

Pesticide use reduction with alternative biodiversity-friendly practices: a case study in Switzerland

Philippe Jeanneret

Sandie Masson, Solène Clémence, Anne-Valentine de Jong, Andrea Seiler, Julie Buchmann, Selma Cadot, Thomas Steinger, Susanne Vogelgsang, Alexander Zorn, Judith Wirth

2nd September 2022

Research project?

Research – Action project?

Action – Research project?

Action project?

Q

Approach and Concept

- Principles of agroecology
 - Producing based on ecosystem functionalities
 - Maximising functional biodiversity
 - Strengthening biological regulation in agroecosystems
 - Optimising ecological processes and interactions between organisms in the agroecosystem → Sustainable optimisation of ecological functioning

V

Agroecological plant protection

Plant protection

From integrated ... towards ... agroecological

Improved chemical action and beneficial insect promotion
Milder alternatives

Global strategy for the control of harmful organisms
New conception of the crop system

V

Agroecological plant protection

Partly known: Effect of alternative prevention and control practices

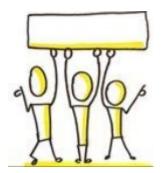
. . . .

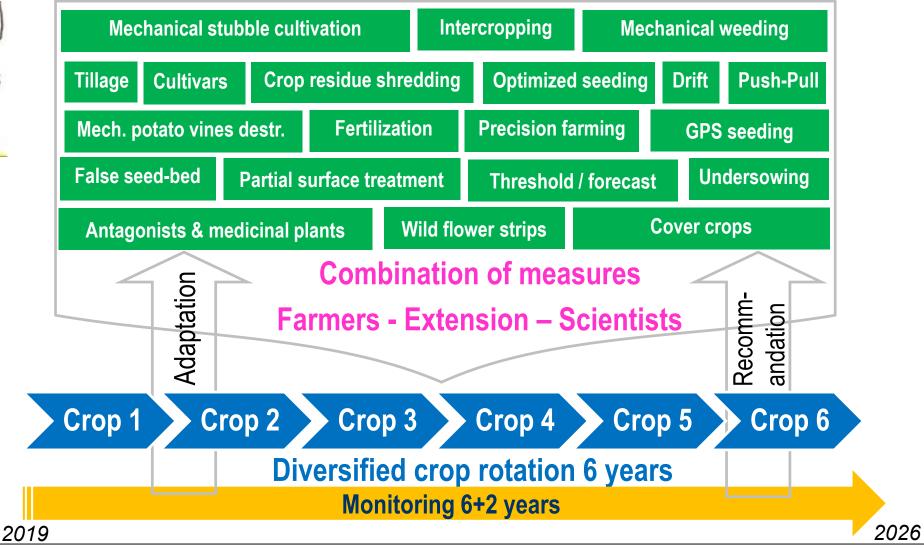
BUT ...

- Missing: Implementation of the alternatives' combination and promotion of ecosystem services
- All noxious organisms diseases, weeds and pests together to all crops in the rotation -> synergies, tradeoffs
- Systemic and holistic approach of the crop rotation = combine control methods and use prophylactic levers, tolerate damage

O

The particular project "PestiRed" in Switzerland




- Decrease of 75% synthetic chemical pesticide use (insecticide, fungicide, herbicide) along the whole crop rotation
 - Treatment frequency index (TFI), number of interventions, active ingredient per ha, toxicity
- Yield reduction 10% at maximum
- → Challenging!
- Reference values:
 - Control fields with standard practices
 - Region specific level at project start

Q

Alternative prevention and control practices

Agroecology to reduce pesticide use | INTECOL 2 September 2022 philippe.jeanneret@agroscope.admin.ch

Design

In 67 lighthouse – conventional – farms: VD[15, 16, 9] GE[8] SO[19]

1 agroecological field

Alternative practices

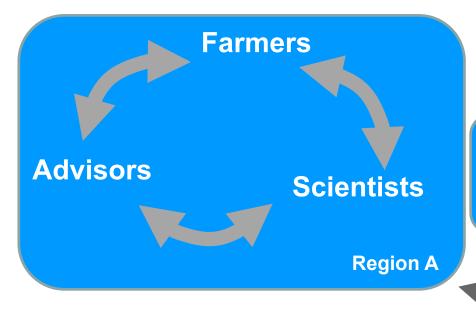
1 control field

Standard practices

Monitoring Practices
Treatment Frequency Index
Yield

Monitoring noxious organisms [weeds, diseases, pests]

V


Innovation cycles

Region D

Region B

Transfer farmers to farmers

Overarching insights into agronomy and plant protection

After two main crops in the rotation

(2020, 2021) ...

Agroecological practices: 21

- •How innovative are the practices ?
- Sometimes also used in the control fields, but ...
 - on average 83% and 69% more agroecological practices in agroecological fields

n = 64 in each year and field type

red

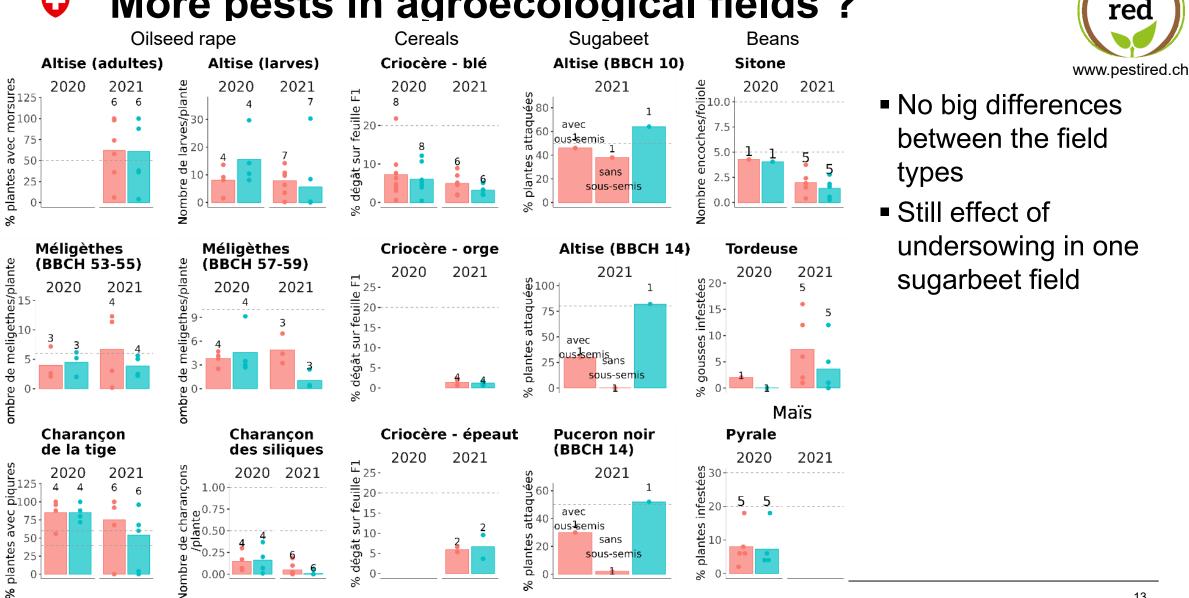
Treatment frequency index (TFI)

Crop (# fields agroecology & control 2020-2021, # reference fields 2017-2019)	Reduction TFI agroecology / control (2020-2021)	Reduction TFI agroecology (2020-2021) / reference (2017- 2019)
Bean (9, 5)	100%	100%
Corn (18, 29)	94%	94%
Winterwheat (26, 61)	93%	94%
Oilseed rape (18, 28)	86%	88%
Barley (20, 15)	82%	84%
Soja (4, 7)	79%	79%
Spelt (7, 8)	74%	90%
Sunflower (6, 12)	58%	82%
Sugarbeet (5, 11)	47%	85%
Potato (4, 7)	33%	37%

Agronomic and economic yield – first estimations

Cropa	Number of farms ^b	Agroecological plot (I)	Difference in VCM	Control plot (C)
Wheat	13		≈	С
Oilseed rape	4		≈	С
Sunflower	3		≈	С
Fodder barley ^c	4		<	С
Potato	4	<u> </u>	<<<	С
Spelt	3		<<<	С

Table. Variable cost margin (VCM) differences in the first year of the project (2020): $\approx +/-10\%$, < -10 to -20%, << -20 to -30%; <<< -30%.

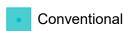

Flower strips were included in the final VCM in Fr./ha.

^aArtificial grassland, grain and silage maize, pea-barley mixtures and sugar beet are not represented.

^bOnly farms that provided final prices were considered.

^cMalting barley and seed barley were not taken into account (different sales prices).

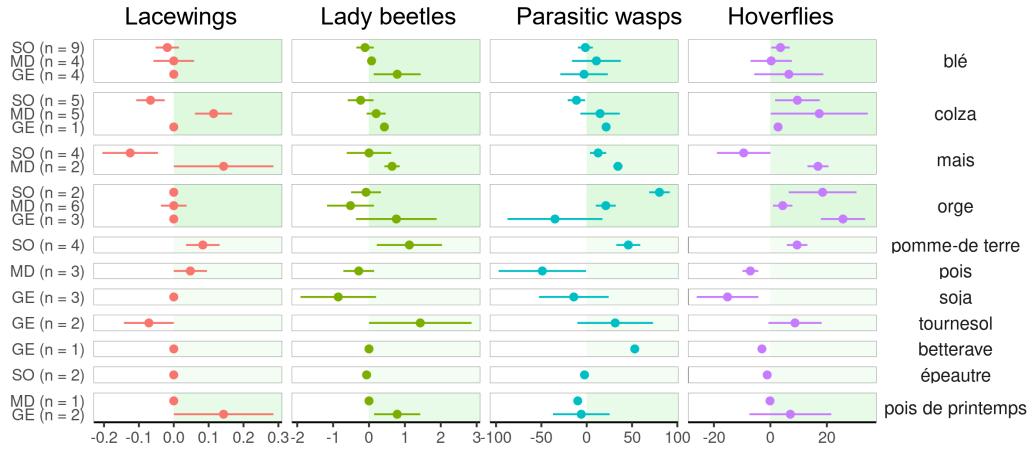
More pests in agroecological fields?



sous-semis

%

dégât

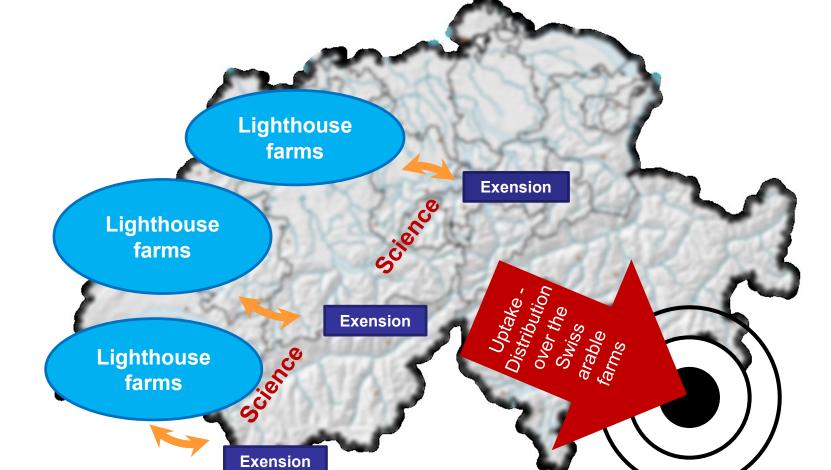

pest

More natural ennemies in the agroecological fields?

Delta plot agroecological versus control fields

Average per field, week and year of sampling
Mean lacewings = 0.17, lady beetles = 3.5, parasitic wasps 75, hoverfly = 64 individuals

Outlook



- Identify best preventive and alternative practices
- Analyse the context crop rotation, landscape
- Identify most efficient systems on an ecological and economic point of view
- Analyse farmer acceptance or refusal to adopt

U

Outlook

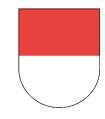
V Partners

- IP-Suisse: M. Lüthi, J. Demierre, J. Scheidegger
- Kantone:
 - SO: S. Bader, G. Mori, A. Wyss, U. Kilchenmann
 - VD: O. Viret, N. Dériaz
 - ProConseil: Ch. Savoyat, D. Martin, E. Cholley, V. Ménétrier
 - GE: D. Fleury
 - AgriGenève: N. Courtois
- Agridea: E. Correa-Bovet
- Fenaco: M. Hämmerli, M. Feitknecht
- SVB: D. Brugger
- HAFL: B. Streit
- Nestlé Waters: F. Davila Alotto

O

Stakeholder and partner institutions

Ce projet est soutenu par l'Office fédéral de l'agriculture selon l'art. 77a et b LAgr «Utilisation durable des ressources»



des métiers de la terre

philippe.jeanneret@agroscope.admin.ch

Agroscope good food, healthy environment www.agroscope.admin.ch

