence of significant 
interaction (b). 
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3.2. Effects of fertilization regime and cropping system on soil C pools and 
C sequestration 

When comparing the effects of fertilization regime, soil receiving 
compost alone had a significantly higher C sequestration compared to 
both control and NPK application, with the last two having comparable 
C sequestration (Fig. 4). However, NPKEC application strongly affected 
soil C sequestration, resulting in the highest C sequestration rate among 
all fertilization regimes, with a gain of 0.28 ± 0.05 Mg C/ha yr− 1 

compared to control (Fig. 4). Similarly, in the cropping system, inter-
cropped plots accounted for a small but significantly higher soil C 
sequestration (confidence interval: 0.03–0.07 Mg C/ha yr− 1) than either 
of the monoculture plots. In contrast, differences in SOC sequestration 
between monocultures were statistically insignificant. Regarding soil C 
pools, PAOC and MAOC remained unresponsive to NPK application 
compared to control (Fig. 4). Differently, in compost amended plots, 
significantly higher PAOC (3.20 ± 0.09 g C kg− 1 soil), as well as MAOC 
(4.31 ± 0.27 g C kg− 1 soil), were found compared to both control and 
NPK fertilizer (Fig. 4; Table 1). However, NPKEC application showed the 
highest PAOC (4.36 ± 0.21 g C kg− 1 soil) and MAOC (5.43 ± 0.30 g C 
kg− 1 soil) accumulation in the soil among all the fertilization regimes. 
Most importantly, intercropped plots contributed the most to PAOC and 
MAOC, while cowpea and maize monoculture plots did not show sig-
nificant differences in either C pool. However, the interaction between 
the nutrient regime and the cropping system was significant for PAOC 
(Table 1; Fig. 4). It was mainly due to a very high amount of PAOC in 
intercropped plots as compared to monoculture plots in the NPKEC 
fertilization regime, whereas no significant differences between 

cropping systems were observed for the compost treatment. 

3.3. Contribution of fertilization regime and cropping system to soil 
structural stability and C sequestration 

We used the RDA model to distinguish the relationship between soil 
structural stability and SOC pool variables constrained by cropping 
systems and fertilization regimes (Fig. 5). According to permutable tests, 
the RDA results were significant (F = 33.12, df = 5, p < 0.001) with 
adjusted multivariate redundancy statistics model (R2

adj = 0.77). Our 
RDA analyses identified the fertilization regime as the most important 
factor in explaining variation across the soil functional attributes (R2

adj =

0.73). However, the cropping system also appeared to play a significant 
but less important role in the variability pattern (R2

adj = 0.08). Specif-
ically, NPKEC fertilization showed a positive correlation with MAOC, 
PAOC, and C-sequestration within the upper right quadrant of the 
triplot. Moreover, soil structure variables, including WSA, MWD, micro, 
and macro-aggregates fractions, were better correlated under compost 
and intercropping combination (Fig. 5; Table 1). More importantly, in 
the triplot’s left quadrant, control and NPK fertilization were closely 
associated with soil BD, particularly in mono-cropping systems (Fig. 5). 

4. Discussion 

Low soil fertility, limited moisture and a declining organic matter 
content are the main reasons for low crop productivity in semiarid 
agroecosystems. In addition, traditional rotations of mono-cropping 
with intensive farming regimes lead to greater unsustainability in crop 

Fig. 4. Effects of fertilization regime (Control: no fertilization, Compost: organic fertilization, NPK: mineral nitrogen, phosphorus, potassium fertilization, NPKEC: 
multi-nutrient enriched compost fertilization) and cropping system (MM: maize monoculture, CC: cowpea monoculture, MC: maize intercropped with cowpea) on soil 
C storage rate (C-seq), particulate-associated organic C (PAOC) and mineral-associated organic C (MAOC) during the two-year long experiment. Lower-case letters 
represent significant differences between fertilization regime or cropping system levels from two-way ANOVA model. Interaction terms were removed for C-seq and 
MAOC as they were not significant. 
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production, resulting in growing yield disparities among different re-
gions. Our study extended the knowledge of the relationship between 
soil structural stability and SOC sequestration when different organic 
and inorganic fertilization regimes were applied to an intercropped soil 
under semi-arid climatic conditions. Here, we have demonstrated that 
switching from conventional monocultures to intercropping (e.g., a 
diverse mix of legumes and cereals) and applying fertilizers that have 
been enriched with organic additives (e.g., NPKEC) can improve soil 
structural stability, promote SOC sequestration, and ensure optimum 
crop yield. From the perspective of future food-security, an adequate 
supply of mineral nutrients is one of the most critical factors in all 
agroecosystems to achieve higher crop productivity (Achari and Kow-
shik, 2018). Therefore, a positive effect of NPK fertilization on biomass 
and grain yield of maize-cowpea compared to the unfertilized control 
was expected, as the use of chemical fertilizers is still the preferred 
option to meet the immediate nutritional needs of crops in degraded 
agricultural soils, despite the high production cost and potential nega-
tive environmental impact (McLeod et al., 2020; Ye et al., 2020). 
However, when biomass and grain yields were split for NPK fertilizer, 
grain yield was significantly higher in intercropping than in mono- 
cropping, which was not the case for biomass yield in either cropping 
system. These results point to an early competition between cowpea and 
maize for biomass accumulation, while the productive stage seemed to 
exert a complementary positive effect that increased grain yield in the 
intercropping system (Xiao et al., 2018). Furthermore, improved grain 
yield in an intercropping system may also be explained by the facilita-
tive interactions between intercrops that significantly improve nutrient 
availability, ultimately resulting in a higher grain yield compared to 
monoculture (Zhao et al., 2019; Hu et al., 2020). While NPKEC fertil-
ization showed a significant overall increase in biomass and grain yields 
in monoculture and intercropping systems, these gains did not translate 
into higher crop productivity when only compost was added. There is 
sufficient evidence that compost application improves soil properties 
such as porosity, water-holding capacity, nutrient replenishment, and 
organic matter status (Chen et al., 2019; Somerville et al., 2020; Teixeira 
et al., 2021). However, adding compost alone as a substitute for inor-
ganic fertilizers is not sustainable for meeting plant nutritional needs 
and optimizing crop yields in degraded soils (Maucieri et al., 2019; 

Salehin et al., 2020; Ejigu et al., 2021). Given the poor status of soil 
organic matter and low fertility conditions, farmers are now increasingly 
encouraged to combine chemical fertilizers with organic amendments to 
improve soil fertility and achieve better yields in semi-arid agro-
ecosystems (Arif et al., 2016; Iqbal et al., 2019). Similarly, in the present 
study, the significantly higher yield with NPKEC application, especially 
in the intercropping regime, could be explained by the accumulated 
nutrient advantage (Fan et al., 2020), as the slow-release pattern of the 
applied NPKEC fertilizer could promote adequate nutrient supply (i.e., 
NPK) to the crop and, ultimately, a higher yield (Arif et al., 2017; 
Shahzad et al., 2017; Imran et al., 2020). The yield increase of inter-
cropping over mono-cropping under different fertilization regimes 
confirms the importance of intercropping for sustainable agriculture. A 
previous meta-analysis on intercropping found that intercropping cereals 
and legumes not only increases the yields but also provides yield sta-
bility compared to continuous mono-cropping (Raseduzzaman and 
Jensen, 2017). Notably, low moisture availability and poor fertility are 
the most important yield determining factors in semi-arid agro-
ecosystems (Li et al., 2020). Regardless of the cropping system and the 
fertilization regime, the higher yield indices (i.e., biomass and grain) of 
maize measured in the second year were more likely due to the well- 
watered condition than those measured in the first year of cultivation 
(Das et al., 2018; Mbava et al., 2020). Indeed, such positive effects of 
ecological intensification practices, including organic slow-release 
fertilization and intercropping, are expected to be enhanced under 
improved water conditions. 

As an important indicator of soil quality and health, soil organic C 
(SOC) is the most active biochemical parameter (Lorenz et al., 2019), 
which is not only significant due to the diverse ecosystem services it 
provides but is now also considered a critical element for the sustain-
ability of global agricultural systems (Rumpel et al., 2020; Kumar and 
Kalambukattu, 2021). However, the organic C content of agricultural 
soils is mainly determined by the type of cropping system and man-
agement practices. Our study shows that in degraded semi-arid soils, it is 
possible to increase SOC stocks with greater potential for C sequestration 
using compost alone or stoichiometrically balanced NPK fertilizer (i.e., 
NPKEC), although their relative effectiveness depends on whether the 
cropping system is monocropped or intercropped (Fig. 4; Table 1). The 
effects on SOC and C sequestration may support the view that the diverse 
root biomass of the intercropped mixture may contain an increased 
supply of chemically complex rhizodeposits that promote the estab-
lishment of new SOC (Villarino et al., 2021; Zhang et al., 2021). On the 
other hand, compost application could promote soil aggregation 
through its conditioning effect and possibly provide a C stabilization and 
storage mechanism (Das et al., 2017; Zhao et al., 2020). Despite being 
one of the most important sustainability factors in degraded agro-
ecosystems, SOC storage, sequestration, and stabilization pathways, 
especially in intercropping systems, are poorly understood. Given the 
enormous size of the soil C pool, understanding its sensitivity to different 
land management practices, such as fertilization, is critical to accurately 
assessing the SOC’s stability. Specifically, the significant interaction 
between the fertilization regime and the cropping system for PAOC 
possibly implies an important role of fresh rhizodeposits in the PAOC 
(Angst et al., 2018; Dijkstra et al., 2021). On a relative basis, the MAOC 
pool was slightly higher than the PAOC pool, which could be related to 
the different origins of the two C pools (Chen et al., 2020; Samson et al., 
2020). The apparent increase in PAOC and MAOC under NPKEC fertil-
ization was associated with C sequestration, suggesting that these two 
fractions are the primary reservoir of SOC and the main drivers of C 
storage in soil (Cotrufo et al., 2019; Lavallee et al., 2020). Indeed, the 
importance of these two distinct C pools was further supported by the 
positive correlation in the RDA analyses (Fig. 5). Based on the strong 
positive effect of intercropping on C sequestration, we can hypothesize 
that the combination of various root biochemical secretions in close and 
direct proximity to the rhizosphere microbiota and mineral surfaces may 
promote efficient C storage compared to litter input by roots and shoots 

Fig. 5. Redundancy analysis triplot with fertilization regime (Control: no 
fertilization, Compost: organic fertilization, NPK: mineral nitrogen, phos-
phorus, potassium fertilization, NPKEC: multi-nutrient enriched compost 
fertilization) and cropping system (MM: maize monoculture, CC: cowpea 
monoculture, MC: maize intercropped with cowpea) as explanatory variables 
(blue). Response variables (red) are bulk density (BD), C:N ratio (CN), C storage 
rate (C_Seq), particulate-associated organic C (PAOC) and mineral-associated 
organic C (MAOC), water stable aggregates (WSA), mean weight diameter 
(MWD), the amount of micro- (Mic_agg_F) and macro- (Mac_agg_F) aggregate 
fraction. Empty dots represents observations (n = 48). (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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(Jackson et al., 2017; Sokol et al., 2019). 
Based on the RDA results, compost alone and intercropping were 

associated with a lower C-sequestration rate but with better soil struc-
ture. It is an interesting finding, especially in long-term C-sequestration 
targets, because it implies that it is more important to prioritize the 
recovery of key soil structural attributes before obtaining any C storage 
gain in these degraded soils. Mechanistically, in low organic matter soils 
receiving stable organic amendments (i.e., compost), greater aggregate 
stability (e.g., WSA, MDA) may result from developing a predominantly 
macro-aggregates fraction. This hypothesis was also supported by the 
significant additive effect of the fertilization regime on C:N ratio 
(Table 1), and its negative association with soil BD (Fig. 5). In line with 
this observation, Fang et al. (2021) attributed the modifications in soil C: 
N ratio to the additive effect of organic–inorganic inputs, which are a 
likely reliable predictor of soil aggregation in degraded soils with low 
fertility. Overall, our work provides field-based empirical evidence that 
suitable land management practices, such as compost-enriched fertil-
ization with intercropping, can increase soil structural stability and, in 
parallel, are more efficient in promoting C sequestration than other 
conventional practices in degraded soils (Zhao et al., 2018; Parihar 
et al., 2020; Cao et al., 2021). 

At the study site, an intensive agricultural system of continuous 
mono-cropping combined with only chemical fertilizers has been prac-
ticed for more than 20 years, resulting in progressive soil degradation. 
This conclusion is well supported by the positive relationship between 
BD and chemical fertilization or no fertilization in monocultures (Fig. 5). 
Indeed, this is consistent with previous studies that showed a significant 
decline in crop yield potential and soil C stocks due to unsustainable 
land use management with monocultures (Shah et al., 2017; Terefe and 
Kim, 2020). Despite increasing awareness of the benefits of adopting 
other suitable crop rotations and intercropping for better soil quality and 
higher crop productivity on these degraded soils, farming communities 
continue to prefer mono-cropping due to limited arable land holdings, 
economic interest in cash crops and climatic constraints. During this 
two-year experiment, we paid landowners an estimated amount equiv-
alent to cash crop income for participatory intercropping, assuming that 
this could be the most appropriate land use management to overcome 
the compelling problem of soil degradation. We discovered that farmers’ 
willingness to replace traditional mono-cropping with intercropping to 
improve C content and soil health is still less attractive unless their 
economic concerns about undermining smallholder sustainability are 
addressed. 

5. Conclusions 

Rapid SOC depletion and low soil fertility are the leading causes of 
land degradation, contributing to poor crop yield returns in semi-arid 
climates. The results of our study suggest that replacing traditional 
monocultures with legume-cereal intercropping provides a higher yield 
(biomass and grain) when slow-release compost enriched with NPK is 
used. Further empirical measurement indicated that stoichiometrically 
balanced fertilization regimes increase the SOC stock and sequestration 
rates, although the effectiveness depends on the cropping system. 
Similarly, MAOC and PAOC pools were strongly associated with SOC- 
sequestration rate, implying the importance of both pools in SOC stor-
age. On the other hand, compost and intercropping alone had a lower C- 
sequestration. Still, they improved the indicators related to soil struc-
tural stability, i.e., BD, micro–macro aggregation, WSA, and MDA. We 
conclude that the observed increase in SOC stock and C sequestration 
rate following the adoption of an intercropping system with a suitable 
fertilization regime can improve soil quality and crop productivity. 
Notwithstanding this field study’s short duration (2 years), we provided 
promising empirical evidence for adopting sustainable land manage-
ment practices on these degraded soils. 
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