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Manual assessment of flower abundance of different flowering plant species in grasslands

is a time-consuming process. We present an automated approach to determine the

flower abundance in grasslands from drone-based aerial images by using deep learning

(Faster R-CNN) object detection approach, which was trained and evaluated on data

from five flights at two sites. Our deep learning network was able to identify and classify

individual flowers. The novel method allowed generating spatially explicit maps of flower

abundance that met or exceeded the accuracy of the manual-count-data extrapolation

method while being less labor intensive. The results were very good for some types

of flowers, with precision and recall being close to or higher than 90%. Other flowers

were detected poorly due to reasons such as lack of enough training data, appearance

changes due to phenology, or flowers being too small to be reliably distinguishable on

the aerial images. The method was able to give precise estimates of the abundance of

many flowering plant species. In the future, the collection of more training data will allow

better predictions for the flowers that are not well predicted yet. The developed pipeline

can be applied to any sort of aerial object detection problem.

Keywords: unmanned aerial vehicle (UAV), abundance mapping, faster R-CNN, object detection, aerial image,

machine learning, remotely piloted aerial vehicles (RPAS), meadow

1. INTRODUCTION

The service done by pollinators in farmlands is estimated to value more than 150 billion euros
a year worldwide (Gallai et al., 2009). Their declining numbers (Hallmann et al., 2017) motivate
many ecologists to study their interplay with the environment. Such studies include the assessment
of flower abundance and distribution, which is an extremely time-consuming task. At the same
time, quantification of floral resources is an increasingly important topic in ecological research with
implications for both theoretical and applied ecological issues (Benadi and Pauw, 2018; Bergamo
et al., 2020; Biella et al., 2020; Fantinato et al., 2021).

Many remote sensing technologies exist to assess plant diversity (Wang and Gamon, 2019;
Lausch et al., 2020). In the last 10 years, rapid developments in sensor technology and robotics
have enhanced the capabilities of unmanned aerial vehicles (UAVs) (Anderson and Gaston, 2013;
Pajares, 2015; Sanchez-Azofeifa et al., 2017; Aasen et al., 2018b). Today, it is both technologically
possible and financially affordable to take ultra-high spatial resolution images of large areas (several
deka-hectares with a ground resolution of 1 cm per pixel). When UAVs are flying at a lower height
and slower speed, even resolutions of down to millimeters per pixel can be reached. Consequently,
UAVs have also been used in many ecological settings. These include invasive species mapping

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2021.774965
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2021.774965&domain=pdf&date_stamp=2022-02-09
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles
https://creativecommons.org/licenses/by/4.0/
mailto:science@helgeaasen.net
https://orcid.org/0000-0003-4782-2768
https://orcid.org/0000-0003-4090-8155
https://orcid.org/0000-0001-5518-3455
https://orcid.org/0000-0003-4343-0476
https://doi.org/10.3389/fpls.2021.774965
https://www.frontiersin.org/articles/10.3389/fpls.2021.774965/full


Gallmann et al. Flower Mapping With Deep Learning

(Hill et al., 2017; Müllerová et al., 2017; de S et al., 2018;
Martin et al., 2018; Kattenborn et al., 2019), wildlife assessment
(Andrew and Shephard, 2017; Rey et al., 2017; Hollings et al.,
2018; Christiansen et al., 2019; Eikelboom et al., 2019), and plant
biodiversity estimation (Getzin et al., 2012), including object-
based species classification (Lu and He, 2017). Moreover, UAVs
have been used to track spatial patterns in phenology (Neumann
et al., 2020) and flowering of invasive species (de S et al., 2018).

Remote flower mapping in a grassland containing many
species is a challenging task because the structures are fine and
flowers might be occluded by other plants. Current approaches
of automated flower mapping work with image resolutions in the
range of centimeters or even meters per pixel (Abdel-Rahman
et al., 2015; Landmann et al., 2015; Chen et al., 2019) and are
therefore not suited to detect individual flowers and differentiate
between flower species of similar color. Other approaches are
tailored to a single species (Horton et al., 2017; Campbell
and Fearns, 2018) and are not applicable to a wide range of
use cases.

Recently, deep-learning-based classification methods that are
able to utilize the details of ultra-high-resolution image data
have been developed. In particular, deep convolutional neural
networks (CNNs) have revolutionized image interpretation by
improving the accuracy of object detection and classification
tasks. A deep CNN is a network with many layers. It takes
the pixels of an image as input and, as output, predicts the
likelihood for each class label it has been trained on. Internally,
it applies thousands of learned filters to all regions of the image
and in the end combines them to find the likelihood for each
class label. The end-to-end approach of deep learning methods
allows automatic detection of important features without human
interaction because the networks automatically learn which
features are the most important ones. Recently, such approaches
have been introduced to detect and count animals (Rey et al.,
2017; Eikelboom et al., 2019) and plants (Eikelboom et al., 2019;
Kattenborn et al., 2019; Osco et al., 2020) in an ecological context.

In this article, we present a deep-learning-based method to
collect information about flower abundance and distribution
in grasslands from drone-based aerial images. To evaluate its
performance, we addressed several questions:

1. How does manual counting of flowers compare with tablet-
assisted annotations on high-resolution aerial imagery?

2. How does drone-based, automated deep learning flower
counting compare with a manual assessment?

3. How does a drone-based, automated flower mapping of a
whole meadow compare with extrapolation from the counting
of flowers in distinct sample squares?

2. MATERIALS AND METHODS

2.1. Overview
The proposed method can be divided into the three main phases
of data collection (Section 2.2), the model training (Section 2.3),
and the application to unseen images (Section 2.4) as depicted in
Figure 1.

2.2. Data Collection
2.2.1. Dataset
The dataset on which the method was evaluated consisted of
10,000 annotated flowers. The aerial images were captured at
two sites and on 5 days from a flight height of 19 m and a
ground sampling distance of approximately 1.5 mm per pixel.
For the collection of the flower dataset, a drone model called
Transformer UAV (Copting GmbH, 2017) and a DJI Matrice
600 PRO (SZ DJI Technology Co., Ltd., 2018) were used. Both
drones were programmed to fly along a predefined route such
that the area was fully covered and the images had an overlap
of 90%. Attached to the drone was a Sony ILCE-7RM2 (Sony
Corporation, 2015) camera that took 42.2-megapixel photos in
combination with a Zeiss Batis 1.8/85 telephoto lens (Carl Zeiss
AG, 2017). The weather was sunny on all flight days. One of the
two sites has been managed extensively during the last 15 years
such that the plant diversity in this meadow was very high. Forty
flowering plant species were found between May 23rd and July
3rd of 2019. Approximately half of these species were omitted in
the analysis because too few samples (less than 50) were present
in the survey plots. As summarized in Table 1, some flowers were
combined into groups because they had few annotated samples
or they looked similar to other flowers. Because the individual
flowers within an inflorescence could rarely be identified in the
drone-based images, all inflorescences were annotated as one
flower instance. Subsequently, when we refer to the term flower,
inflorescences were included as well.

2.2.2. Traditional Data Acquisition
Traditionally, the most commonly applied method to obtain
information about flower abundance in the flowering vegetation
of a focal land use area is a direct visual assessment of the
flowering vegetation by an observer in the field; the observer
counts or estimates the flowers of each flowering plant “by hand”
(i.e., manually) within survey plots of appropriate numbers and
sizes for the specific study, which are distributed within the area
of interest (Albrecht et al., 2007; Szigeti et al., 2016; Bartual
et al., 2019). In our study, flower types ranged from simple
(e.g., Violaceae) to more complex types in which flowers are
arranged in clusters of various sizes and shapes (e.g., Apiaceae,
Asteraceae). These inflorescences were classified according to
Pywell et al. (2004) and Bartual et al. (2019) and were counted
for each flowering dicotyledon plant species in each survey plot.
Once the flowers present within the survey plots were counted
or estimated, these numbers were extrapolated to the size of
the whole area of interest by multiplying the counts by a factor
corresponding to the relative size of the plots to the total area of
the field.When applied with adequate numbers and sizes of plots,
this method has been shown to provide reliable estimates of the
abundance of flowers in an area of interest (Szigeti et al., 2016). In
the present study, we randomly located 15 survey plots (1 m by 1
m) in the study grassland. This large number of plots was used to
account for the typically high heterogeneity in the composition
of the flowering plant communities and their spatial distribution
in grasslands (Bartual et al., 2019). We carried out this traditional
approach of manual counting in parallel to each iteration of the
drone-based data acquisition method and used it as a baseline.
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FIGURE 1 | Overview of the proposed method. Gray-colored steps might not be necessary for some use cases. For a comprehensive explanation of the main phases

data collection (Section 2.2), model training (Section 2.3) and application (Section 2.4) please refer to the corresponding section.

TABLE 1 | Groups of plant species that were combined into one group (table header).

Ranunculus species (n = 474) Lotus corniculatus (3,271) Galium mollugo (659) Crepis biennis (159) Centaurea jacea (805)

-Ranunculus bulbosus (442) -Lotus corniculatus (2926) -Galium mollugo (202) -Crepis biennis (89) -Centaurea jacea (786)

-Ranunculus friesianus (8) -Lathyrus pratensis (345) -Achillea millefolium (338) -Leontodon hispidus (10) -Lychnis flos-cuculi (19)

-Ranunculus acris (24) -Daucus carota (65) -Tragopogon pratensis (8)

-Carum carvi (54) -Picris hieracioides (52)

2.2.3. Drone-Based Data Acquisition
Because one aim of this study was to carry out a multi-temporal
analysis of the flower abundance, we placed ground control
points (GCPs) within the test region to geographically align the
results of subsequent flights. The placement of the GCPs was
simulated with the PhenoFly flight planning tool described by
Roth et al. (2018b) to get an intuition on how to distribute the
GCPs. The GCPs were then distributed across the meadow with
a squared layout with the distance between the GCPs ranging
between 4 and 7 m. With this setup, one to two GCPs were
visible in each image. Each GCP had a size of 0.15 m, which
corresponds to approximately 150 pixels. The exact coordinates
of all these GCPs were collected with a Differential Global
Navigation Satellite System (R10, Trimble Ltd., Sunnyvale, CA)
with swipos-GIS/GEO RTK (real-time kinematic) correction
(Federal Office of Topography Swisstopo, Wabern, Switzerland),
resulting in a horizontal accuracy of 0.008 m and a vertical
accuracy of 0.015 m. Later, they were used in the software Agisoft
(Agisoft, 2019) as described below. Having the GCPs in place, the
drone was flown along a predefined route across the field.

After the flight, the relative positions and orientation of the
aerial images were reconstructed and merged together into a
large orthomosaic. An orthomosaic is a visual representation of
an area, created from many photos that were stitched together
in a geometrically corrected way. We used the Structure from
Motion approach (Ullman, 1979; Harwin and Lucieer, 2012)
implemented in the software Agisoft Metashape Version 1.5.3
(Agisoft, 2019). Agisoft takes all aerial images as input and aligns

them via bundle adjustment. This procedure allows generating
a point cloud of the topography of the surveyed area. From the
point cloud, a digital surface model was generated to orthorectify
the orthomosaic. During orthomosaic generation, we used the
option blending disabled to prohibit smearing of the original
information of the images in the orthomosaic. The orthomosaic
was georeferenced based on the GCP position.

Agisoft automatically detects the unique pattern on the
GCPs to map the GPS coordinates to each of them. The
advantage of providing the positions of the GCPs in the
field is that the resulting orthomosaic is georeferenced. The
georeferenced orthomosaic was later used to display the user’s
position in the Android application FieldAnnotator and to be
able to copy annotations to the single orthorectified images
that were georeferenced (refer to Sections 2.2.4 and 2.2.5 for
further information).

2.2.4. Annotation
On the georeferenced orthomosaic, the areas of all sample
squares were extracted and all flowers annotated. For annotating,
we used the program LabelMe (Wada, 2016) and an Android
tablet application called PhenoAnnotator (Figure 2) that we
specifically developed for this purpose (for a detailed description,
refer to Supplementary Section A.1). The FieldAnnotator can
be found at https://github.com/tschutli/Phenotator-Toolbox or
at the Google Play Store. Android tablets were not capable of
handling large orthomosaics (around 50, 000 times 50, 000 pixels
for an area of 30 m by 30 m). Therefore, the orthomosaics
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FIGURE 2 | (Left) Example of area extracted from a sample square to be annotated. (Right) Screenshot of the FieldAnnotator during the annotation process. The

numbers highlight the controles of the FieldAnnotator. For a detailed description please refer to Supplementary Section A.1.

were tiled into small chunks of 256 times 256 pixels at various
zoom levels before these tiles were then imported into the
FieldAnnotator application. The resulting annotations were
stored in a json file.

2.2.5. Leveraging Overlapping Images
Because the camera attached to the drone captures a large
number of highly overlapping images, the overlapping images
can be used to create additional training data with flowers
pictured from a slightly different angle on each image. We
transferred the geolocation of each flower mapped on one image
to the other images. Because grasslands have a very complex
structure, some of the copied annotations were slightly shifted
within the overlapping images. To correct for the shift, an
additional script was written to let the user view and adjust all
annotations in the LabelMe application. These slight adjustments
of the annotations took significantly less time than annotating the
data from scratch.

2.3. Model Training
2.3.1. Selecting Regions of Interest in Annotated

Images
In case the images were only partly annotated, we developed a
script that allows the user to cut out certain regions (polygon
shaped) from the images. Only the image pixels within these
selected regions were kept while the rest of the image pixels
were over-written with black. This procedure ensured that the
TensorFlow model (Abadi et al., 2015) did not learn to classify
non-annotated flowers as the background class.

2.3.2. Image Preparation for TensorFlow
As a result of these preparations, the training data consisted of
image files alongside with json files containing the annotations.
To prepare the data to be imported into TensorFlow, we first split
up the images into tiles. The default tile size was set to 450 times
450 pixels. These image tiles were then upscaled by a factor of two
to tiles of 900 times 900 pixels as suggested by Hu and Ramanan
(2017) and as justified in the Supplementary Section A.2. The

tiles were overlapping such that flowers positioned on the edge of
two tiles were not lost as training data but were always present as a
whole in at least one tile. Additionally, all annotations (including
point and polygon annotations) were converted to bounding
boxes. Finally, the images were split up into training, test and
validation sets.

2.3.3. Neural Network Training
The core of the pipeline consisted of a CNN. We used the Faster
R-CNN architecture (Ren et al., 2015). This architecture outputs
the bounding box coordinates of the objects it recognizes on
an input image. The Faster R-CNN architecture requires more
computing power than other architectures do, but it has been
shown to performwell on aerial and other high-resolution images
(Carlet and Abayowa, 2017; Huang et al., 2017). Because the
default configuration of the Faster R-CNN architecture is not
optimized to detect very small objects (Huang et al., 2017; Zhang
et al., 2017) of only a few pixels in diameter (as it is the case for
flowers in aerial images), we adjusted some parameters (refer to
Supplementary Section A.2 for experiment results on different
parameter combinations). Additionally, we used some typical
data augmentation techniques to increase the diversity of our
dataset, namely, random horizontal and vertical flips, random
brightness adjustments, random contrast adjustments, random
saturation adjustments, and random box jittering1.

During training, the validation set was used to decide when
to change the learning rate and when to stop training. Every
2,500 steps, the training was paused and the prediction algorithm
followed by the evaluation algorithm was run on the validation
set. The learning rate was adjusted if for the last 15,000 steps no
further improvements were made. After adjusting the learning
rate two times, from 3E-04 to 3E-05 and from 3E-05 to 3E-06, the
training was stopped if for 15,000 steps no improvement in the
performance was seen. The number of 15,000 steps was chosen

1jittering refers to random changes in some parameters. For an illustrative

overview of data augmentation one may refer to https://towardsdatascience.com/

tagged/data-augmentation.
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empirically based on an evaluation of initial results that showed
that no model was further improved after it did not improve for
15,000 steps. Reducing the learning rate two times by a factor
of 10 was adapted from the Faster R-CNN default configuration.
The evaluation metric could be chosen as either the F1 score or
the mean average precision (mAP). Section 2.4 further explains
the prediction and evaluation processes.

The number of training examples can vary greatly from class
to class. Therefore, each class was assigned a weight. The weight
was inversely proportional to the number of training examples
and influenced the loss function during training. This weighting
ensured that the network did not just optimize to detect the
most common classes. As a consequence, each mistake in a less
common class had a much higher penalty to the loss function.
Once a network was fully trained, it was exported as an inference
graph. This exported inference graph could then be used by the
prediction and evaluation scripts described in Section 2.4.

2.4. Application to Unseen Images
2.4.1. Predictions
The trained network can be used to make predictions on
images of arbitrary size (e.g., orthomosaics) provided they have
a ground sampling distance similar to that of the training images.
The pipeline handles the tiling of large images as well as the
reassembling of the prediction results from the single tiles.
Optionally, a region of interest can be selected within an image.
As a consequence, only the flower abundance within this region
of interest is assessed by the prediction algorithm.

The prediction algorithm draws the bounding boxes of all
detected flowers onto the image and saves the statistics about
the flower abundance to a json file. To improve the prediction
accuracy, the tiles had an overlap of 100 pixels by default. This
overlap ensured that as long as a flower was not larger than
100 pixels in diameter, it was fully visible on at least one tile.
Error-prone predictions close to or on the edge of a tile could
therefore be ignored because they were fully covered on the
adjacent tile. Nevertheless, having this overlap introduced the
problem of duplicate predictions. This problem was mitigated by
applying non-maximum suppression with an intersection-over-
union (iou) threshold of 0.3, similar to the threshold applied by
Ozge Unel et al. (2019), such that for all predictions that had
an overlap of more than 30%, only the one with the highest
confidence score was kept.

2.4.2. Evaluations
To evaluate the performance of a model, the predictions on the
test set were compared with the validation annotations of the
test set. The main metrics of interest were precision and recall.
To compute precision and recall values, the true positive (TP),
false positive (FP), and false negative (FN) predictions had to
be known. To obtain these values, the predictions were sorted
by their confidence. Then, all predictions were compared with
ground truth bounding boxes of the same label. To compare two
bounding boxes, the iou formula was used:

iou =
intersection area

area of union

If the highest iou value was greater than a given threshold value
(default of 0.3), the corresponding ground truth box was marked
as used and the prediction was marked as TP. If the highest
iou value was less than the threshold value, the prediction was
marked as FP. After this process was done for each prediction, all
ground truth entries that were not marked as used were counted
as FN. Having the TP, FP and FN numbers, the precision and
recall values were calculated using the following formulas:

precision =
TP

TP + FP

recall =
TP

TP + FN

Additionally, we calculated the F1 score as follows:

F1 = 2 ·
precision · recall

precision+ recall

The better the precision and recall values, the better is the
F1 score. It rates precision and recall equally and reaches its
maximum of one at perfect precision and recall. As an alternative
to the F1 score, the mAP as defined in the PASCAL Visual Object
Classes Challenge Development Kit (Everingham and Winn,
2011) was used to rate a model’s performance.

2.4.3. Visualizations
The pipeline offers various options for visualizing the results.
Apart from drawing the predictions as colored bounding boxes
onto the images, erroneous predictions can be highlighted.
Additionally, heatmaps that visualize the density distribution of
the flowers can be generated from the prediction output. The
size of the kernel for the flower density mapping is customizable.
Optionally, the heatmap can be drawn directly onto the image.
The heatmaps can be generated for an individual class or for
all classes. If the input images are georeferenced, there is the
option to generate one heatmap from a collection of images. If
the images are overlapping, the heatmap indicates the average
number of flowers found at a particular position. Furthermore,
the user can provide the geocoordinates of the upper left and
lower right corner of the desired output region. The script will
then output a heatmap of exactly that region. This option allows
for time series generations. Example results of such time series
generations can be viewed in Section 3.4.

2.5. Impact of Ground Sampling Distance
To investigate the impact of different ground sampling distances,
the training, test, and validation images were first scaled down
to the desired ground resolution and then scaled up again to
their original resolution. After upscaling, all datasets had the
same ground sampling distance as the original images. This
procedure ensured that the flowers’ sizes (in image pixels) were
large enough to be detectable by the Faster R-CNN network
architecture and prevented performance losses caused by this
problem as described by Hu and Ramanan (2017). For each
ground resolution, a network was trained and evaluated with the
processed training images.
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TABLE 2 | Comparison of selected manually counted total numbers with tablet

annotations.

Flower Manually counted Tablet annotations Ratio

Leucanthemum vulgare 724 960 1.3

Onobrychis viciifolia 483 105 0.2

Lotus corniculatus 1,943 748 0.4

Salvia pratensis 142 127 0.9

Ranunculus species 431 474 1.1

Knautia arvensis 371 471 1.3

Trifolium pratense 129 72 0.6

Medicago lupulina 117 5 0.0

Centaurea jacea 25 28 1.1

The last column shows the ratio of the tablet annotations divided by the manually counted

flowers.

3. RESULTS

Comparing human counting with drone-based automated
mapping has three aspects. First, we assessed the differences
between the manual counting and the tablet annotations within
patches of vegetation marked with wooden squares (vegetation
squares). Second, we evaluated the performance of the deep-
learning-based flower detection algorithm on the images within
the vegetation squares. Third, we compared the automated
estimates for the whole meadow with the extrapolation from the
manual counts within the vegetation squares to the whole area of
the meadow.

3.1. Manual Counting vs. Drone-Based
Image Tablet Annotations
We compared the flower heads annotated within the vegetation
squares on the drone-based aerial images via the tablet
application with those manually counted by an observer. Table 2
lists the results for a representative subset of all flowers found
within the test fields. For Salvia pratensis, Ranunculus species,
and Centaurea jacea, the tablet and manual counts aligned well.
For Leucanthemum vulgare and Knautia arvensis, more flowers
were annotated on the tablet. For the other four species, fewer
flowers were annotated on the tablet. For Medicago lupulina,
only very few instances were annotated on the tablet. Refer to
Figure 3 for visualizations of 25 flower species found within the
test fields.

3.2. Algorithm Performance Inside Survey
Plots
We compared the tablet annotations with the deep learning
predictions within the survey plots. The prediction performance
for each flower species can be obtained from Table 4. A
prediction was considered for the comparison if its confidence
score was greater than 0.2. The overall precision and recall were
87.0 and 84.2%, respectively. The vast majority of the flowers
present in the test data of June 14th were Knautia arvensis,
Leucanthemum vulgare, and Lotus corniculatus. These three
flower species performed well, and, therefore, the good overall

score was mainly determined by these three flower species.
All the other flower species performed worse than the overall
performance indicates.

Table 3 shows the confusion matrix of this experiment. It was
striking that there were only a few confusions between different
flower species. The much more common cases of confusion were
that flowers were predicted where there was none and flowers
were not predicted where they should be. The green entries
denote the correctly predicted flowers.

Table 4 shows that the flowers with little training data
tended to not perform well. The question is whether this low
performance was due to the lack of enough training data or
because assigning an inversely proportional weight to each class
during training is not sufficient to regularize the loss function.
Therefore, we trained a separate network in which the three best
performing flowers (Leucanthemum vulgare, Lotus corniculatus
and Knautia arvensis) were ignored and treated as background.
With the mAP rising from 25.2 to 31.5% (F1 score improving
from 47.0 to 51.3%), a certain improvement could be seen.
Therefore, the possibility of leveraging two separately trained
networks was not further evaluated.

When looking at the predictions, there were various sources
of errors apparent. Some examples can be seen in Figure 4.
For Leucanthemum vulgare, a typical error occurred where
two instances were very close to each other as in image a).
In that case, often only one of the two flowers was detected.
The missing annotation was not caused by the non-maximum
suppression algorithm, as a closer look disclosed. Another
typical source of errors was flowers that were on the verge
of fading. In the case of image b), two flowers were detected
that were not annotated in the ground truth because the
botanical expert considered the flowers to be faded already.
Even when manually counting the flowers, it was sometimes
difficult to decide if a flower should be counted or not because
of the seamless transition from blooming to faded. Two main
problems existed for Lotus corniculatus. First, the blooms of
Lotus corniculatus were often arranged as small inflorescences,
as visible in the image a) to the bottom left or in image
c). In some cases, the network predicted the blooms of an
inflorescence as individual instances whereas in the ground
truth, the whole inflorescence was annotated as one instance.
The opposite case was common as well. The second problem
of Lotus corniculatus was FP predictions caused by missing
ground truth annotations [as in image d)]. These problems
are further discussed in Section 4.1. The main error source
for Knautia arvensis were blooms that looked different because
they were wilting as for example in image e). In image f), the
model erroneously predicted a Knautia arvensis where there
was an Anacamptis pyramidalis flower. Anacamptis pyramidalis
was not included in the training because too few training
instances existed.

3.3. Prediction on a Whole Meadow
Counting flowers in small, representative areas of a field and
extrapolating these counts to the area of the whole field
is a common method in field ecology. We compared the
predictions of the deep learning model on the whole test
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FIGURE 3 | Excerpts from aerial images of the most common flower species. Please note that the images have been scaled to show the flower heads, and thus the

pixel size is not consistent between the excerpts. (For images with real relative scaling, please refer to Supplementary Section A.3).

field with the extrapolation of the flowers manually counted
within the vegetation squares. The numbers of manually
counted flowers were extrapolated to the size of the whole
field, which was 730 m2. Table 5 lists all flowers that were
detected reasonably well inside the survey plots by the deep
learning model. For each flower species, the number of deep
learning detections in the whole field was listed as well as
the number of flowers predicted by the extrapolation of the
manual counts.

For Centaurea jacea, Knautia arvensis, and Lotus corniculatus,
the number of drone-based predictions was very similar to
the extrapolation of the manually counted number of flowers.
The results were within 11, 3, and 2%, respectively. According
to heatmaps generated from the drone-based predictions (see
Section 3.4), these were also the flowers that were relatively
evenly distributed. The extrapolation of the manually counted
number of Leucanthemum vulgare flowers was 53% higher than
the number of drone-based predictions.

3.4. Density Distribution Maps
The heatmaps in Figure 5 depict the abundance of selected
individual flowers in one of our test fields on June 14th. The
three heatmaps for Leucanthemum vulgare, Lotus corniculatus,
and Knautia arvensis were generated from the orthomosaic.

Figure 6 contains a time series of an excerpt of our
main test site. It illustrates the difference in the abundance
evolution of Leucanthemum vulgare and Lotus corniculatus.
It is conspicuous that the Lotus corniculatus population was
much more evenly distributed than the Leucanthemum vulgare
population. Leucanthemum vulgare had a peak population on
June 6th, whereas on July 3rd, the population was almost
completely faded. The peak population of Lotus corniculatus was
much less pronounced.

3.5. Impact of Ground Sampling Distance
Figure 7 demonstrates the effect of decreasing ground sampling
distance on an exemplary excerpt of an aerial image containing
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TABLE 3 | The table shows the confusion matrix.
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A. vulneraria 1 - - - - - - 3 - - - - - - 2

C. jacea - 27 - - - 17 - - - 1 - - 3 3 2

C. biennis - - 14 - - - - 5 - - - - - - 2

D. carthusianorum - 3 - 8 - 1 - - 10 - - - - 6 6

G. mollugo - - - - 8 - - - - - - - - - 8

K. arvensis - - - - - 412 1 - - - - - 2 - 23

L. vulgare - - 1 - 1 4 906 - - - - - 1 - 109

L. corniculatus - - 6 - - - 1 877 - - - - - - 142

O. viciifolia - 1 - - - 1 - - 45 - - - - 11 37

P. vulgaris - - - - - - - - - - - - - - -

Ranunculus species - - - - - - - - - - - - - - -

R. alectorolophus - - - - - - - 1 - - - 8 - - 17

S. pratensis - - - - - - - - - - - - 12 - 3

T. pratense - - - - - 1 - - - - - - - 4 2

False positives 4 6 17 - 32 24 31 117 3 - 1 5 6 18 -

The columns represent what the model predicted, and the rows represent what the model should have predicted (the ground truth). The green, red, orange, and brown numbers denote

TP, FP, FN, and confusions between two flower species, respectively.

TABLE 4 | Performance of the prediction algorithm on all flower species present in the field on June 14th.

Flower species Training instances Test instances Precision (%) Recall (%) mAP F1 Score

A. vulneraria 196 6 20.0 16.7 0.056 0.182

C. jacea 742 53 73.0 50.9 0.382 0.600

C. biennis 124 21 36.8 66.7 0.325 0.475

D. carthusianorum 20 34 100.0 23.5 0.235 0.381

G. mollugo 546 16 19.5 50.0 0.100 0.281

K. arvensis 429 438 89.6 94.1 0.879 0.918

L. vulgare 928 1,022 96.5 88.6 0.861 0.924

L. corniculatus 2,153 1,026 87.4 85.5 0.772 0.864

O. viciifolia 92 95 77.6 47.4 0.407 0.588

R. alectorolophus 23 26 61.5 30.8 0.218 0.410

S. pratensis 133 15 50.0 80.0 0.436 0.615

T. pratense 109 7 9.5 57.1 0.104 0.163

Overall 5495 2759 87.0 84.2 0.398 0.855

The numbers in the Training Instances and Test Instances columns refer to the ground truth annotations. The overall scores of the performance metrics were weighted means. mAP =

mean average precision.

a Leucanthemum vulgare flower and a Lotus corniculatus
inflorescence. Figures 8, 9 illustrate the effect of decreasing
ground resolution on the F1 score and the mAP, respectively.
Both figures show that down to a ground sampling distance
(GSD) of 5 mm, there was a marginal decrease in prediction
performance. Further decreasing the GSD to 10 and 20 mm per
pixel had noticeable negative effects on the model’s performance.
As expected, the performance of small flowers such as those

of Lotus corniculatus decreased disproportionately because at a
certain ground resolution they simply became indistinguishable.
The average size of a Lotus corniculatus flower was around
16 mm. The performance of larger flowers such as those of
Leucanthemum vulgare (40 mm) and Knautia arvensis (34 mm)
degraded notably more slowly. The graphs for the precision and
recall metrics were omitted because the trends were equivalent to
the trends of the F1 score and the mAP metric.
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FIGURE 4 | Selection of typical mispredictions. All thin bounding boxes are correct predictions. The bold red bounding boxes denote false positive and the bold violet

bounding boxes denote false negative predictions. There are various explanations for the mispredictions: Overlapping flowers (A), partially withered flowers (B,E),

collections of flowers (C), missing ground truth annotations (D) and flowers that are missing in the training data (F).

TABLE 5 | Predictions on the whole field of 730 square meters.

Flower Drone-based prediction Extrapolation of manual counts Relative difference (%)

Centaurea jacea 456 505 10.7

Knautia arvensis 8,059 8,308 3.1

Leucanthemum vulgare 7,044 10,778 53.0

Lotus corniculatus* 50,365 51,139 1.5

Onobrychis viciifolia 595 3,761 532

Salvia pratensis 209 673 222

*The 50, 365 predicted Lotus corniculatus flowers were calculated as the multiplicative of the actual predictions of the network (19389) and a ratio of 2.6. The numbers in Table 2

suggest that there are on average 2.6 blooms per prediction.

4. DISCUSSION

4.1. Tablet-Assisted Annotations in
Vegetation Squares
We evaluated different approaches to map flowers in
grasslands. We used manual counting within survey plots
as a baseline and compared it with tablet annotations on
drone-based aerial images of the survey plots and automated
deep-learning-based mapping within the survey plots.
The advantage of being able to annotate the images on a
tablet is that some flowers can be very hard to distinguish
on the images. If one can compare the image with the
actual flowers on site, the quality of the training data
can be improved, and the number of false annotations is
thus minimized.

Section 3.1 shows that some flowers had more tablet
annotations on the images than were manually counted by
an observer within the survey plots. These were flowers of
Leucanthenum vulgare, Ranunculus species, Knautia arvensis,
and Centaurea jacea. An explanation for this finding is that
manually counting flowers requires a high level of concentration.
Mistakes happen very easily when many flowers are present
within a small area. Annotating on an image has the advantage
that flowers are marked and therefore the risk of counting
a flower twice or overlooking a flower is minimized. On the
other hand, some flowers were hardly visible on the drone-
based images, and therefore significantly fewer instances were
counted in the tablet annotations compared with the manually
counted data. Onobrychis viciifolia, Medicago lupulina and to
some extent Trifolium pratense fall in this category. The flowers
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FIGURE 5 | Heatmaps of our main test site showing the abundance density for (A) Knautia arvensis, (B) Leucanthemum vulgare, and (C) Lotus corniculatus. Image

(D) depicts the image coverage of the field.

of Medicago lupulina were too small to be reliably identifiable
on the drone-based images. Those of Trifolium pratense and
Onobrychis viciifoliawould be large enough but were often hardly
distinguishable from the background.

4.2. Performance of the Detection
Algorithm
Whether it is possible to achieve reliable predictions for a
certain flower on drone-based images depends on several
factors. First, enough training data on the flower in question
needs to be available. Our results suggest that with a few
hundred instances, good performance can be achieved. Second,
also the morphology of the flower has an impact. Flowers
such as those of Galium mollugo are difficult for an object
detection network to predict reliably. The cause seems to
be that these flowers can sometimes be very small and, in
other cases, multiple instances of the same flower species can
cover a large area of partly overlapping inflorescences, making
it difficult to separate the single instances. In such cases,
it would be interesting to see how an image segmentation
network such as U-Net (Ronneberger et al., 2015), which

predicts regions (pixels) that belong to a certain class, would
perform. Third, the size of a flower should span a certain
minimum number of pixels. The good results for Lotus
corniculatus suggest that a diameter of around 5–10 pixels
is sufficient. Besides, these results are likely to be positively
influenced by the distinct color and the strong contrast to
the background of Lotus corniculatus flowers. Other flowers of
similar size such as those of Onobrychis viciifolia or Trifolium
pratense performed significantly worse. These flowers were much
harder to distinguish from the background. It is evident that
distinguishability (mainly driven by contrast) is the fourth main
factor that determines the prediction performance of a network
for a particular flower.

Generally, it is advised to scale up all images with objects
that are smaller than 40 pixels in diameter by a factor of two to
improve the performance of a network (Hu and Ramanan, 2017).
This is the case for the vast majority of flowers dealt with in this
study. The Faster R-CNN architecture is not designed to detect
very small objects, such as flowers of just a few pixels in diameter
(Huang et al., 2017; Zhang et al., 2017). Therefore, scaling up the
images is an appropriate counter measure that helped to improve
our results.
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FIGURE 6 | Time series of the distribution of Leucanthemum vulgare and Lotus corniculatus in our main test field.

FIGURE 7 | Ground sampling distance degradation on an excerpt of an aerial image.

When taking a closer look at the results, we found that a
substantial portion of mispredictions that negatively influenced
the assessed model performance scores (mAP and F1 score)
was not fatal. These mispredictions include, for example, FP
predictions that were in fact missing annotations in the ground
validation data such as the examples in Figure 4. The FP
predictions of flowers that were on the verge of fading also fall
in this category. The mispredictions caused by the confusion
between single flowers and inflorescences of Lotus corniculatus
as described in Section 3.2 were also not severe.

These mispredictions exemplify the challenges that exist for
the training data collection. Even when it is possible to directly
compare the image on the tablet with the flowers on site, it is
sometimes not clear how to annotate a flower. Lotus corniculatus
is a good example. Its flowers are often arranged as inflorescences.
However, it is not uncommon that there are single flowers
that do not belong to the same inflorescence. Because it is
often not possible to distinguish the single flowers within an
inflorescence, the whole inflorescence is consequently annotated
as one flower instance. Unfortunately, there are border cases
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FIGURE 8 | Evolution of the F1 score over various simulated ground

resolutions.

FIGURE 9 | Evolution of the mean average precision (mAP) over various

simulated ground resolutions.

in which a single flower very close to another inflorescence is
annotated as a separate instance in the ground validation but
the prediction algorithm includes that flower in the inflorescence
and predicts only one bounding box. This situation results
in FN predictions for the single flowers very close to each
other, as the examples on Figure 4C show. The opposite case
that multiple single flowers are predicted separately although
they are annotated as an inflorescence with a single bounding
box is common as well. The second main problem for Lotus
corniculatus is that some instances are hardly visible on the
images because they are very small. Sometimes they are partly
hidden by other vegetation, and occasionally weak motion blur
is present and makes it even harder to distinguish between
flower and background. This problem also manifests itself in FP
and FN predictions. The FP predictions are mainly caused by
background areas that look similar to a blurred flower and by real
flowers that are not present in the validation annotations (as in
Figure 4D). The FN predictions are often flowers that are small
and hardly distinguishable. As demonstrated in the example of

Lotus corniculatus in Table 4, an average number of flowers per
annotation can be calculated from the training data and the
manually counted data. This value can then be multiplied with
the total number of predictions to get the number of flowers.

Data augmentation options are a convenient way of artificially
increasing the amount of training data. One should be careful
with applying too many augmentation options. Because the
flowers do not span a large number of pixels, they are predicted
based on minuscule details. Changing these details too much
might be counterproductive. Flips and random box jittering can
be applied without hesitation. They do not alter the important
details but alter only the orientation or the position of the
bounding box. Brightness, contrast, and saturation adjustments
should be applied moderately. In our experiments, the maximal
change rate was a delta of 25%.

4.3. Automated Drone-Based Flower
Mapping of a Whole Meadow
4.3.1. Comparison With Extrapolations From

Vegetation Squares
For some species, we found differences between the extrapolation
from the manual counts within the vegetation squares and
the drone-based estimations (Table 4). Assuming that the
performance of the prediction algorithm on the whole field
was similar to the performance within the annotated survey
plots, the extrapolation of the manual count data must have
been inaccurate. Even when we added 8% to the number of
drone-based predictions to compensate for the relatively low
recall value of Leucanthemum vulgare, the results still had a
47% gap. The extrapolation was based on the manually counted
number of flowers, which was less than the number of tablet
annotations within the survey plots (as pointed out in Section
3.1). If the tablet-based numbers had been taken, the result of the
extrapolation would have been an additional 51% higher, making
it in total 131% higher than the drone-based prediction.

The main reason for the bad results for Onobrychis viciifolia
was that its flowers were very hard to distinguish on the drone-
based images. The most probable reason for the unsatisfactory
results for Salvia pratensis was that the amount of training data
was too small to accomplish good results. A likely additional
reason could be an unrepresentative choice of survey plot
locations for these flowers. When these falsely counted numbers
are combined with non-optimally chosen survey plot locations,
the extrapolations of the manually counted flowers have the
potential to be very inaccurate.

With a reliable flower detection model, the results can be
much more accurate than with the extrapolation from the
manual counting. Moreover, the drone-based approach has
other advantages beyond what can be done with the traditional
approach of extrapolating the manually counted numbers of
flowers within the survey plots. The combination of deep learning
with very-high resolution drone-based remote sensing allows
to map objects through space and time (e.g., Figures 5, 6, 10).
Moreover, once a trained network is available, manually labeling
the species to train the network is no longer necessary. It is
sufficient to fly the drone over the meadow and let the deep
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FIGURE 10 | Typical prediction example.

learning algorithm predict the species. The prediction time of
the trained deep learning network for one square meter is
approximately 7.4 s when using a GTX 1080 GPU graphics card
(Nvidia Corporation, 2016). By contrast, manually counting the
flowers within a survey plot can take between 1 and 10 min,
depending on the flower density. The predictions of the network
have to be controlled by a good botany expert.

4.3.2. Practical Considerations
Our main test grassland site was around 30 m by 30 m in size.
To have enough overlapping images to generate an orthomosaic
of this area with a sufficient ground sampling distance, a drone
has to fly over the meadow for about 20 min. This requirement
means that it is difficult to scale this approach to larger areas.
A way of overcoming this problem would be to take images
with less or no overlap at specific locations and to omit the
generation of an orthomosaic. Knowing the flight height and the
lens angle of the camera, one can calculate the covered area of
the image. Running the prediction algorithm on these sample
images would correspond to a stratified or random sampling
of a larger area. This approach would also allow a higher flight
height. With a longer focal length and eventually with a higher-
resolution camera, the same ground sampling distance could be
obtained while lowering the chance for potential disturbances
of wildlife.

The advantage of the automated over the manual flower
abundance determination approach is that much larger sample
size can be collected. The effort to collect the vegetation data is
smaller and more precise. This efficiency allows spending more
time on controlling, extrapolating, and analyzing the data, which
finally yields a better result. What remains to be evaluated is
whether the prediction algorithm generates similar results close
to the edges of an image as comparedwith the center. The viewing
angle changes across an image and thus alters the appearance of
the imaged objects (Aasen, 2016; Aasen and Bolten, 2018; Roth
et al., 2018a). Consequently, there could be a degradation in
prediction performance. The orthomosaics are created from only
the center regions of the single images.

Various metrics are used to describe a model’s performance.
Precision, recall, F1 score, and mAP all describe a certain aspect
of a model’s performance. It depends on the application case

which metric is most important. Precision and recall can easily
be controlled with the minimum confidence parameter. The
higher the minimum confidence parameter of the prediction
script is set, the higher the precision becomes. Lowering
the minimum confidence score increases the recall. For an
abundance determination use-case as in this study, a balanced
precision-to-recall ratio is advantageous because FN and FP
predictions are likely to cancel each other out, and therefore a
good estimate of the abundance can be given. The F1 score is
mainly determined by precision and recall. The higher these two
values are, the higher is the F1 score. A balanced precision-to-
recall ratio improves the F1 score even more. Consequently, the
F1 score is a good indicator of a model’s performance.

We found that phenology impacted the results and that the
model did not generalize well when flowers went into senescence.
Besides, training a model with images from different ground
sampling distances did not yield good performance. These
findings suggest that the model does not generalize well over
different sizes of the same flower and that keeping the ground
sampling distance close to constant is important. However, when
we trained themodel for different ground sampling distances, the
model worked well for a decrease in ground sampling distance
down to 5 mm per pixel (Section 4.5; Figure 7). Still, the effect
depends on the size of the flower, as shown by the example
of Lotus corniculatus, for which the performance decreased
significantly faster than for the larger flowers of Leucanthemum
vulgare and Knautia arvensis. In the future, the results should
be validated in more ways, e.g., by using cross-validation or by
testing the models on more unseen test sites as well as including
data with different environmental conditions.

The method developed in this study opens a wide range of
use cases beyond the substitution of manual flower counting.
Weed control could be realized in a precision agriculture
setting. Detecting invasive neophyte plants in difficult-to-
access areas could replace manual checks. The multi-temporal
abundance maps have the potential to map flowering dynamics
quantitatively and spatially, to assess co-occurrence of different
flower species, and to assess the influence of climate conditions of
different years on the abundance. By detecting certain indicator
species, conclusions may be drawn about the soil properties. For
example, the presence of Leucanthemum vulgare is an indicator
of nutrient-poor meadows. In the context of quality assessment
of meadows in connection with direct payments by the state,
drone usage is imaginable. Apart from flowering plant detection,
the method can be applied to other areas such as monitoring of
wildlife aggregations as described by Lyons et al. (2019).

For some use cases, it might be beneficial to have real-time
detections. The method developed in this study is not designed
for that. By using the default configuration of the Faster R-
CNN architecture without upscaling the images, the prediction
algorithm can be sped up by a factor of four (at least). The
drawback is that the accuracy is reduced with increased speed.
Nevertheless, for some use cases, this reduction in accuracymight
be acceptable. Using a lighter-weight object detection network
design such as the single-shot detector architecture (Liu et al.,
2016) can deliver further speed-ups. However, the accuracy is
expected to be lower than with Faster R-CNN.
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More training data would have been beneficial to better
train the model on underrepresented flowers and catch flowers
during their entire phenology. Unfortunately, this was not
possible due to the failure of the initially used drone. However,
with the now designed framework, new training data can be
created and pooled with the current training data to expand
the training dataset and allow better predictions in the future.
The suite of tools developed in this study is easy to install
and can be applied to any sort of object detection problem on
aerial images. The time-consuming task of collecting training
data by annotating aerial images can be carried out on the
FieldAnnotator application for Android or with the widely
used LabelMe application for desktop operating systems. The
script that copies annotations onto overlapping images can be a
powerful way of increasing the amount of training data without
major efforts.

4.4. Very-High Resolution Remote Sensing
and Deep Learning as a New Tool for
Biodiversity Monitoring
Plant diversity can be estimated on different scales and
granularity—from space-borne sensors down to in-situ
measurements (Lausch et al., 2016, 2020; Wang and Gamon,
2019). Remote sensing based approaches cannot offer the same
number of measurable traits as in-site measurements (Homolov
et al., 2013). On the other hand, remote sensing allows mapping
traits spatially explicit on larger scales. However, most often
these traits are mapped on via proxies such as spectral data. For
species identification, this brings some uncertainty since—in
particular for objects relatively small to the GSD—the signature
of a species can easily be diluted. With the advent of very-
and ultra-high resolution remote sensing approaches (Aasen
and Roth, 2016; Aasen et al., 2018a) in combination with deep
learning, objects can now directly be identified and classified
within the data based on their spatial and spectral features. As
shown in this study, such approaches hold great promise for
diversity monitoring.

Common deep learning network architectures are built to be
feed with three band data (commonly RGB). First approach now
also uses other spectral bands and even 3D information (Nezami
et al., 2020) and we expect that these approaches will become
more common when more very-high resolution spectral data
is available.
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