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ABSTRACT Small proteins of up to ;50 amino acids are an abundant class of biomole-
cules across all domains of life. Yet due to the challenges inherent in their size, they are
often missed in genome annotations, and are difficult to identify and characterize using
standard experimental approaches. Consequently, we still know few small proteins even
in well-studied prokaryotic model organisms. Mass spectrometry (MS) has great potential
for the discovery, validation, and functional characterization of small proteins. However,
standard MS approaches are poorly suited to the identification of both known and novel
small proteins due to limitations at each step of a typical proteomics workflow, i.e., sam-
ple preparation, protease digestion, liquid chromatography, MS data acquisition, and data
analysis. Here, we outline the major MS-based workflows and bioinformatic pipelines
used for small protein discovery and validation. Special emphasis is placed on highlighting
the adjustments required to improve detection and data quality for small proteins. We
discuss both the unbiased detection of small proteins and the targeted analysis of small
proteins of interest. Finally, we provide guidelines to prioritize novel small proteins, and
an outlook on methods with particular potential to further improve comprehensive dis-
covery and characterization of small proteins.

KEYWORDS proteomics, small protein, sproteins, SEP, microprotein, genome annotation,
LC-MS/MS, shotgun proteomics, top-down proteomics, sample preparation

Large-scale discovery of small proteins (,;50 amino acids; also referred to as “sproteins,”
“short ORF-encoded proteins” (SEPs), or “microproteins”) has relied primarily on computa-

tional analysis of genome sequences (1), and genome-scale experimental measurements of
transcription and translation such as transcriptome sequencing (RNA-seq) (2) and ribosome
profiling (Ribo-seq) (3, 4). Computational analyses can leverage the thousands of available ge-
nome sequences, but still require experimental support to serve as conclusive evidence. The
major experimental approaches used to date are genome-scale analyses of transcription and
translation. These methods share the advantage of amplified RNA-based detection (allowing
sensitivity down to single molecules), high data acquisition speeds, and—with appropriate
modification as differential RNA-seq (dRNA-seq) (5) or Ribo-RET (6)—the ability to identify tran-
scription and translation initiation sites and potentially even very low-abundance proteins.
However, all RNA-based approaches only provide indirect evidence of small protein expres-
sion, and some of the translation products detected by Ribo-seq may be unstable. Moreover,
RNA-based approaches cannot provide data on post-translational modifications, other proc-
essing steps like signal peptide cleavage, or maturation that proteins can undergo.

Mass spectrometry-based proteomics (MS) provides a direct method to detect and quan-
tify small proteins on a global or targeted scale (for general proteomics reviews, see references
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7 and 8). In addition, MS can provide information on the different proteoforms, i.e., different
forms for a protein product derived from a single gene (9), including genetic variations, splice
variants (for eukaryotes), processed forms, and different combinations of posttranslational
modifications, all of which can affect protein function (for selected key MS terms, please see
Box 1). Many small proteins have been detected as adventitious spectra within traditionally
acquired proteomes, mainly using exploratory “shotgun” bottom-up proteomics (10). In this
approach, all proteins in a sample (e.g., a cellular lysate or a purified protein complex) are
digested using a protease, and subsequently subjected to liquid chromatography-coupled
tandem mass spectrometry (LC-MS/MS) (Box 1). Sequences of the proteolytic peptides are
inferred from their MS/MS spectra by matching the fragmentation patterns to theoretical
spectra of a reference proteome database that contains the sequences of all annotated pro-
teins of the target organism (Fig. 1). However, there are two caveats: First, MS-based detec-
tion is “amplification-free” and intrinsically limited by the sensitivity of the instrument and its
dynamic range. This leads to preferential detection of more abundant proteins, and proteins
that have peptides with high ionization efficiencies. Second, “conventional” bottom-up pro-
teomics approaches are biased toward studying proteins with molecular weights above
10 kDa, which represent roughly .90% of annotated proteomes (as determined from an
analysis of 21,400 complete prokaryotic genomes from NCBI’s RefSeq). Conventional studies
typically report a statistically significant under-representation of experimentally identified
small proteins and are thus ill-suited for their comprehensive analysis (11, 12). In fact, limita-
tions for small protein detection exist across the entire MS workflow: experimental sample
preparation and digestion, MS detection and acquisition, database search, peptide spectrum
matching (PSM), and protein identification. Protease digestion is confounded by the intrinsic
scarcity of necessary cleavage sites in small proteins (see “Protease digestion” below). If no
MS-detectable peptides with a length of approximately 7 to 40 amino acids (aa) are gener-
ated (this range is based on MaxQuant’s lower length and upper molecular weight limit of
4,600 Da in the first-pass search [13]), a small protein will not be identifiable via bottom-up
proteomics at all, unless alternative proteases are used. Furthermore, database searches to
identify proteins require accurately and comprehensively annotated genomes. This is often
not the case for small proteins, as gene prediction algorithms apply varying length thresh-
olds for genes encoding proteins below 50 to 100 aa to minimize the number of spurious,
false short ORFs (sORFs) (14) (see “Data Analysis” below). In addition, the traditionally applied
“two peptide rule” has required more than one unique peptide for confident protein identi-
fication (15); this, however, is ill-suited for small proteins, which, due to their small size, can
often only be identified by a single peptide, resulting in a higher false discovery rate (FDR)
for small proteins that needs to be tightly controlled (see “Stringent FDR control” below).
Moreover, quantitation based on single-peptide-hit proteins is often neither accurate nor
precise (16, 17). Standard workflows for protein identification, FDR estimation, and quantifi-
cation are thus less useful for small protein discovery, and have to be modified to allow their
efficient and reliable detection and analysis. Targeted proteomics approaches can fill this
gap and are frequently used to validate and quantify small proteins (see “Validation of
Novel Small Protein Candidates” below).

BOX 1: MASS SPECTROMETRY AND PROTEOMICS CONCEPTS AND
TERMS

General approaches.
(i) Bottom up. Methods in which protein samples are enzymatically or chemically
cleaved into peptides prior to MS and MS/MS analysis. Typically uses liquid
chromatography (LC) to separate digested peptides prior to MS and MS/MS analysis.
Typically involves fragmentation in the mass spectrometer (MS/MS) to sequence
peptides.
(ii) Top down. Methods in which protein samples are analyzed directly in the
mass spectrometer without digestion. Can involve direct infusion or LC to separate
proteins prior to MS andMS/MS analysis. Typically involves fragmentation in themass
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spectrometer (MS/MS) to sequence and identify the proteins. Can require specialized
instrumentation or custom setup of existing instruments.
Mass spectrometry instrumentation and acquisition.
(i) LC-MS. Liquid chromatography-coupled mass spectrometry and tandem
mass spectrometry (LC-MS/MS).
(ii) MS/MS. Typical arrangement for most MS analyses, also termed “tandem
mass spectrometry” Separated proteins and/or peptides are measured in the
instrument and then isolated and fragmented to record tandemmass spectra. Can
be used for “bottom-up” and “top-down” approaches. Typically uses electrospray
ionization (ESI) to generate ions.
(iii) MALDI/ESI. Ionization methods for MS. Matrix-assisted laser desorption
ionization (MALDI) is rarely attached to LC systems. ESI is typically coupled to LC
systems and is the dominant ionization mode for proteomics.
(iv) DDA. Data-dependent acquisition mode. Most commonly-used approach
for proteomics studies. Candidate ions are selected based on peak intensity and
resolution (= data dependent), isolated, and fragmented to provideMS/MS spectra.
(v) DIA. Data-independent acquisition mode. A hybrid approach where LC-MS/MS
data are acquired without isolating specific ions for tandem analysis. Yields complex
MS/MS spectra from multiple precursors. Since all ions are fragmented for MS/MS, no
information is lost in the process, and typically data quality for quantitation is higher.
Requires libraries of empirical or derived data from samples to extract identification and
abundance from acquired data. Existing files can be reanalyzed with new information,
as no ions are discarded.
Data analysis terms.
(i) PRM. Parallel reaction monitoring. Typical targeted acquisition mode for specific
detection and robust quantification. Can involve specialized instrumentation.
(ii) De novo. Direct sequencing of polypeptides from fragment spectra via
comparison of mass differences to amino acid residues.
(iii) Database search. Peptide and protein identification from fragment spectra
by comparison of spectral patterns and fragment ions to databases of theoretical
spectra/fragment masses. Redundant peptides measured from this approach are
called a peptide spectrummatch (PSM).

Bottom-up approaches also face the so-called “protein inference issue”: protein
identifications are inferred based on the detected peptides, which can be ambiguous and
match to more than one protein or isoform (18). Proteins can carry different combinations of
posttranslational modifications and exist in multiple proteoforms. In bottom-up proteomics,
any information on posttranslational modifications or truncations is lost if the respective seg-
ment is not covered by one proteolytic peptide. In addition, there is very limited information
on the combinations of these modifications. The only way to address this issue is “top-down”
proteomics (19) (Fig. 1; Box 1). This digest-free approach analyzes full-length proteins and
directly provides information on the different proteoforms present in a sample. The size of
small proteins makes them ideally suited for a top-down proteomics approach. This is, how-
ever, a very experimental strategy with limitations in dynamic range and sequence analysis
depth; only a limited number of labs conduct top-down proteomics on a routine basis. Hence,
we provide guidelines and examples for top-down approaches, but more limited in scope
than those for bottom-up proteomics.

Here, we describe a selection of MS-based approaches to identify and characterize small
proteins in both exploratory and targeted studies. We focus on (i) approaches for sample prep-
aration and MS data collection for small proteins, (ii) analysis of MS data sets for small protein
discovery, (iii) validation of putative small proteins, and (iv) bioinformatic and MS-based prioriti-
zation of putative small proteins. While we cannot cover all approaches due to space con-
straints, we provide a repertoire of approaches that can be modified for a specific research
question and that optimize the output for small proteins. These methods were developed by
many different groups and now help to level the playing field for small proteins.
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SAMPLE PREPARATION AND DATA COLLECTION
Overview: general considerations. Small protein detection by MS is most frequently

applied to discover small proteins from complex samples such as whole-cell lysates (Fig. 1;
Table 1). Below, we outline the different methodological approaches for small protein dis-
covery, highlighting differences to standard methods that are tailored to small proteins
specifically (Fig. 2). We then describe parallel methods for detection of small proteins from

FIG 1 Overview of the main mass spectrometry-based workflows for small protein discovery, analysis, and characterization. The large majority of studies
have relied on a shotgun proteomics discovery approach (bottom-up) to identify small proteins. Top-down approaches are slowly gaining momentum but
are not yet widely accessible from core facilities. Bioinformatics is important to assemble complete genomes de novo (at times using genomic DNA
extracted from the same sample), to integrate small protein predictions with experimental RNA-seq and Ribo-seq data to create custom databases that
allow the identification of novel small proteins by MS-based proteomics. Validation and prioritization facilitate focusing on the elucidation of function(s) of
the most promising novel small proteins (yellow shading; see asterisk), an aspect that is described in more detail in the accompanying article “Small
Proteins; Big Questions” (124). Shading matches that in Fig. 2. Corresponding text sections are indicated by white circles, as follows: 1B, “Sample
Preparation and Data Collection—Preparation and enrichment for small proteins”; 1C, “Sample Preparation and Data Collection—Protease Digestion”; 1D,
“Sample Preparation and Data Collection—Liquid chromatography”; 1E, “Sample Preparation and Data Collection—Ionization and data acquisition” ; 2A,
“Data Analysis—Overview: the relevance of genome sequences for proteogenomics”; 2B, “Data Analysis—Creation of custom search databases”; 2C, “Data
Analysis—Stringent FDR control”; 3, “Validation of Novel Small Protein Candidates”; 4, “Prioritization/Selection of Novel Small Proteins.”
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FIG 2 Overview of the major steps of the most common MS-based workflows for discovery/identification of small proteins, their targeted analysis (for
quantification), and for the functional characterization of novel and known small proteins. The numbering of the steps is aligned with Fig. 1, with corresponding
text sections indicated by white circles, as follows: 1B, “Sample Preparation and Data Collection—Preparation and enrichment for small proteins”; 1C, “Sample
Preparation and Data Collection—Protease digestion”; 1D, “Sample Preparation and Data Collection—Liquid chromatography”; 1E, “Sample Preparation and Data
Collection—Ionization and data acquisition”; 2A, “Data Analysis—Overview: the relevance of genome sequences for proteogenomics”; 2B, “Data Analysis—
Creation of custom search databases”; 2C, “Data Analysis—Stringent FDR control”; 3, “Validation of Novel Small Protein Candidates”; 4, “Prioritization/Selection
of Novel Small Proteins.” Alternative approaches are listed and selected references provided.
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low-complexity samples, and a separate application that robustly detects small proteins
from protein complexes where a small protein has been detected, but its specific identity
is unknown.

An important consideration in method choice is the use of bottom-up or top-down
proteomics (Box 1). The vast majority of proteomics studies make use of bottom-up
methods, although top-down approaches are ideally suited for small proteins. However,
practical considerations in method choice are often limited by the expertise and instru-
mentation available in a core facility. Bottom-up methods are widely available at high
quality in most laboratories and core facilities, and sample introduction from bottom-up
small protein preparations can be reasonably approached by routine-use setups. In gen-
eral, we recommend bottom-up analyses for complex samples and top-down approaches
for low-complexity samples, due to the ease of data acquisition of the two approaches.
Low-complexity samples can also be analyzed directly using matrix-assisted laser desorp-
tion ionization–time of flight (MALDI-TOF) mass spectrometry, providing direct information
on the different small proteins present in a sample and their molecular weights.

Below, we outline general considerations for each step of an MS-based analysis of a
sample for small proteins. The experimental workflow can be divided up in four parts
(Fig. 2), described in turn below.

Preparation and enrichment for small proteins. Depending on sample complex-
ity and the type of MS analysis, different preparation steps are required. In general,
bottom-up analyses focus on efficient denaturation and digestion, while top-down
approaches mainly utilize size exclusion steps to enrich small proteins (20). We outline
the advantages and limitations below, and suggest modifications to existing protocols
as well as alternative strategies (Fig. 2).

(i) Sample preparation for bottom-up proteomics. Sample preparation for bot-
tom-up proteomics typically includes denaturation, reduction, and alkylation steps to
ensure optimal access of the proteases to unfolded proteins, and to prevent thiol oxi-
dation and disulfide bridge formation. Per se, these steps do not impede small protein
detection; however, most protocols were designed for protein molecular weights
.10 kDa, and include efficient removal steps for small molecular weight contaminants.
In particular, filter-based methods such as filter-aided sample prep (FASP) (21) and sus-
pension traps (S-Traps) (22) efficiently remove detergents and contaminants prior to
digestion, leading to improved data quality and signal-to-noise ratios for studies of
large proteins and proteomes. However, these approaches, if used conventionally, also
actively de-enrich small proteins (Fig. 2). We therefore suggest using either in-solution
digests without any cut-off filters, or modifying solid-phase-assisted digest protocols to
avoid removal of small proteins by reducing stringency in the wash steps, described
below in “Protease digestion.” However, if sample composition requires extensive
washing, small protein detection remains challenging using this approach.

(ii) Sample preparation strategies using protein precipitation steps. The same
considerations apply for sample preparation strategies using protein precipitation
steps that are often applied to concentrate and purify target proteins, e.g., organic solvent
precipitation using acetone, methanol, chloroform or other solvents (Fig. 2). Small proteins
may remain in the soluble fraction due to their high solubility in organic solvents, and
hence may be discarded. We recommend avoiding precipitation steps to ensure small pro-
teins are not lost. Despite the challenges associated with organic extraction, membrane
proteins benefit from organic extraction due to their high hydrophobicity. Moreover, top-
down approaches benefit from organic phase extractions, as detrimental salt adduct for-
mation is minimized. Our and other labs found that a combination of low organic solvent
concentration with organic solvent-resistant filter membranes identified peptides that
were not accessible using conventional bottom-up analysis, thereby significantly expand-
ing the identified small proteome in different organisms (23, 24).

(iii) Enrichment using typically discarded fractions. While the above modifications
reduce the likelihood of de-enriching small proteins, it is also possible to actively enrich
small proteins by using only the fractions that are typically discarded in a conventional
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bottom-up proteomics preparation. This can be achieved by either (i) using molecular
weight cut-off membranes, with large proteins being trapped using a filter-membrane
with a low molecular weight cutoff, and the flow-through containing small proteins
being retained for subsequent analysis, or (ii) subjecting the sample to a standard or-
ganic precipitation; the precipitated proteome is discarded, and the supernatant is
digested and submitted to LC-MS/MS analysis. Both of these techniques can also be
applied to top-down approaches. The small protein fractions isolated from these
approaches typically coenrich for other interfering small molecules from the sample and
common preparative contaminants. Hence, special care must be taken to remove these
prior to MS analysis. In addition to reverse-phase desalting prior to analysis, we recom-
mend desalting using strong cation exchange by solid-phase extraction (SCX-SPE).

(iv) MS approaches. MS approaches commonly involve a prefractionation step to
reduce sample complexity, with the most widely used methods being separation of the
sample by (i) centrifugation, into soluble and membrane fractions; (ii) sucrose density
gradients, based on hydrodynamic radius; (iii) size exclusion or ion-exchange chromatog-
raphy; and (iv) SDS-PAGE. These methods can be applied to study small proteins, but
separation by SDS-PAGE requires modification to prevent loss of small proteins from the
sample; small proteins often stain poorly with Coomassie, or pass through the gel with
minimal retention. Isolating the dye front (typically bromophenol blue) and a narrow
range of low MWs will enrich small proteins. If no bands are detected using Coomassie
staining, we suggest silver staining due to its higher sensitivity. After excision of the re-
spective gel areas, we recommend only minimal wash steps, as small proteins may dif-
fuse out of the gel into the wash buffer. When small proteins are not efficiently recov-
ered with these conventional gel-based approaches, distinct MW regions can also be
selected by electroeluting specific regions or by gel-eluted liquid fraction entrapment
electrophoresis (GELFrEE) and downstream processing in the liquid phase (25).

Another useful biochemical purification strategy is a combined fractional diagonal
chromatography (COFRADIC) approach (26), where chemical or enzymatic modification
prior to and/or after the digestion step allows for specific enrichment for a certain pep-
tide fraction, e.g., N-terminal peptides (Table 1), which greatly reduces the sample
complexity. This method requires a suitable database containing alternative start sites
(see “Creation of custom search databases” below) but then can provide direct infor-
mation on translational start sites (27–29).

In general, we recommend fewer preparation and manipulation steps for less com-
plex sample mixtures prior to MS analysis. For purified protein complexes, we suggest
minimal desalting and purification using, for example, reversed-phase tips or cartridges,
with samples then analyzed directly by MALDI-MS or -MS/MS. For complex protein mix-
tures and lysates, we recommend modifying S-trap protocols with minimal washing, or-
ganic extractions, or reciprocal purification using molecular weight cut-off filters.

Protease digestion. Protease digestion is the defining step of bottom-up proteomics.
Digestion is often performed in-solution, in-gel, or during filter-based sample preparations.
These digestion protocols use extensive washing of the sample that inherently de-enriches
small proteins; due to their size, small proteins can pass through filter membranes, may
not adsorb sufficiently (or may stick too tightly) to solid phases, and may be flushed during
wash steps. Hence, the digest should be conducted in a way that specifically ensures inclu-
sion of, and access to, small proteins, which can range from in-gel and in-solution digests
to solid-phase supported protocols. The advantages and limitations of different digestion
strategies for small proteins are detailed below.

Digestion of small proteins is challenging due to the intrinsic scarcity of necessary
protease cleavage sites, and the often short length of the few peptides that are generated.
In general, Trypsin, mostly alone or in combination with LysC, has been the workhorse for
bottom-up proteomics due to cleavage specificity (cleaves after K and R) and activity in typi-
cal preparation conditions. This excellent enzyme/combination of enzymes, in particular in
consecutive denaturing conditions, has also been widely used to identify small proteins in
different prokaryotes (30, 31) (Table 1). Alternatively, proteases targeting other amino acids,
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such as Asp-N and Glu-C, are used for studying posttranslational modifications such as K
acetylation (32), or for specific target protein groups (33). However, the high specificity of
these proteases limits their activity against small proteins, and specificity for basic amino
acids limits activity against small membrane proteins in particular, which are deficient in
charged residues in membrane-spanning regions. Proteases with specificity for other amino
acids, or lower specificity, such as chymotrypsin (mainly F, Y, and W . M and L), proteinase
K (hydrophobic amino acids), pepsin (nonspecific at pH ,2), elastase (A, V, S, G, L, and I), or
subtilisin A (nonspecific) (34), are promising alternatives for identifying small membrane pro-
teins (35) (Fig. 2). However, using a protease with lower specificity comes with several chal-
lenges: (i) proteases with limited specificity require careful testing and optimization of prote-
ase:protein ratio, digestion time, digestion buffer, and digestion temperature; (ii) the
abundance of each proteolytic peptide species will be lower due to the statistical nature of
the cleavage, i.e., each protein is potentially cleaved into multiple, different, overlapping
peptides, each lower in abundance compared to a specific digest where only a single pep-
tide is produced from each segment; (iii) the lack of a charged amino acid at the C terminus
will lead to MS/MS spectra with a lower number of usable fragment ions; (iv) the search
space for database matching is increased substantially, with consequences for the FDR of
protein identification (see protease: protein “Stringent FDR control” below); and (v) nonspe-
cific cleavage compromises stoichiometric recovery, limiting quantitation of peptides and
proteins. We therefore recommend to initially use trypsin/LysC as proteases for bottom-up
experiments, except if membrane proteins are targeted specifically. The choice of enzyme
largely depends on the sample and the small proteins of interest: some hydrophobic small
proteins still yield proteolytic peptides with high-quality, information-rich fragment spectra
(36), while other small membrane proteins are completely inaccessible to bottom-up
approaches and require top-down analysis (23). If trypsin/LysC proves ineffective, in particu-
lar for samples with low complexity, alternative proteases can be tried, as described above
(12, 27, 35). After successful digestion, regardless of the protease used, proteolytic peptides
in very complex mixtures can be further fractionated prior to LC separation for more
sequencing and data depth (37, 38).

Liquid chromatography. In bottom-up methods, proteolytic peptides are typically
separated by liquid chromatography prior to acquisition of MS (ionized peptide precur-
sors) and MS/MS data (fragmentation pattern of peptides) (135, 136). The most widely
used solid phases for separation are different derivatives of C18 bed materials (Fig. 2)
that separate the peptides based on hydrophobic interactions with the column bed,
and a gradient elution of aqueous into hydrophobic solvent. A typical LC-MS setup
might include a trap column to facilitate removal of small molecular weight contami-
nants prior to separation on the main chromatographic column. Current LC-MS setups
for bottom-up proteomics are optimized for peptide lengths between 8 and 25 aa.
They will thus perform equally well for proteolytic peptides as well as for short small
proteins, and will also work well for top-down experiments for many small proteins.
Depending on their amino acid composition, however, small proteins .40 aa may not
elute efficiently from a conventional C18 column, even at high concentrations of or-
ganic solvent. Membrane proteins also often bind strongly to C18 phases due to their
high hydrophobicity, and even small membrane protein-derived peptides may stick to
the C18 phase irreversibly. In these cases, other bed materials with lower hydrophobic-
ity (C4/C8) and larger pore sizes (.300 Å) may offer higher recovery in bottom-up and
top-down experiments. This often comes at the cost of decreased retention and recov-
ery of hydrophilic peptides and small proteins.

For the analysis of complex bottom-up or top-down samples, extending the length
of the chromatographic gradient may offer significant improvements in data depth, as
more acquisition time is available (39). However, gradient length should be adjusted to
fit the complexity of the sample: chromatographic peaks broaden with increasing over-
all gradient length, and the associated decrease in intensity per spectrum impairs
detection and analysis of low-intensity candidate ions. In general, we recommend
short gradients (15 to 60 min) for samples with low complexity and long gradients for
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samples with high complexity (90 to 180 min). The chromatographic separation of pep-
tides and small proteins may well be further improved in the future by different bed
materials, narrow column diameters, or micropillar array columns (40, 41).

Ionization and data acquisition.Most proteomics labs operate electrospray ioniza-
tion (ESI)-based mass spectrometers due to their direct interface with LC and high ioni-
zation efficiency. This combination allows fast acquisition of high quality data, and is
equally applicable to conventional bottom-up proteomics approaches and top-down
experiments (Fig. 2). ESI-based ionization only falls off for membrane proteins that are
highly hydrophobic. For dedicated small membrane protein studies, MALDI ionization
can be a promising alternative, although MALDI data acquisition to LC is time and cost
intensive and rarely used.

For low-complexity samples, we recommend performing MALDI-MS measurements
to get an initial overview of small proteins present. In MALDI-MS, samples are spotted
in a solid matrix on a conductive plate and ionization is achieved using a laser that
transfers energy via the matrix molecules to the proteins of interest. MALDI usually
imparts lower charge states on the analytes and thus makes MS and MS/MS spectra
much easier to interpret than ESI spectra, where most peptides typically carry 3 to 5
charges. MALDI spectra can also provide initial information not only on the molecular
weight of any candidate small proteins, but also whether multiple candidates are pres-
ent that cannot be separated efficiently using SDS-PAGE. Sample preparation could
either use organic extraction or a desalting step using either C18 (soluble small protein)
or C4/C8 (membrane small protein) tips or SCX-SPE-based desalting as outlined above.
After solvent removal, these purified complexes can then be directly spotted and sub-
mitted to MALDI-MS analysis. If a MALDI-MS/MS instrument with sufficient isolation
power and resolution is available, small proteins can also be identified directly from
these spectra (23, 42–44). If protein identities cannot be directly determined, MALDI-
MS survey spectra can already yield valuable information on the number of small pro-
teins and their proteoforms in a sample.

For LC-MS/MS analysis of low-complexity samples, more measurement time in an
LC-MS experiment can be spent on each candidate ion. We therefore recommend test-
ing multiple collision energies and other “slow” fragmentation methods (ETD/ETHCD/
UVPD/PTR) to generate complementary data, and increase the fragment coverage of
the small proteins of interest.

We anticipate that ion mobility-coupled separation of ions will improve the scope
and depth of conventional Data Dependent Analysis (DDA)-based bottom-up proteo-
mics analyses also for small proteins (45, 46). In addition, data-independent analysis
(DIA) based methods may well further improve bottom-up and top-down analyses of
small proteins in the future (47) (Box 1). DIA is an acquisition approach where large
m/z ranges are sequentially fragmented independent of precursor abundance, provid-
ing information-rich MS and MS/MS data sets that can be mined. Since no precursors
are “discarded,” presumably numerous undiscovered small proteins reside in the data
awaiting detection. This approach, facilitated in recent years by faster and more sensi-
tive instruments, is expected to benefit substantially from further improvements in an-
alytical pipelines.

DATA ANALYSIS
Overview: the relevance of genome sequences for proteogenomics. Unbiased

identification of small proteins from MS data requires a reference genome sequence.
Owing to advances in DNA sequencing technologies and assembly algorithms, com-
plete genome sequences can be readily and cost efficiently assembled de novo (48,
49). Complete genomes provide an optimal basis for functional genomics (50) and for
small protein discovery. They can be used to create both reference or custom search
databases that link to genomic coordinates (e.g., NCBI’s RefSeq or Ensembl), an advant-
age over the widely used universal protein (UniProt) database that provides additional
functional information and annotations but lacks the link to the genome sequence
(51). Notably, advances in genome annotation have lagged behind the sequencing
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revolution (52), and several unresolved issues remain. These include discrepancies in
the number of protein coding sequences (CDSs) predicted by different reference anno-
tation centers for the same genome sequence, discrepancies with respect to the pre-
cise protein start sites (53, 54), and underrepresentation of genes encoding stably
expressed and functional small proteins, i.e., false negatives (55). Furthermore, predic-
tion of some spurious ORFs (false positives) (11, 56, 57) is another issue, especially for
genomes with a high GC content, e.g., many actinomycetes (58). As current gene pre-
diction algorithms cannot separate truly coding sORFs from the overwhelming major-
ity of spurious, random sORFs (14), varying size thresholds between 50 and 100 amino
acids have been used to minimize the number of false small protein predictions in ge-
nome annotations. As a standard database search of MS data will only identify proteins
contained in the list of annotated genes, custom databases are needed for small pro-
tein discovery (Fig. 1).

Initiatives like the Genomic Encyclopedia of Bacteria and Archaea will significantly
boost small protein studies in taxonomically diverse organisms (59). We expect more
studies to explore novel small proteins from moderately complex samples such as syn-
thetic consortia (60) and from complex metagenomes (1, 61) (Table 1), based on as-
complete-as-possible metagenome-assembled genomes (62, 63).

Proteogenomics, a term first coined in 2004 (56), refers to the use of MS data to pro-
vide expression evidence for CDSs missed in genome sequences (for reviews, see refer-
ences 64 to 66). Searching tandem MS/MS data against one of several different flavors
of custom databases allows identification of small proteins plus novel start sites and
evidence for expressed pseudogenes, which would be missed if using standard refer-
ence databases; for a concise selection of small protein discovery studies using this
approach in bacteria and archaea, see Table 1. Several data analysis solutions have
been developed that represented important advances for the proteomics field in gen-
eral and improved overall data quality: (i) search strategies that allow estimation of the
number of false positive PSMs and the FDR, including so-called “target-decoy
searches,” where a peptide spectrum that matches a decoy sequence such as a
reversed or randomized protein sequence is considered a false positive identification
(67); (ii) statistical models that employ different scoring functions or machine learning
approaches to improve the accuracy and robustness of the automated PSM step, i.e.,
that maximize the number of confident peptide matches with minimal false positive
rates (68–70); and (iii) protein inference algorithms that deduce which proteins (or pro-
tein groups) were initially present in a sample based on the experimentally observed
peptides, many of which (especially in eukaryotes, but also in custom databases [see
below]) are ambiguous and imply several proteins (71). Integration of these tools into
publicly available data analysis pipelines for shotgun MS data has enabled researchers
to carry out large parts of the data analysis themselves (13, 16, 72, 73) (Fig. 2).
However, even when using highly accurate MS instruments and optimized small pro-
tein sample preparation strategies (12, 25), MS-based novel small protein discovery is
still challenging and requires custom databases and a stringent control of the FDR.

Creation of custom search databases. All customized databases add short ORFs
that potentially encode true small proteins. Most often, custom databases are based
on a six-frame translation of the genome sequence. While this approach guarantees
inclusion of all possible gene products, it creates a substantially larger search space
compared to the standard reference search database: typically, 20 to 50 times more
proteins and ;4 to 8 times more distinct tryptic peptides (74). Hence, it requires sub-
stantial analysis time to identify the respective reading frame and the precise novel
small protein boundaries, and to ensure that the peptides are unique (i.e., unambigu-
ously identify one protein). Consequently, various approaches have been developed
that aim to reduce the search space. To limit the database size and thereby improve
PSM statistics (75), transcriptomic or Ribo-seq data from the conditions of interest can
be used to create a smaller database that only considers the genomic regions tran-
scribed or translated. Tailored transcriptome- or Ribo-seq based databases were
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successfully used to identify small proteins in different eukaryotes (76–79) and prokar-
yotes (80). For more complex eukaryotes, where larger numbers of protein families and
splicing lead to a substantial percentage of peptides being ambiguous, this is a promis-
ing approach that simplifies protein inference. However, for prokaryotes that lack splic-
ing and have smaller genomes, creating a single database applicable to all conditions
is more versatile, and allows identification of small proteins that are conditionally
expressed and hence could be missing from RNA-seq or Ribo-seq data. We recently
developed an approach to address the dilemma of largely differing genome annota-
tions, missing sORFs, and the higher fraction of ambiguous peptides in large custom
databases, by constructing “integrated proteogenomics databases for the protease of
choice” (iPtgxDBs) (81). In a pre-processing step, all annotation sources (reference
annotations, ab initio gene predictions, and a modified form of a six-frame translation
that considers the most common alternative start codons GTG, TTG, and CTG [82]),
plus all proteins down to a user-specified length threshold, are integrated and consoli-
dated, capturing both overlap and differences. By adding peptides that imply potential
new start sites, an iPtgxDB can be kept minimally redundant; it contains ;1/3 fewer
peptides than a 6-frame translation. Notably, up to 95% of the peptides unambigu-
ously match one protein. For more information about preprocessing and a public web
server to create such iPtgxDBs, see https://iptgxdb.expasy.org. Several other public
proteogenomics software solutions or custom search database approaches have been
developed to support researchers with small protein identification (83–87), some of
which also provide the useful option for integrative data visualization in a genome
viewer, or include an option to consider predicted peptide ion intensities (88). The
more recent proteogenomics studies emphasize efforts for data validation and integra-
tion of orthogonal data sets (see Table 1 for some examples). Top-down studies where
novel small proteins were identified via a custom database search are slowly gaining
momentum (Table 1) (19, 23, 89). In addition, one can also rely on top-down data in
combination with de novo sequencing, a completely database-independent approach
that infers small protein sequences by searching for amino acid-specific mass incre-
ments between adjacent fragment peaks (90). We expect that improvements in the
accurate and comprehensive prediction of small proteins from DNA sequence alone
will facilitate the creation of more focused databases, thereby also improving the PSM
statistics.

Stringent FDR control. A second key consideration for small protein discovery con-
cerns false discovery rate (FDR) control (Fig. 1). Historically, more confident protein
identification from MS/MS data has relied upon the “two-peptide rule” (see the intro-
duction and reference 15). However, this rule is ill suited for small proteins, which, due
to their small size, are often only identified by a single peptide (91, 92). To minimize
the identification of so-called “one-hit wonders,” several PSMs (independent observa-
tions of the same peptide sequence) should be required. As small proteins are often of
lower abundance (81, 93) and hence are expected to produce few MS-detectable pep-
tides, researchers have analyzed multiple biological conditions to increase their odds
of identification, and used proteases other than trypsin (Table 1) that can add more
spectral evidence to support novel small protein identification (12, 35, 60). It is impor-
tant to note that the number of false positive identifications will also increase as the
size of the MS data set increases (94, 95). We suggest performing the steps outlined
below before assessing any potential novel hits, as it can be rather discouraging to see
your “top novel small protein candidates” fail to withstand rigorous evaluation.

Another critical consideration when interpreting FDR estimates from MS data analy-
sis is that the false positive protein identifications are distributed unevenly between
large (mostly annotated) and small (mostly unannotated) proteins; custom databases
will contain many more predicted small proteins than annotated proteins, such that
the likelihood of a PSM matching a predicted small protein by chance is much higher
than the likelihood of matching an annotated protein by chance. Moreover, there will
be proportionally more PSM matches to annotated proteins than to small proteins,
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causing the overall FDR estimate to be skewed toward the value for annotated pro-
teins. Consequently, reported protein-level FDRs substantially underestimate the true
FDR for novel small proteins (71, 74, 94, 95). We and others have advised to strictly con-
trol the PSM FDR to 0.1% or (for very large data sets) even lower (30, 81), in order to
achieve an estimated protein-level FDR for small proteins of around 1% (Table 1).
Alternatively, if a more relaxed FDR is applied, the potential for false positives can be
addressed with more extensive validation experiments (see below).

We also recommend applying a resource-dependent filter on top of the global FDR
filtering step, as proposed earlier (64), which essentially requires more spectral evi-
dence from less credible prediction sources for novel small proteins, e.g., from ab initio
gene predictions and a six-frame translation (74); we have used thresholds of 2 PSMs
for peptides implying RefSeq-predicted proteins, 3 PSMs for peptides of candidates
from the excellent ab initio gene predictor Prodigal (96), and 4 PSMs for in silico ORFs
solely predicted based on potential start codons. These values were in part motivated
by a study on Bartonella henselae (81), where we successfully validated a novel small
protein identified by one peptide and 3 PSMs in a very large data set with parallel reac-
tion monitoring (Box 1) (97). Moreover, we recommend considering aspects like
repeated identification in biological replicates, high spectral quality score (e.g., using
the MS-GF1 search engine scores [98]), q values (a statistical confidence measure
provided along with the posterior error probability by Percolator [99]), and second
peptide searches, which can identify less abundant peptides in chimeric spectra (over-
lapping fragmentation patterns of co-eluting peptides), potentially including novel
small proteins (88). As proteomics workflows rely on database searches, in some cases,
modified peptides of abundant proteins may represent a better match than the top-
scoring PSM implying a novel small protein. They were not considered because the
modification was not specified in the database search; typically, only few modifications
are specified in closed searches to keep the search time manageable. Fast open search
software solutions like MSFragger (100) represent a valuable option to identify and
eliminate such false positives.

Recently, software tools were developed that accurately predict the retention time
of peptides and peptide fragmentation intensity purely in silico with very encouraging
results for large proteomics studies and improving the number of correct PSMs (101,
102). In the near future, we foresee that such tools will also allow users to increasingly
leverage data from data independent analysis (DIA) workflows.

VALIDATION OF NOVEL SMALL PROTEIN CANDIDATES
Overview: options for validation. Newly identified small protein candidates from

MS or non-MS data, such as RNA-seq, Ribo-seq, computational prediction, or genetic
inference, need to be validated before they can subsequently be prioritized for further
study (Fig. 1). As genome/proteome-scale methods identify false positives as described
above, it is critical to provide independent lines of evidence to support the existence
of a novel small protein identified by these methods. Transcriptomic data (ideally
obtained from the same samples used for proteomic analysis [11, 81, 103, 104]) can be
considered supporting evidence for MS-identified small proteins, with products of
strongly expressed genes more likely to be detected at the protein level; however, not
all RNAs are translated into a stable or MS-detectable protein. (105). Ribo-seq data can
also complement MS-based evidence (104), and are particularly well-suited for identifi-
cation of protein start sites (6, 93, 106), which is more challenging with MS-based
approaches. Fifteen out of 16 novel small proteins jointly implied by Ribo-seq data and
predicted by sPepFinder (107) in Salmonella enterica serovar Typhimurium were vali-
dated by MS, highlighting the complementarity of MS and Ribo-seq as methods to
identify small proteins (104). Even more valuable than Ribo-seq data is direct evidence
for the expression of a small protein, which can be obtained using classical immuno-
chemistry such as Western blot analysis. However, either antibodies would have to be
raised against each candidate, or a chromosomal tagging approach that introduces
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small sequence tags would need to be carried out (106). A simpler alternative is to use
additional MS-based approaches that can be applied on a larger scale.

MS-based validation of small proteins identified using non-MS methods. For
MS validation of putative small proteins identified by non-MS methods, we recom-
mend using the approaches described above for sample preparation and MS data col-
lection. Since the sequence of the putative novel small protein is known, protease
cleavage prediction tools such as “Peptidecutter” (UniProt) or “ProteaseGuru” (108)
serve as valuable tools to choose a suitable protease that produces detectable proteo-
lytic peptides. Additionally, in silico prediction of the proteolytic peptides, based on
their sequence, can be used to reanalyze previously acquired data to look for any sig-
nals in the respective retention time and m/z windows as a primary indication if the
candidate peptides were present in the first place (101, 109). However, to date, in silico
predictions only work well for tryptic peptides (101), so this approach cannot be used
reliably for targets requiring alternative proteases or for top-down approaches. If a sig-
nal is detected, targeted methods like parallel reaction monitoring can be used to
selectively accumulate and fragment ions in the specific retention time and m/z win-
dows. In parallel reaction monitoring, specific RT and m/z values are generated for syn-
thetic peptides that uniquely identify novel small proteins (110) to ensure that the
recorded transitions do not stem from a coeluting peptide from another protein (111).

Validation of MS-identified small proteins using synthetic peptide mimics. For
small proteins identified from complex samples by MS, a broadly applicable and eco-
nomic approach for validation is to purchase synthetic peptides that match the puta-
tive small protein(s), determine their retention time, capture their fragmentation pat-
terns, and compare these spectra to the experimentally observed small protein
spectra. High-scoring matches add confidence to the initial MS identifications (60). Due
to the relatively low cost of peptide synthesis, this approach can be applied to confirm
a large number of proteins, thereby supporting the option of using a less stringent
FDR for initial data analysis, and investing more effort into the validation. In a large
study on B. henselae, overall almost 80% of 136 peptides implying novel sORFs, novel
start sites, or expressed pseudogenes, were successfully validated by parallel reaction
monitoring, with lower success rates for N-terminal extensions and in silico ORFs (81).
Alternatively, databases of spectra associated with specific peptides (spectral libraries)
can be generated from experimental data (typically DDA data, which results in cleaner,
higher quality reference spectra) and used to more robustly identify and quantify can-
didates with low signal intensities or incomplete fragment spectra. However, in a study
of Bacillus subtilis, parallel reaction monitoring-based validation proved more discrimi-
natory than a spectral library approach (12).

A modification of this approach that is more sensitive but also more expensive, is
based on synthetic, “heavy” isotope-labeled “AQUA” peptides (112). These heavy pep-
tides can be used both for validating small protein candidates as well as for quantita-
tion of small protein candidates with low signal intensities or insufficient fragment
spectrum data for an unambiguous identification, but have to be designed and synthe-
sized for each small protein of interest. The heavy peptides are added to samples con-
taining the putative small protein(s) of interest, and provide a direct reference for
retention time, signal intensity, and fragmentation pattern, facilitating unambiguous
verification of novel small proteins.

PRIORITIZATION/SELECTION OF NOVEL SMALL PROTEINS

There is increasing evidence that some, perhaps many, small proteins that can be
detected by transcriptomic or MS-based approaches are nonfunctional, as defined by the
lack of an effect on cell fitness (6, 93, 113, 114). Hence, prioritization of novel small pro-
teins for further study is a critical step (Fig. 1). Classical annotation approaches that use
similarity to functionally characterized proteins are generally ineffective for small proteins
due to their size. For example, the overall percentage of CDSs annotated as hypothetical
(i.e., lacking any functional annotation) is around 12% (based on a meta-analysis of
;21,400 completely sequenced prokaryotes and 80 million encoded proteins). For the
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subsets of CDSs with a length below 100 aa or below 50 aa, this percentage rises to 41%
for each subset, respectively. Similarly, in a landmark study, 4,500 conserved small protein
families were identified using comparative genomics of metagenomic data sets, but 90%
of the families lack a predicted protein domain, and 50% were not even annotated in ref-
erence databases (1). Important caveats are that the ability to predict a domain is some-
what dependent on protein size, and the lack of a predicted protein domain does not
necessarily indicate the lack of a biological function. Small protein functional annotation
is expected to improve as more small proteins are characterized, but alternative
approaches for prioritization are recommended.

As an initial prioritization step, we recommend searching databases of protein
annotations (e.g., eggNOG, whose predictions can be retrieved for a particular taxo-
nomic level [115]), domains/motifs (e.g., InterProScan or LipoP [116, 117]), and pre-
dicted protein-protein interactions (118). The large majority of small proteins are not
expected to generate significant hits with these tools due to the small protein size, but
this is an extremely easy approach to try, and it has proven to be effective in a few
cases. For example, two novel small proteins identified in B. henselae were predicted
by LipoP (117) to contain signal peptides for the Sec/SRP secretion machinery, and
both proteins were experimentally detected in membrane fractions and later validated
with parallel reaction monitoring (81).

Analysis of phylogenetic sequence conservation, including determining the ratio of
synonymous to nonsynonymous SNPs between homologues, is highly recommended
for prioritization of novel small proteins, since evidence of purifying selection supports
a functional role (1, 93, 113). The genomic context of the candidate ORFs is yet another
important consideration, since short ORFs overlapping larger genes may be conserved
due to selective pressure on the overlapping gene. Genomic context can also be in-
formative for predicting the specific functions of small proteins or short ORFs, although
providing evidence for function per se (rather than a specific function) is an important
prerequisite. Short ORFs immediately upstream of genes/operons may function to reg-
ulate downstream transcription or translation (119). Short ORFs can also encode pro-
teins that have related functions to the proteins encoded by the neighboring genes,
such as a novel ribosome-related small protein family identified in the human micro-
biome study, where the novel small protein was encoded just downstream of two
annotated ribosomal proteins (1). We therefore recommend using model organism
resources and databases that contain operon assignments and predictions.

An additional level of prioritization can be achieved by integrating differential gene
and protein expression data, where available (104). Regulated expression provides evi-
dence for function, but can also suggest specific functions, based on the conditions
and strains tested. Lastly, codon usage can provide evidence for function, since codon
sequences are non-random with respect to the nucleotide content of the genome (93,
120). This is particularly true for genomes with extreme A/T or G/C content. As for anal-
ysis of sequence conservation, care must be taken to analyze only the codon usage of
ORF regions that do not overlap other genes.

Each of the approaches described above can provide evidence for small protein
functions that can be used for prioritization. However, we recommend relying on mul-
tiple, independent lines of evidence, since any individual method is likely to generate a
substantial number of false positives. It is also the case that the statistical power of
analyses of sequence conservation and codon usage is strongly length-dependent.
Hence, failure to identify evidence for small protein function using these methods
should not be interpreted as a lack of function.

CONCLUDING REMARKS

The approaches described above are intended to provide a set of best practices for
the detection and validation of small proteins using MS. We also discuss further bioin-
formatic analysis and prioritization strategies, which are critical for choosing the most
promising candidates for subsequent physiological studies. MS approaches can also be
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used for these functional studies, and provide valuable information on the roles and
functions of the novel small proteins. (See Fig. 2 for details [137–142].) For example,
MS analyses can be combined with subcellular fractionation to associate small proteins
with specific cellular compartments or complexes (81, 104, 141, 142). MS-based proteo-
mics also represent a powerful tool for identification of protein interaction partners for
small proteins of interest, when combined with pulldown approaches (for general
reviews, see references 121 and 122). A unique advantage of small proteins for these
approaches is the ability to chemically synthesize the proteins on a resin, or with modi-
fied amino acids that facilitate cross-linking to resin. This obviates the need for epitope
tags, which can disrupt protein function. The use of nonnative amino acids can also be
incorporated into pulldown methods. A recent study relied on incorporating a nonna-
tive amino acid into small proteins to facilitate cross-linking to interaction partners;
while a tag was required to precipitate the small protein, the cross-linking step allowed
for the detection of weaker or more transient interactions, as shown for the interaction
partners of 24 human small proteins (123). This also highlights the potential of cross-
linking mass spectrometry to gain further insights into small protein function. A more
detailed description of the options available to elucidate the functions of novel small
proteins is provided in the accompanying article of this special issue (124).

In summary, mass spectrometry-based proteomics approaches represent a powerful
tool to identify and characterize small proteins. However, the standard workflows available
in the field need to be adjusted depending on sample type and complexity, as outlined
above. We anticipate that these strategies will provide an excellent starting point for explor-
atory studies of prokaryotic small proteins.
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