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Present global maps of soil water retention (SWR) are mostly derived from pedotransfer functions (PTFs)
applied to maps of other basic soil properties. As an alternative, ‘point-based’ mapping of soil water
content can improve global soil data availability and quality. We developed point-based global maps with
estimated uncertainty of the volumetric SWR at 100, 330 and 15000 cm suction using measured SWR
data extracted from the WoSIS Soil Profile Database together with data estimated by a random forest PTF
(PTF-RF). The point data was combined with around 200 environmental covariates describing vegetation,
terrain morphology, climate, geology, and hydrology using DSM. In total, we used 7292, 33192 and
42 016 SWR point observations at 100, 330 and 15000 cm, respectively, and complemented the dataset
with 436108 estimated values at each suction. Tenfold cross-validation yielded a Root Mean Square Error
(RMSE) of 6.380, 7.112 and 6.485 10�2cm3cm�3, and a Model Efficiency Coefficient (MEC) of 0.430, 0.386,
and 0.471, respectively, for 100, 330 and 15000 cm. The results were also compared to three published
global maps of SWR to evaluate differences between point-based and map-based mapping approaches.
Point-based mapping performed better than the three map-based mapping approaches for 330 and
15000 cm, while for 100 cm results were similar, possibly due to the limited number of SWR observa-
tions for 100 cm. Major sources or uncertainty identified included the geographical clustering of the data
and the limitation of the covariates to represent the naturally high variation of SWR.

© 2022 International Research and Training Center on Erosion and Sedimentation, China Water and
Power Press, and China Institute of Water Resources and Hydropower Research. Publishing services by
Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an open access article under the CC BY

license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Soil water retention controls multiple processes related to mass
and energy cycles in the soil-plant-atmosphere system. It impacts
the exchange of gases (de Jong van Lier et al., 2018), including trace
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gases such as carbon dioxide. It influences soil water availability,
which is considered an important ecosystem service, essential to
nutrient cycling and primary production (Dobriyal et al., 2012),
provisioning of food, feed, fiber and fuel as well as regulation of
climate, gas exchange, and water flows, control of erosion and
flooding and water purification (Adhikari & Hartemink, 2016).
Modelling water retention at specific suctions is helpful for deter-
mining the available water capacity (AWC), defined as the differ-
ence between upper and lower limits of water retention, on a
volumetric basis. AWC is an important parameter in bucket-type
models, used in crop (e.g., DSSAT (Hoogenboom et al., 1999),
AquaCrop (Raes et al., 2016, pp. 1e19)) and ecological (e.g., Laio
et al. (2001); Pumo et al. (2008)) applications. Quantifying the
spatial variation of AWC is important for planning and risk
a Water and Power Press, and China Institute of Water Resources and Hydropower Research.
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mitigation purposes (Poggio et al., 2010). Water retention as a
function of soil water suction is a key component in both Richards
equation-based and bucket-type water balance models that
represent the processes in vadose zone hydrology (Vereecken et al.,
2008), eco-hydrological (Porporato et al., 2015), and agro-
hydrological (Eitzinger et al., 2004) evaluations. There is also a
marked demand for global maps of soil hydraulic properties in land
surface models (LSMs), which are a key component in Earth System
modelling (Dai, Shangguan, et al., 2019), with emphasis on the soil
water retention data.

At the point scale, the techniques for measuring soil water
retention have advanced, but direct determination is still expen-
sive, time-consuming, and impractical for large-scale applications
(Vereecken et al., 2010). As an alternative to direct measurements,
pedotransfer functions (PTFs) have been widely used at different
scales (Van Looy et al., 2017). As these are generallymere empirical-
statistical relationships, their accuracy outside the development
database range is essentially unknown (Vereecken et al., 2016). Due
to this ‘limited portability’, their widespread implementation re-
mains a challenge. According to Dai, Xin, et al. (2019), application of
a single-PTF to globally predict soil hydraulic properties leads to
biases, underestimation of uncertainties, and overconfidence in
model performances of predictive applications.

Present global maps of water retention generally show the pa-
rameters of a soil water retention (SWR) function that were ob-
tained by PTFs, implying that the uncertainty of the resulting maps
depends on the accuracy of the PTFs (Padarian et al., 2014) as well
as the underpinning soil data. Table 1 shows examples of studies
that present global estimates of soil water retention based on PTFs.
A similar overview for studies at the regional and national scale can
be found in Dai, Xin, et al. (2019).

An alternative for the use of PTFs for mapping is to collect suf-
ficient direct observations of soil water retention and use these for
producing interpolated maps using digital soil mapping (DSM)
techniques (Leenaars et al., 2018). However, considering the usual
lack of measured data and the high spatial variability, this direct
method is more common for ‘smaller’ areas. Padarian et al. (2014),
for example, applied DSM to measured values of water retention at
field capacity (FC) and permanent wilting point (PWP) to produce
maps of soil AWC for Australia's wheat belt. Similarly, Vasques et al.
(2016) presented maps of soil water retention at 100 and 15000 cm
suction in a tropical dry forest in Brazil, while Dharumarajan
Table 1
Summary of maps with global data of soil water retention.

Reference Name Ba

De Lannoy
et al. (2014)

An updated treatment of soil texture and associated hydraulic
properties in a global land modeling system

Ha
ve
So

Montzka
et al. (2017)

Global soil hydraulic properties and sub-grid variability of soil
water retention and hydraulic conductivity curves

So

Zhang
et al. (2018)

High-Resolution Global Map of Soil Hydraulic Properties Produced
by a Hierarchical Parameterization of a Physically Based Water
Retention Model

So

Dai
et al. (2019b)

Global High Resolution Data Set of Soil Hydraulic and Thermal
Properties for Land Surface Modeling

Glo
Mo

Han
et al. (2019)

Global High-Resolution Soil Profile Database for Crop Modeling
Applications

So

Simons
et al. (2020)

HiHydroSoil v2.0 - High Resolution Soil Maps of Global Hydraulic
Properties

So

Zhang
et al. (2020)

Development of Hierarchical Ensemble Model and Estimates of
Soil Water Retention with Global Coverage

Op

Reynolds
et al. (2000)

Estimating soil water-holding capacities by linking the Food and
Agriculture Organization soil map of the world with global pedon
databases and continuous pedotransfer functions

FA

2

et al. (2020) developed maps of FC and PWP for the Northern
Karnataka Plateau, India, with uncertainty estimates derived from a
quantile regression random forest model.

Considering that both point-based and map-based approaches
to obtainmaps of soil water retention are influenced by PTFs, in this
study, we aimed to test if the point-based mapping of soil water
retention is a suitable approach at the global scale. As a point-based
approach, we consider the interpolation of soil water retention
data, both measured and estimated, using DSM approaches. Alter-
natively, in the map-based approach soil maps with basic proper-
ties are used as an input to published PTFs.

Using the point-based approach, we createdmaps based on data
from the WoSIS global soil database (Batjes et al., 2020), a set of
covariates, and machine learning techniques building on proced-
ures developed for the SoilGrids project (Poggio et al., 2021). Sub-
sequently, the generated maps were compared with three
published PTF-derived global SWR maps, using point accuracy
metrics and qualitative comparison of spatial patterns.

We considered water retention at three commonly measured
water suctions (100, 330 and 15000 cm) usually adopted as
thresholds for calculating the AWC, following the United States
Department of Agriculture (USDA) (Soil Survey Staff, 2014)
conventions.

2. Materials and methods

Production of maps and their evaluation was performed
following four main steps: 1. Screening and selection of available
water retention data in WoSIS, including the development of a
pedotransfer function (PTF) to estimate soil bulk density as needed
to convert gravimetric into volumetric water retention; 2. Devel-
opment of a Random Forest-based PTF (PTF-RF) to obtain volu-
metric water retention from other soil properties available in
WoSIS to generate more data for the mapping; 3. Generate SWR
maps with associated prediction uncertainty; 4. Compare the
mapping results with other published products.

In all steps where we assess models by comparing predicted
with observed data, we used common accuracy measures such as
the root mean squared error (RMSE), mean error (ME) and the
model efficiency coefficient (MEC, Janssen and Heuberger (1995)).
MEC is defined as 1 minus the ratio between the error sum of
squares and the total sum of squares, the fraction of the explained
se map SWRC model PTF

rmonized World Soil Database
rsion 1.21 (HWSD1.21) and the State
il Geographic (STATSGO2)

Campbell (1974) W€osten
et al. (2001)

ilGrids 1-km Van Genuchten (1980) with
the Mualem (1976)
parameter restriction (VGM)

Rosetta

ilGrids 1-km q(330 cm) and q(15 000 cm) Zhang
et al. (2018)

bal Soil Dataset for Earth System
dels (GSDE)

Campbell (1974) Ensamble

VGM Ensamble
ilGrids 1-km q(330 cm) and q(15 000 cm) Saxton and

Rawls (2006)
ilGrids250m-2.0 VGM T�oth

et al. (2015)
enGeoHub q(330 cm) and q(15 000 cm) Ensamble

O soil map of the world Available water holding
capacity

Saxton
et al. (1986)
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variance based on the 1:1 line of predicted versus observed. In
hydrology it is also termed the Nash-Sutcliffe model efficiency
(Nash & Sutcliffe, 1970). We predicted the SWR parameters at the
centres of standard depth intervals following the specifications of
GlobalSoilMap (Arrouays et al., 2014), namely 0e5 cm, 5e15 cm,
15e30 cm, 30e60 cm, 60e100 cm and 100e200 cm. These point
predictions were used as proxies of interval averages.

2.1. Data selection and harmonisation

The World Soil Information Service (WoSIS) (Batjes et al., 2020)
provides a compilation of freely shared soil profile data that have
been standardized for global applications, including soil water
retention data. The soil water retention data in the source datasets
submitted toWoSIS were either provided on a volumetric basis (i.e.
pre-converted from gravimetric data) or more commonly on a
gravimetric basis, whereas many applications require soil water
retention expressed on a volumetric basis. Due to the shortage in
volumetric water retention data, an approach to include the
gravimetric water retention data was developed, with the conver-
sion to volumetric content performed based on systematic rules
and consistency checks, as described below.

Regarding the sampling type of data in gravimetric measure-
ments, for the lower suctions (i.e. 100 cm and 330 cm), we
consideredmeasurements on undisturbed clod and core samples as
soil structure is important at these low suctions. Alternatively, at
15 000 cm, where soil texture plays a greater role than soil struc-
ture, disturbed samples were mainly used.

Conversely, when the datawere submitted on a volumetric basis
(i.e. previously converted from gravimetric by data providers) it
proved more difficult to filter out whether any disturbed samples
were used for the lower suctions (i.e. 100 and 330 cm), based on the
information provided with the source materials. Where specified,
more than 97 percent of the previously converted volumetric data
were reported for undisturbed samples. We assumed this to apply
also to those sets for which no information on the conversion was
provided, which is a simplification. Pragmatically, we assumed that
any data for disturbed samples (at lower suctions) would largely be
filtered out during the subsequent cleaning process (Fig. 2). It
should be noted, however, that this type of methodological ‘un-
knowns’ will always occur in global data compilations as the
metadata for the source data are seldom complete; this aspect will
be reflected in the possible accuracy of the present global pre-
dictions as discussed in Section 3.

Based on the above, we selected soil profiles with a) water
retention data already reported on a volumetric basis (q,
10�2 cm3 cm�3) and b) data reported on a gravimetric (w,
10�2 g g�1) basis at soil water suctions (h > 0 in the unsaturated
soil) of 100, 330 and 15000 cm. For case b), ultimately, soil bulk
density using volume at 330 cm (r330) (Table 2) were used to
convert the gravimetric data to volumetric water retention. Ob-
servations were allocated to the interval that contained the
midpoint depth of the measured soil layer. Fig. 1 shows the
resulting distribution of the number of observations per standard
depth interval. The number of observations is well distributed be-
tween the standard depth intervals, although there are fewer ob-
servations for the surface layer (0e5 cm), due to its shallowness.

Fig. 2 describes the major steps of the procedure for selecting,
screening and converting the available data. For each suction, a
plausible minimum (qmin) and maximum value (qmax) were defined
according to thresholds commonly reported in the literature
(Minasny et al., 2004; Nemes et al., 2001; Twarakavi et al., 2009).
For the lower suctions (100 and 330 cm), qmax was set at 80
10�2 cm3 cm�3 and qmin at 1 10�2 cm3 cm�3. At higher suction
(15000 cm), qmin was set at zero and qmax at 60 10�2 cm3 cm�3.
3

These thresholds were used to check the volumetric water reten-
tion data, both as already converted as well as those derived from
the gravimetric water retention data (Section 2.1.1). Considering
case a), the procedure led to the exclusion of thirty layers (0.17%)
with pre-converted volumetric data at 15 000 cm suction. For 100
and 330 cm, no layers needed to be excluded.

2.1.1. Converting gravimetric into volumetric water retention
As indicated, part of the source data were reported on a gravi-

metric basis. The conversion from gravimetric (w, 10�2 g g�1) into
volumetric (q, 10�2 cm3 cm�3) water retentionwas performed using
the soil bulk density (r330), defined as the mass of dry soil divided
by the sample volume at h ¼ 330 cm, following USDA (Soil Survey
Staff, 2014) standards. According to Nemes et al. (2010), r330 is a
better measure to represent field conditions than the bulk density
determined after a sample has been exposed to extreme shrinkage
conditions in an oven at 105 �C.

The availability of water retention data per soil layer varied
greatly between soil profiles. For some layers (or horizons), both
gravimetric water retention and r330 measured data were available,
for others gravimetric water retention and only rb measured data
were found, and yet others contained no information at all about
soil bulk density. When r330 measured was available, possibly
‘suspicious' values were eliminated when they did not meet the
r330 � c , rb criterion. Factor c ¼ 1.15 is an arbitrary tolerance level
associated with possible measurement errors for r330 and rb
themselves (see S1 in Supplementary materials).

Further, we checked if the calculated volumetric water retention
was within common limits qmin� q� qmax and not higher than total
porosity 4, which represents the maximum volumetric fraction of
pores for the given bulk density. Here it was calculated as
4 ¼ 1 � r330/rp, in which rp is the particle density taken as
2.65 g cm�3 (Blake, 2008, pp. 504e505). From the original sets for
100, 330 and 15000 cm suction with, respectively, 3 522, 91808
and 20 447 observations with measured r330 values, 33.8, 29.4 and
0.8% did not satisfy the conditions for 100, 330 and 15000 cm,
respectively. Assuming an error that could be derived from r330
measurements, these observations were merged with the data that
had only rb measured and where r330 was estimated with a linear
regression pedotransfer function: r330 ¼ 0.2308 þ 0.8253rb, with
residual standard deviation (RSE) of 0.1254 g cm�3 and model ef-
ficiency coefficient (MEC) of 0.7525. The details of the data used to
this PTF development are presented in the Supplementary Mate-
rials (Section S1). In short, we considered only rb as predictor var-
iable similar to Heuscher et al. (2005), but unlike other studies that
used more complex PTFs (de Souza et al., 2016; Nemes et al., 2010;
Sequeira et al., 2014; Seybold et al., 2014). This was done because a
more complex PTF would be applicable only to a small portion of
the data.

Although we make use of a global PTF to estimate r330, we
expect that inconsistencies are likely to be filtered in the subse-
quent steps, as the volumetric water retention calculated from the
predicted r330 was evaluated in the same way as those obtained
from the measured r330 data. From the original 3 449 (100 cm),
16 997 (330 cm) and 12308 (15000 cm) values with r330 estimated,
60.1, 36.0, and 92.3% respectively met all consistency rules; these
values were kept for further analysis. Data that did not fulfill the
consistency rules and those lacking information for r330 and rb
were discarded. Subsequently, the ‘already converted’ measured
volumetric water retention data were merged with those derived
from the gravimetric data. The merged data was evaluated for in-
consistencies using the rules described earlier: 252 pairs of data
were removed because q(100 cm) < q(330 cm), 519 pairs because
q(100 cm) < q(15 000 cm) and 1107 because q(330 cm)
< q(15 000 cm).



Table 2
Summary statistics for water retention data inWoSIS, at suctions of 100, 330 and 15000 cm, reported on a volumetric (q) and gravimetric (w) basis; soil bulk density measured
at 330 cm (r330) and at oven-dry conditions (rb).

N Mean SD Min q0.25 Median q0.75 Max Skewness

w (g 100g¡1)
100 cm 12552 24.70 13.00 1.00 15.00 23.70 32.30 80.00 0.80
330 cm 94923 25.10 11.50 1.00 17.50 23.90 30.90 80.00 1.00
15 000 cm 182681 12.60 8.90 1.00 6.70 10.90 16.20 80.00 2.40

q (cm 100 cm¡1)
100 cm 5217 35.80 13.30 1.00 27.00 35.50 43.40 80.00 0.30
330 cm 17569 26.20 14.30 1.00 15.00 25.10 35.00 80.00 0.60
15 000 cm 17578 16.10 11.00 0.00 8.00 14.00 22.70 71.00 1.00

r (g cm¡3)
r330 2951 1.51 0.24 0.05 1.41 1.53 1.65 2.41 �1.26
rb 123538 1.42 0.37 0.01 1.28 1.50 1.66 2.63 �1.28

N: Number of available layers, SD: standard deviation, Min: minimum value, Max: maximum value.

Fig. 1. Distribution of the volumetric and gravimetric water retention data in WoSIS for the standard depth intervals considering the suctions of 100, 330 and 15 000 cm.
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2.2. Pedotransfer function to estimate soil water retention at
specific points

The merged dataset built with gravimetric and volumetric data
from WoSIS was evaluated in a prior attempt to generate global
maps using only measured data, which lead to inconsistencies due
to the sparse available data, as discussed in the Supplementary
Materials (Section S2). To further increase the dataset for mapping,
a PTF-RF (Wright & Ziegler, 2017) for predicting volumetric soil
water retention from basic soil properties was calibrated using
global soil data from the cleaned dataset. The PTF-RF used clay
content, silt content, soil organic carbon content and pHH2O from
WoSIS as predictor variables. This combination was selected based
on the performance of the PTF-RF, the availability of data for
4

developing the PTF-RF and the number of observations that could
be added to the dataset using this PTF-RF. The tested combinations
were evaluated using ten-fold cross-validation. The folds were built
considering soil observations spatially stratified in the geodetic
domain to guarantee a balanced spatial distribution within each
fold (Poggio et al., 2021). More details about the selection of the
predictors and PTF-RF performance are given in the Supplementary
Materials (Section S2).

2.3. Mapping

The geo-referenced dataset (see column 1 Table 5), with the
reported and PTF-RF-predicted volumetric soil water retention
data, was used for mapping of volumetric water retention,



Fig. 2. Flowchart for developing a consistent set of soil water retention data on a volumetric basis (q). r330:soil bulk density with volume at 330 cm, rb: dry soil bulk density, 4: soil
total porosity. qmin and qmax are predefined thresholds for q depending on the suction. c was assumed equal to 1.15.
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following the procedures used in SoilGrids 2.0 (Poggio et al., 2021).
Amachine learning approach using Random Forest (Breiman, 2001)
was applied. Accordingly, around 200 covariates were prepared as
candidate predictors based on their likely influence on soil forma-
tion. From this initial pool, covariates were selected to develop a
parsimonious and computationally efficient model, decrease the
risk of over-fitting and reduce bias in variable importance assess-
ment. Two steps were used: 1. de-correlation: only covariates with
a pairwise correlation coefficient �0.85 were selected; 2. recursive
feature elimination: the importance of the covariates was assessed
in recursive loops and less important covariates were removed by
minimizing the RMSE.

Model tuning of the Random Forest model was performed
considering different combinations of hyper-parameters, in
particular the number of decision trees (ntree) and the number of
covariates used in the tree splits (mtry). This was done using ten-
fold cross-validation, with observations in each fold spatially
stratified in the geodetic domain. The results of each combination
were evaluated according to the root mean squared error (RMSE)
and model efficiency coefficient (MEC). The final model was fitted
with all available water retention data, the selected covariates and
the optimized hyper-parameters. Observation depth was included
as a covariate, and calculated as the midpoint of the sampled soil
layer. The final prediction models were generated using the
ranger package as computationally optimized implementation of
Random Forest (Wright & Ziegler, 2017). The option quantreg was
used to build quantile regression forests. This yields a cumulative
probability distribution of soil water retention at each location and
depth, thus also quantifying prediction uncertainty (Poggio et al.,
2021).

Maps of the mean, median (0.50 quantile, q0.50), 0.05 quantile
(q0.05), and 0.95 quantile (q0.95) were produced at 250 m resolution
for all six standard depths. The uncertainty of the maps was
quantified by the prediction interval ratio (PIR), defined as the ratio
of the 90% prediction interval width and the median:
5

PIR ¼ q0:95 � q0:05
q0:50

(1)

2.4. Comparison of point-based with map-based derived maps and
map evaluation

The above point-based obtained maps, hereafter referred to as
‘SoilGrids’, were compared with three existing map-based derived
maps selected from Table 1. This comparisonwas performed in two
ways: 1) map-to-map comparison, using an equally distributed grid
of points and, 2) comparison with point measurements, where we
evaluated the accuracy of the maps in predicting observed data
from the WoSIS database.

Here we use the term map-based when maps are created using
indirect methods such as pedotransfer functions (PTFs), applied to
maps of basic soil properties (Dai, Xin, et al., 2019; Szab�o et al.,
2019). The map-based derived maps will be referred to as: ‘Map1’
(Dai, Xin, et al., 2019), ‘Map2’ (Montzka et al., 2017) and ‘Map3’
(Simons et al., 2020). The main characteristics of the four maps are
presented in Table 3.

Map1 is part of a global high-resolution dataset of soil hydraulic
and thermal parameters. It was built using an ensemble of PTFs
applied to maps of basic soil properties from the Global Soil dataset
for Earth System Models (GSDE) (Shangguan et al., 2014). We used
the mapped parameters of the soil water retention function
described by the Van Genuchten (1980) model with the Mua-
lem (1976) parameter restriction (VGM) to calculate the water
retention at 100, 330 and 15000 cm at the evaluated points. The
depth intervals were the same as those used in this study.

Map2 is part of a global dataset of soil hydraulic properties and
sub-grid variability of soil water retention and hydraulic conduc-
tivity. The maps were built to demonstrate a method to scale hy-
draulic parameters to individual model grids and provide a global



Table 4
Cross-validation statistics for the PTF-RF developed to estimate soil water retention
at layers lacking observed data. Values of RMSE andME are in 10�2 cm3 cm�3, MEC is
dimensionless.

N (PTF-RF calibration) RMSE ME MEC

q (100 cm) 7 292 8.6 �0.1 0.525
q (330 cm) 33 192 7.6 �0.1 0.567
q (15 000 cm) 42 016 5.4 �0.1 0.681

RMSE: root mean error, ME: mean error, MEC: model efficiency coefficient.
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dataset using the Rosetta PTF (Schaap et al., 2001), applied to the
‘SoilGrids-1km’ (Hengl et al., 2014) dataset. We used the mapped
VGM parameters to calculate the water retention at 100, 330 and
15000 cm at the evaluated points. Map2 was originally presented
at seven depths (0, 5, 15, 30, 60, 100, and 200 cm); we took the
mean of the predictions at the top and bottom of each depth in-
terval to obtain predictions at the standard depth intervals
considered in this study.

Map3 is a global dataset of soil hydraulic properties based on the
application of parametric PTFs developed for Europe (T�oth et al.,
2015) to the most recent release of SoilGrids (Poggio et al., 2021).
The maps with the VGM parameters were used to calculate the
volumetric water retention at 100, 330 and 15000 cm.

The map comparison considered a grid created with an Icosa-
hedral Snyder Equal-Area Grid (ISEAG) of resolution 10, resulting in
590 492 strata (i.e. hexagonal cells), each with an area of about
900 km2. This grid was chosen to avoid distortions and to guarantee
that all grid cells have the same size. This grid was similar to the one
presented in Fig. 4. The centroid of each hexagon was derived and
used to extract the corresponding values from the considered
maps. All points were reprojected to match the map projection, to
reduce artifacts inherent with re-projection of raster layers. The
resulting point datasets were compared by density plots, spatial
distribution plots, and scatter density plots of map-based maps
against the SoilGrids map.

Besidesmap inter-comparison, the accuracy of the four products
was evaluated using observed data points from theWoSIS database.
For the SoilGrids maps, the evaluation was performed in 10-fold
cross-validation mode, meaning that predictions were derived
from a model that was calibrated on 9 folds, thus always excluding
the fold that contains the validation data. This was done to avoid
overoptimistic validation results for SoilGrids. For the other prod-
ucts, the validation points were reprojected to match the map
projection. Scatter density plots were made and prediction per-
formance was evaluated using the RMSE, ME and MEC.

As the available database presents a higher density of observa-
tions in the USA than in the rest of the world, the performance of
the four maps according to RMSE was also computed separately
considering data from ‘USA only’ and from the ‘rest of the world’.
Both the inter-comparison between maps and the evaluation of the
map accuracy were applied to the six GlobalSoilMap standard
depths.

2.5. Computational environment

The screening, selection and merging of the WoSIS datasets as
well as other dataset manipulations were performed using R (R
Core Team, 2020), in particular functions available in the tidy-

verse set of packages (Wickham et al., 2019). The PTF-RF to esti-
mate soil water retention was built using the ranger (Wright &
Ziegler, 2017) package. Subdivision of the locations in the folds,
while maintaining the spatial distribution, was performed using
the caret (Kuhn, 2021) package. Manipulations of raster type data
were performed using the terra (Hijmans, 2021b) and raster

(Hijmans, 2021a) packages. The grid used for map comparison was
created with the dggridR package (Barnes et al., 2020). Evaluation
Table 3
Characteristics of global soil water retention maps used for the comparison. More detail

Name Reference Depth

Map1 Dai et al. (2019b) 0-5, 5
Map2 Montzka et al. (2017) 0, 5, 1
Map3 Simons et al. (2020) 0-5, 5
SoilGrids this work 0-5, 5
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of the cross-validation datasets and the map comparisons were
performed on a point-basis, using the sf (Pebesma, 2018) and
rgdal (Bivand et al., 2021) packages for the necessary trans-
formations between map projections and for data storage as geo-
packages. Plotting of the final maps was performed with the tmap

(Tennekes, 2018) and tmaptools (Tennekes, 2021) packages.
The mapping was performed according to the SoilGrids 2.0

workflow (Poggio et al., 2021) with a dynamic geographic tiling
system and a parallelisation scheme described in de Sousa et al.
(2020). The code is available under the GPL3 license at the Soil-
Grids git repository.
3. Results and discussion

3.1. Merged datasets used for mapping soil water retention

Table 4 presents summary statistics for the PTF-RF derived on
the WoSIS dataset to estimate water retention at 100, 330 and
15000 cm suction from basic soil properties (Section 2.2). Bias was
not observed, explaining between 52 and 69 per cent of the vari-
ation, and that predictions were best for 15 000 cm and worst for
100 cm. Table 5 presents summary statistics for the input data from
the observed dataset, as derived from the original data described in
Table 2 and application of the screening and merging procedure
(Fig. 2). The number of layers with observed data for 100 cm were
about 20% of that for layers with data for 330 and 15000 cm suc-
tion. Table 5 also presents summary statistics for the estimated
dataset obtained using the PTF-RF described in Section 2.2, for
which the number of layers were always 436 108, irrespective of
the suction under consideration, and corresponding to the number
of available observations with the properties used in the PTF-RF.
Overall, the PTF-RF-derived data were slightly more skewed than
the observed data and the inter-quartile ranges were somewhat
smaller, which may be due to the smoothing effects of PTFs.

Density plots and density scatter plots comparing the three
suctions for the observed and estimated data (Fig. 3) showed a
similar distribution between observed and estimated soil water
retention data, despite the slightly different summary statistics
(Table 5). For the observed data, Fig. 3 confirmed that q(15 000 cm)
< q(330 cm) < q(100 cm).

The geographical distribution of the observed and estimated
volumetric water retention at 330 cm is shown in Fig. 4. Similar
figures for the other two suctions are presented in the Supple-
mentary Materials (Section S3). Most of the observed locations
were in the USA with fewer observations for South America and
s about the compared map-based products can be found in Table 1.

(cm) Spatial resolution

e15, 15e30, 30e60, 60e100, 100-200 30”
5, 30, 60, 100, 200 0.25�

e15, 15e30, 30e60, 60e100, 100-200 250 m
e15, 15e30, 30e60, 60e100, 100-200 250 m



Table 5
Summary statistics for volumetric water retention represented in the screened, merged dataset (observed) and in the dataset estimated by PTF-RF (estimated). Volumetric
water retention (q) in 10�2 cm3 cm�3.

N Mean SD Min q0.25 Median q0.75 Max Skewness

Water content from observed data
q (100 cm) 7292 33.8 12.5 2.7 25.4 34.1 41.5 79.1 0.24
q (330 cm) 33192 28.4 11.6 1.0 20.5 29.6 36.3 80.0 �0.04
q (15 000 cm) 42016 17.0 9.6 0.0 9.6 15.6 23.0 59.9 0.66

Water content from estimated data
q (100 cm) 436108 35.3 8.9 3.6 30.8 37.6 41.1 76.0 �0.84
q (330 cm) 436108 29.8 9.8 1.3 23.9 32.2 37.0 73.0 �0.73
q (15 000 cm) 436108 16.4 8.9 0.0 9.5 15.4 22.3 52.8 0.46

N: Number of available layers, SD: standard deviation, Min: minimum value, Max: maximum value.
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Asia, reflecting the regionally uneven distribution of the shared
observed data in WoSIS. If a certain data-poor area has environ-
mental conditions similar to a data-rich area, then spatial predic-
tion for that data-poor area will benefit from the calibration data
available for the data-rich area. In other situations, predictions in
data-poor areas may have low accuracy because of extrapolations
in feature space (Meyer & Pebesma, 2021). In such cases, the
modelling and mapping would likely benefit from adding the PTF
estimates of soil water retention, which are more uniformly
distributed across the globe, as performed here.

3.2. Cross-validation and mapping of soil water retention

For the mapping itself, we used the volumetric water retention
data derived according to Fig. 2, the so-called ‘observed’ data,
combined with the set of PTF-RF-derived or ‘estimated’ data (Sec-
tion 2.2). Summary statistics from the cross-validation are pre-
sented in Table 6.

The RMSE obtained for the estimated dataset was lower than for
the observed dataset, which appears to be the result of the use of
the PTF-RF, that tends to smooth the effects of natural soil het-
erogeneity. This trend was not observed for MEC because it scales
the error variance of the data, which is smaller for the estimated
dataset. The ME is small in all cases and hardly contributes to the
Fig. 3. Density scatter plots and density plots for volumetric water retention (100, 330 and
(estimated). Volumetric water retention (q) in 10�2 cm3 cm�3.
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RMSE. At 100 cm, even with the lower availability of observed data
(Fig. S3), the SoilGrids model performed better than for other
suctions, even though the water retention values were higher. This
result shows the benefit provided by using the PTF-RF (Table 4) for
improving the input dataset. Results of the cross-validation per
depth interval, considering the complete dataset, are presented in
the Supplementary Materials (Section S4). Scatter density plots
based on only the observed dataset compared to the predictions
from mapping are presented in Fig. 5. The figure confirmed large
differences between SoilGrids predictions and independent ob-
servations, but show that there is no systematic prediction error.

The cross-validation showed the mapping procedure to be able
to adequately explain the spatial variation of the soil properties.
Despite this being a global analysis, the values reported for RMSE,
ME and MEC were similar to those reported in studies at a regional
scale. Dharumarajan et al. (2020) evaluated soil water retention in
the Northern Karnataka Plateau, with RMSE depending on depth
and soil suction varying from 4.71 to 7.38 10�2cm3cm�3 while
Malone et al. (2020) predicted soil water retention across Austral-
ia's agricultural regionwith RMSE from 6.31 to 10.70 10�2cm3cm�3,
which are comparable accuracy to the results observed in this work.
Metrics for the estimation of water retention at suctions closer to
the permanent wilting point (15 000 cm) tended to be more ac-
curate than those closer to saturation, with lower RMSE and ME
15000 cm) represented in the screened dataset (observed) and the data from PTF-RFs



Fig. 4. Geographical distribution of volumetric water retention data at 330 cm after
consistency evaluation (observed) and of data derived using PTF-RF application (esti-
mated). Similar maps for the other pressures are provided in the Supplementary
Materials (Section S3).

Table 6
Cross-validation statistics for evaluation of mapping performance using the com-
plete dataset, a subset with only the observed data and a subset with only the
estimated data. RMSE and ME in 10�2 cm3 cm�3.

RMSE ME MEC

Volumetric soil water retention at 100 cm
observed data 8.7 �0.8 0.440
estimated data 5.8 0.2 0.420
observed þ estimated 6.4 0.1 0.430

Volumetric soil water retention at 330 cm
observed data 7.6 0.2 0.345
estimated data 6.5 0.1 0.437
observed þ estimated 7.1 0.2 0.386

Volumetric soil water retention at 15 000 cm
observed data 6.6 0.2 0.494
estimated data 6.4 �0.1 0.464
observed þ estimated 6.5 0.0 0.471

RMSE: root mean square error, ME: mean error, MEC: model efficiency coefficient.

Fig. 5. Scatter density plots for SoilGrids cross-validation
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and higher MEC. Similar patterns were observed by Dharumarajan
et al. (2020), Malone et al. (2020), and Mashalaba et al. (2020). In
general, this can be attributed to the lower variability of soil water
retention data at higher suctions (Table 5).

Fig. 6 presents the results of the global mapping of soil water
retention at 100, 330 and 15000 cm for the depth interval of
0e5 cm. The geographical patterns were similar for 100 and
330 cm, especially in the northern hemisphere, possibly due to be
relatively close suctions, while different patterns emerge at
15 000 cm. Results for the other depths are presented in the Sup-
plementary Material (Section S5).

Fig. 7 presents the results for q0.05, q0.95 and PIR at 330 cm
suction for 0e5 cm depth. For the presented suction and depth,
high PIR values were predominant in South America and Australia,
coinciding with areas that had a low observation density (Fig. 4).
Alternatively, high values of PIR were also observed in the African
continent, despite the relatively high observation density for that
region. A possible explanation for this could be that the feature
space is not covered as well in Africa as in other regions. Similar
results are reported for the other suctions and depths (see Sup-
plementary Materials, Section S6).
3.3. Comparison between point- and map-based mapping
approaches

Map inter-comparison was performed based on scatter density
plots and density plots of the data obtained at the hexagonal grid
presented Fig. 8. The figure also shows the distribution of the
volumetric water retention data. Irrespective of the soil water
suction, Map3 and SoilGrids had the highest agreement. Map3 is
based on the application of a VGM-PTF to basic soil property layers
from the latest version of SoilGrids (Poggio et al., 2021), which may
explain the similarities. Map1 and Map2 have multi-modal distri-
butions with many values close to zero, for all three evaluated
suctions, considering the grouped data from 0 to 200 cm Map1 in
general has the highest degree of spatial variation, while Map2 has
the lowest variation.

Fig. 9 shows the geographical distribution of soil water retention
at 330 cm and 0e5 cm depth for the four maps. For the other
suctions, we refer to the Supplementary Materials (Section S7).
Patterns for the distribution of volumetric water retention at
100 cm forMap1, Map2 andMap3were similar to those of themaps
of saturated water retention (qS) presented in the original studies.
The patterns and values of water retention on these maps were
determined by the PTF that was used to build the maps and the
base maps to which the PTF was applied (Table 1). Map1 has a more
diverse geographical pattern than the othermaps. This could in part
be attributed to the fact that Dai, Xin, et al. (2019) used soil
at all depth intervals considering the observed data.



Fig. 6. Predicted mean volumetric soil water retention at 100 cm, 330 cm, and 15000 cm for the 0e5 cm layer, including a global histogram of the mean soil water retention.
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parameters based on the soil composition datasets of GSDE
(Shangguan et al., 2014) applying various PTFs to describe soil
water retention parameters.
3.4. Accuracy evaluation of point- and map-based mapping
approaches

Point- and map-based derived maps were compared with the
observed data to evaluate the prediction accuracy. Scatter density
plots showing this evaluation are presented in the Supplementary
Materials. Results for SoilGrids andMap3 appeared closer to the 1:1
line than for the other products (Fig. S34). Similar to the map
comparison, Map2-predicted values had a narrower range than the
other products. Conversely, Map1 presented very dispersed data
relative to the 1:1 line. A possible explanation for this has been
given in the previous section.

As indicated earlier, most observed datawere located in the USA
(Fig. 4). In the case of the observed data, the fraction corresponding
to the USA was 49, 62 and 66% for 100, 330 and 15000 cm,
respectively, while for the estimated data the USA represented 56%
of the total. To evaluate the effect of this unequal geographical
distribution of observed data across the globe, Fig. 10 shows the
RMSE of the maps for different sub datasets.
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The four mapping approaches performed similarly when
applied to the ‘complete’ and ‘only USA0 sub datasets, pointing to a
high influence of these subsets on the final model evaluation. The
mapping models for Map1 and Map2 are highly influenced by data
from the USA, whereas this is less so for Map 3 and SoilGrids.
However, the PTF used to build Map3 was developed considering
European data only, and the apparent influence may be related to
similarities between soils from temperate regions. Overall, the
SoilGrids map and Map3 performed less well for the ‘rest of the
world’ than for the complete and USA-only datasets. The general
picture from Fig. 10 is that SoilGrids performed better than the
three map-based derived maps, as reflected by lower RMSE values
at the three suctions. Interestingly, for all maps, the RMSE for
100 cm was smaller than that for 330 cm and 15000 cm.

It should be emphasized that the point-based comparison pro-
vides metrics to evaluate the quality of the maps at points. The
point-based evaluation may not represent the accuracy of the maps
when aggregated to larger supports, such as spatial means for fields
or regions. It is, however, not possible to quantify the accuracy
improvement due to ‘upscaling’ without modelling the spatial
correlation of the prediction error (Webster & Oliver, 2007, pp.
153e194). Depending on the proposed applications, a more
rigorous assessment of accuracies may be required.



Fig. 7. Prediction distribution for soil water retention (q) at 330 cm for the 0e5 cm depth interval: (A) 0.05 quantile, (B) 0.95 quantile and (C) the prediction interval ratio (PIR),
including a global histogram.
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3.5. General discussion

The quality of the point-based maps depends on the availability
and consistency of the input data, the ability of the covariates to
explain the spatial variation of soil water retention, and the per-
formance of the mapping algorithm to capture the influence of
covariates on the response variable. For the map-based approach,
however, the quality is mainly determined by the PTF's capability to
represent water retention in the evaluated area and the quality of
the basic soil property maps, as indicated by Padarian et al. (2014).

Despite the undeniable functionality of PTFs, the assumptions
for developing statistical PTFs imply a high degree of empiricism
and uncertainty (Rom�an Dobarco et al., 2019; Schaap & Leij, 1998;
Vereecken et al., 2010). PTFs calibrated for one region may not be
applicable in another region. As indicated by various authors (Dai,
Xin, et al., 2019; Van Looy et al., 2017), PTF development must
happen jointly with the development of appropriate extrapolation
and upscaling techniques so that the PTFs can correctly represent
the spatial heterogeneity of soils. As mentioned before, the use of a
single PTF for global applications can lead to biases, underestima-
tion of uncertainties, and overconfidence problems Dai, Xin, et al.
(2019). In this study we used a single PTF-RF for enlarging the
dataset used in the point-basedmapping approach, as performed in
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other DSM projects (e.g. Hong et al. (2013); Liddicoat et al. (2015);
Zare et al. (2021)), which also created uncertainties because PTF
estimates are no substitute for real measurements. However, since
our method also uses direct measurements the final results are
likely to be less affected by these uncertainties, as confirmed by the
cross-validation analysis. Nevertheless, one of the limitations of
this work was to consider measured and PTF-RF-estimated data as
equally important in the soil mapping approach. The various
sources of uncertainty in themeasurement themselves as well as in
PTF-RF-estimated values, combined with those associated with the
machine learning method, will lead to a higher uncertainty. Accu-
racy differences in calibration data will also affect their weight in
the model calibration (e.g. Takoutsing et al. (2022); van der
Westhuizen et al. (2022)). The effect of using such ‘multi-source’
point data should be evaluated in future research, as suggested in
Wadoux et al. (2019).

The uncertainties and limitations of the point-based mapping
method, as discussed by Poggio et al. (2021), include the limited
prediction performance of the covariates, even though the set of
potential covariates is continuously growing. In the case of soil
water retention, the covariates are not able to represent all spatial
variation. The variance explained by the model was 0.49 (Table 6),
while for other soil/ecology attributes this may be up to 0.78



Fig. 8. Scatter density plots and density plots comparing the three selected maps with SoilGrids for points on a regular hexagonal grid at 100, 330 and 15000 cm for all layers
between 0 and 200 cm.

Fig. 9. Spatial variation in soil water retention observed between the evaluated maps at 330 cm for the 0e5 cm layer.
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(Poggio et al., 2021).Selection of the DSMmethod used tomodel the
data and generate maps also needs to be evaluated carefully. Ac-
cording to Zhang et al. (2017), considering the nature of the data
and purposes of the mapping, random forest presents an up-to-
date model with a fair compromise between performance and
applicability.

It is also important to select an adequate method of cross-
11
validation, since the use of clustered data for cross-validation
tends to generate biased estimates of map accuracy (Wadoux
et al., 2021). The influence of clustered data was observed in this
study by the similar performances of all four maps considering the
‘complete’ and the ‘USA only’ datasets (Fig.10). Sincemore than half
of the data were from the USA, cross-validation results for the
whole world (‘complete dataset’) were largely influenced by the



Fig. 10. Comparison of the RMSE of the evaluated maps at the cross-validation points considering all points at 100, 330 and 15000 cm for the layer 0e200 cm.
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performance in the USA. The cross-validation results for SoilGrids
are similar to those reported in studies at a regional scale
(Dharumarajan et al., 2020; Malone et al., 2020). The validation
metrics were more optimistic, possibly due to the clustering.

The SoilGrids predictions were at point support, which implies
large uncertainties because fine-scale spatial variation is large at
point support and cannot be represented by medium-scale cova-
riates. However, to quantify the uncertainty of spatial averages
requires a geostatistical approach (Szatm�ari et al., 2021), which was
beyond the scope of this study.

All the mentioned challenges of the point-based approach are
also important for the map-based approach, since the generation of
the basic soil property maps face the same challenges (Padarian
et al., 2014). Despite the uncertainties associated with the present
point-based mapping approach, the results of our study showed
that point-based mapping reached a higher accuracy than map-
based mapping, especially for 330 and 15000 cm, for which there
are more observations. Quantile maps (Fig. 7) and cross-validation
statistics (Fig. 10) showed that prediction uncertainties are large, as
also confirmed by the large differences between the three existing
maps and SoilGrids. The spatial patterns obtained with the four
mapping methods were also different (see Fig. 9 and Section S7 in
the Supplementary Materials). The large RMSE (Fig. 10) and low
MEC (Fig. S35) indicate that global maps should be treated with
care. When high accuracy at finer resolution is desired, regional
maps may be preferred (e.g. Dai et al. (2013); Malone et al. (2020)).

Further increase in accuracy and reduction of the uncertainty of
global of soil water retention maps can be achieved by combining
geographical databases of soil properties with remote sensing
technology and proximal data sensing methods (Vereecken et al.,
2016), using methods such as inverse modelling to derive soil
water retention from temporal series of soil water moisture
(Mohanty, 2013). Errors in the calibration data propagate and this
can have a dramatic effect on subsequent modelling, so it would be
even better if batch and laboratory measurement effects of the data
stored in databases were routinely accompanied by measurement
uncertainty metrics (van Leeuwen et al., 2021) so the influence of
them in DSM is taken into account (van der Westhuizen et al.,
2022), as well as other analytical and proximal soil sensing errors
(Takoutsing et al., 2022).

Another important source of uncertainty that is not acknowl-
edged in all evaluated maps is the temporal variation of soil water
retention. For example, in the case of measurements taken in un-
disturbed soil samples, reorganisation of pore sizes due to tillage
treatments can affect SWR at a given suction at point locations
(Bescansa et al., 2006).
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Despite all the past and present efforts to improve DSMmethods
and tools, one of the most important factors to determine the
quality of the final map is the availability and quality of the input
data. In this work, the creation of an appropriate dataset included
several steps and filters to guarantee reasonable bounds and
mutually consistent data. As a result, we discarded a fairly large
proportion of the original data, in particular measurements on
gravimetric basis where only 35, 39 and 27% of the available data at
respectively 100, 330, and 15000 cm were suitable for use, indi-
cating that more effort should bemade to quality-check data before
they are added to a database. In this study, we used all available
data from the WoSIS database and derived soil water retention
maps with the methodology of first estimating data points with a
PTF-RF and interpolating them later, which proved to be sufficient
to reach a higher accuracy than with the map-based method of
applying a PTF to basic soil maps. However, map accuracy would
benefit greatly from an increase of calibration data, as well as im-
provements in attribute and positional accuracy (Batjes et al.,
2020). Arrouays et al. (2020) emphasize the importance of
acquiring harmonized, temporally varied data for developing maps
which include the fluctuations of the variables in time. This would
require the establishment of fairly detailed monitoring networks,
and the subsequent sharing of the collected, geographically and
temporally referenced data.
4. Conclusions

We evaluated the performance of point-based mapping of
global soil water retention to predict data from theWoSIS database
and compared the results with those of three map-based ap-
proaches. The comparison showed that the point-based derived
maps (i.e. SoilGrids) performed better than the three map-based
derived maps at 330 and 15000 cm, yet with similar accuracy at
100 cm suction.

The uncertainty of the results of the point-based mapping was
rather large which can be associated to two main factors: limited
number of soil profile data available and limited prediction per-
formance of covariates. In the case of soil water retention, the
existing covariates were not able to capture all spatial variation.
Hence the lower explained variance compared with similar ap-
proaches for mapping other soil properties or ecological variables.
Uncertainty maps of the map-based methods were not available
and therefore it was not possible to make a comparison for this.

Creating global maps of soil water retention through point-
based mapping, with associated measures of prediction uncer-
tainty, provides a promising approach for mapping hydraulic
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properties for the world. Although the generated maps cannot be
considered as directly obtained from point measurements because
of the use of the PTF-RF to estimate a large amount of the input
data, our results showed that this approach is potentially more
suitable for global mapping of soil water retention. It better cap-
tures the spatial variation of soil water retention, and can result in
increasingly accurate maps, provided an adequate number of
evenly spatially-distributed soil samples become available. Further
research to improve performance and reduce uncertainty would be
beneficial, as well as integrating these products into global hydro-
logical models.

Data availability

The SoilGrids layers are available for evaluation as pre-release
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