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Abstract
Almost all land plants form symbiotic associations with arbuscular mycorrhizal fungi (AMF). Individual plants usually 
are colonized by a wide range of phylogenetically diverse AMF species. The impact that different AMF taxa have on plant 
growth is only partly understood. We screened 44 AMF isolates for their effect on growth promotion and nutrient uptake of 
leek plants (Allium porrum), including isolates that have not been tested previously. In particular, we aimed to test weather 
AMF lineages with an ancient evolutionary age differ from relatively recent lineages in their effects on leek plants. The AMF 
isolates that were tested covered 18 species from all five AMF orders, eight families, and 13 genera. The experiment was 
conducted in a greenhouse. A soil–sand mixture was used as substrate for the leek plants. Plant growth response to inocula‑
tion with AMF varied from − 19 to 232% and depended on isolate, species, and family identity. Species from the ancient 
families Archaeosporaceae and Paraglomeraceae tended to be less beneficial, in terms of stimulation plant growth and nutri‑
ent uptake, than species of Glomeraceae, Entrophosporaceae, and Diversisporaceae, which are considered phylogenetically 
more recent than those ancient families. Root colonization levels also depended on AMF family. This study indicates that 
plant benefit in the symbiosis between plants and AMF is linked to fungal identity and phylogeny and it shows that there are 
large differences in effectiveness of different AMF.
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Introduction

Arbuscular mycorrhizal fungi (AMF) play a key role in eco‑
systems and promote plant growth and nutrition (Smith and 
Read 2008; van der Heijden et al. 2015). AMF are abundant 

in almost all natural soils and have been considered as key‑
stone taxa in soil microbial communities (Banerjee et al. 
2019). AMF are able to establish symbioses with the major‑
ity of terrestrial plants. In return for photosynthates, the fungi 
provide several benefits to their host plants. These include 
increased phosphorus and nitrogen uptake and enhanced 
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resistance to drought and root pathogens (Jia et al. 2020; 
Smith and Read 2008; van der Heijden et al. 2015) as well as 
mitigation of salinity stress (e.g., Evelin et al. 2019). Also, 
improved soil quality by aggregating soil particles repeatedly 
has been reported (e.g., Rillig and Mummey 2006). In addi‑
tion, diverse AMF communities can lead to elevated diversity 
and productivity of plant communities (Jansa et al. 2008; 
van der Heijden et al. 1998a). Hence, crop production can 
profit from these positive effects which might be expressed 
in higher yield or reduced use of phosphatic fertilizer. The 
latter is advantageous in view of the growing demand for 
sustainable strategies in agricultural systems (Bender et al. 
2016; Sorensen et al. 2008).

The effectiveness of the symbiosis depends, among other 
factors, on the combination of plant and AM fungus, soil 
type, soil fertility, and the origin of the AMF isolates (de 
Novais et al. 2014; Feddermann et al. 2010; Pringle and 
Bever 2008). It has been assumed for instance that AMF 
isolated from polluted sites are advantageous for the biore‑
mediation of such sites (e.g., Cabello 1999; Hildebrandt 
et al. 2007; Takács 2012), or indigenous AMF isolates are 
superior to exotic isolates for plant growth promotion (e.g., 
Estrada et al. 2013; Klironomos 2003; Oliveira et al. 2005; 
Tchabi et al. 2010). Furthermore, high functional diversity 
among different AMF species and even among isolates 
belonging to the same species (Feddermann et al. 2010; 
Munkvold et al. 2004) has been observed. Because of this 
high functional diversity, it is important to investigate a wide 
range of different plant–AMF combinations (Feddermann 
et al. 2010). For example, some AMF taxa are most efficient 
to supply nutrients to their host plants, while others provide 
notable resistance against biotic or abiotic stresses (Fester 
and Sawers 2011; Verbruggen et al. 2010). Functional traits 
may be phylogenetically conserved, i.e., symbiotic func‑
tions such as plant growth promotion depend on AMF line‑
ages (Powell et al. 2009). A meta‑analysis from Hoeksema 
et al. (2018), however, suggested that AMF phylogeny is 
not related to plant response; instead, recent diversification 
among plants explains variation in the arbuscular mycor‑
rhizal symbiosis.

Previous studies have shown that different AMF fami‑
lies and clades significantly affect plant biomass, with some 
clades having superior effects on host plants, while oth‑
ers have no or weak effects (e.g., Hart and Reader 2002a; 
Sieverding et al. 2014). For example, van der Heijden et al. 
(1998a) and Powell et al. (2009) observed that the ancient 
AMF (e.g., Paraglomus (isolate BEG 21 in van der Heijden 
et al. 1998a) and Archaeospora (in Powell et al. 2009) are 
less beneficial in promoting plant growth than more recently 
evolved AMF including Rhizoglomus and Funneliformis. 
Nevertheless, so far, it is unclear whether symbiotic benefit 
is linked to the phylogenetic distances among AMF species 
and whether those distances can be used to make predictions 

regarding the growth‑promoting properties of AMF. This 
issue deserves increased attention, especially because there 
are only a few studies of members of the Paraglomerales 
and Archaeosporales, despite their widespread occurrence in 
many ecosystems (Davison et al. 2015). There is one study 
from Koch et al. (2017) that tested three host plants and 56 
isolates, including several members of ancient AMF fami‑
lies (e.g., Archaeospora trappei and Paraglomus occultum). 
Koch et al. (2017) conclude that host performance cannot be 
predicted from AM fungus morphology and growth traits. 
Rather divergent effects on plant growth among isolates 
within an AM fungus species may be caused by coevolution 
between co‑occurring fungus and plant populations.

The major objective of the present study was to investi‑
gate how AMF taxonomic levels and phylogeny affect plant 
growth and nutrient uptake. In order to test this, we com‑
pared 44 AMF isolates, comprising all five glomeromycotan 
orders, eight of 16 AMF families, and 13 of 48 AMF genera, 
including several taxa not tested previously in systematic 
investigations (e.g., Rhizoglomus invermaium, Dominikia 
compressa, and Cetraspora helvetica). The 44 isolates all 
had been prepared under similar conditions and were prop‑
agated on Hieracium pilosella L. on the same soil–sand 
substrate for 1 year before screening them on leek. These 
isolates were characterized morphologically and molecularly 
using the partial large subunit (LSU) of the ribosomal gene 
after DNA extraction from spores. We assessed the impact 
of those different isolates on growth and plant nutrient con‑
centrations of leek (Allium porrum L.) for different levels 
of taxa, i.e., on the levels of isolates, species, genera, and 
families. Specifically, we tested whether (i) plant growth and 
root colonization differs depending on AMF taxa and AMF 
families; (ii) members of ancient AMF families differed in 
their effects on plant growth compared to more recently 
evolved AMF families; and (iii) the phylogenetic place‑
ment of AMF isolates could explain their impacts on plant 
growth. We hypothesized that leek growth as well as nutri‑
ent assimilation and root colonizing strategies differ among 
AMF isolates and species, and even among higher taxa and 
major phylogenetic clades. In addition, we hypothesize that 
ancient AMF are less mutualistic in terms of plant growth 
stimulation than relatively recently evolved AMF families.

Materials and methods

AMF isolates for screening effects on leek growth

Between July 2011 and June 2012, 150 monosporal and 90 
multisporal cultures were grown on H. pilosella in the Swiss 
collection for arbuscular mycorrhizal fungi (SAF) (https:// 
www. agros cope. ch/ saf), as described in Tchabi et al. (2010). 
The substrate for AMF propagation was a mixture of three 
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parts Terragreen (American aluminum oxide, Oil Dry US 
special, type III R) and one part Loess with the following 
parameters: pH‑H2O 6.8; organic carbon 3.0 g  kg−1; avail‑
able P (P‑double lactate) 15.6 mg  kg−1; available K (Na‑
acetate) 350 mg  kg−1.

Besides being of monosporal or multisporal origin, all 
isolates were propagated identically in the glasshouse. After 
initial propagation, the inocula were air‑dried and stored for 
12 months before inoculation to leek (Allium porrum L.). 
Forty‑four AMF isolates were selected from the SAF for the 
screening experiment on leek, comprising 18 AMF species, 
13 genera, eight families, five orders, and three AMF classes. 
Per AMF species, one to four isolates were selected, when‑
ever possible deriving from different isolation sites (Table 1). 
Except the two Scutellospora calospora isolates, which were 
derived from soils in southwestern Germany, all isolates origi‑
nated from Swiss soils. Thirty‑five isolates (“11‑FO…” iso‑
lates in Table 1) were from monosporal AMF cultures, estab‑
lished as described in Tchabi et al. (2010). Two other isolates 
(of Sc. calospora) were derived from one monosporal culture 
established in 2001 (“01‑FO…” isolates) and were propagated 
in two separate pots between July 2011 and June 2012 espe‑
cially for the leek screening experiment. Seven additional iso‑
lates (one of Diversispora celata, and two each of Gigaspora 
margarita, Cetraspora helvetica, and Paraglomus laccatum) 
were derived from multiple spore cultures originally estab‑
lished in 1994–2002 (see Oehl et al. 2010, 2014a, b; van der 
Heijden et al. 1998b) and were propagated for our purposes as 
mentioned above for Sc. calospora. The inocula were checked 
for their spore densities. To create equal preconditions for 
the non‑mycorrhizal treatment, the inoculum for the control 
derived from an unsuccessful monosporal AMF culture on H. 
pilosella, in which no AMF symbiosis could be established 
and no AMF spores had been formed.

Morphological characterization of AMF isolates

Spores of the 44 AMF isolates were extracted from the 
inocula substrates by wet sieving and decanting followed by 
sucrose gradient centrifugation and counted in Petri dishes 
under a dissecting microscope as described in Sieverding 
(1991). The spores were morphologically identified from 
specimens mounted in polyvinyl‑lacto‑glycerol (PVLG; 
Koske and Tessier 1983) and a mixture of PVLG and Melz‑
er’s reagent (Brundrett et al. 1994). Reference slides of the 
isolates were deposited at the mycological herbarium of ETH 
Zurich (Z + ZT). For morphological spore identification, the 
identification manual of Błaszkowski (2012) for Glomero‑
mycota was used and was based on the classification system 
of Oehl et al. (2011b), considering the most recent updates 
(e.g., Baltruschat et al. 2019; Błaszkowski et al. 2015, 2018a, 
b; Błaszkowski et al. 2019; Wijayawardene et al. 2020).

The identifications of the 44 AMF isolates resulted in 
18 species from eight families. The isolates from the order 
Glomerales were most numerous and belonged to the fami‑
lies Glomeraceae and Entrophosporaceae (Table 1).

Molecular characterization of the AMF isolates

A subset of the AMF spores extracted was used for molecu‑
lar analyses as described in Palenzuela et al. (2015). Five 
spores were isolated from each AMF inoculum originat‑
ing from propagations on H. pilosella in the glasshouses 
of Agroscope in Zurich‑Reckenholz. Spores were surface‑
sterilized with chloramine T (2%) and streptomycin (0.02%; 
Mosse 1962), and all five together were crushed with a 
sterile disposable micropestle in 23 µl milli‑Q water as 
described in Palenzuela et al. (2013). Deoxyribonucleic acid 
(DNA) amplification of the crude extracts was performed in 
an automated thermal cycler (Gene Amp PCR System 2400, 
Perkin‑Elmer, Foster City, California) using pureTaq Ready‑
To‑Go PCR Beads (Amersham Biosciences Europe GmbH, 
Germany) by following the manufacturer’s instructions. A 
two‑step polymerase chain reaction (PCR) was conducted to 
increase the specificity of amplification. A ∼ 1500‑bp frag‑
ment was amplified comprising the SSU end, ITS1, 5.8S, 
ITS2, and partial LSU rDNA using the SSUmAf/LSUmAr 
and SSUmCf/LSUmBr primers consecutively (Krüger et al. 
2009; Oehl et al. 2019a, b). PCR products were analyzed 
by electrophoresis in 1.2% agarose gels stained with Gel 
Red™ (Biotium Inc., Hayward, CA, USA) and viewed by 
UV illumination. Amplicons of the expected size were puri‑
fied using the Illustra GFX PCR DNA and Gel Band Purifi‑
cation kit and were directly sequenced. For those for which 
not fair sequences were obtained, a portion of the purified 
PCR product was cloned into the PCR 2.1 vector (Invitro‑
gen, Carlsbad, CA, USA), and transformed into One shot© 
TOP10 chemically competent Escherichia coli cells. After 
plasmid isolation from transformed cells, the cloned DNA 
fragments were sequenced with vector primers (White et al. 
1990) in both directions by Taq polymerase cycle sequenc‑
ing on an automated DNA sequencer (Perkin‑Elmer ABI 
Prism 373).

DNA sequences are deposited in the NCBI GenBank 
(www. ncbi. nlm. nih. gov/ genba nk/); accession numbers are 
given in Table 1.

Phylogenetic analyses

The phylogeny was reconstructed by analyses of the par‑
tial LSU rDNA. The AM fungal sequences obtained were 
aligned with other Glomeromycota sequences from Gen‑
Bank in ClustalX2 (Larkin et al. 2007). Boletus edulis Bull. 
and Mortierella ambigua B. S. Mehrotra were included 
as an outgroup. Prior to phylogenetic analysis, the model 
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Table 1  List of AMF isolates used in this study together with refer‑
ence collection numbers (SAF = Swiss collection of arbuscular myc‑
orrhizal fungi; original accession number) and information on the 

original isolation sites of the AMF isolates. Except two isolates from 
Germany, all other isolates originated from soils in Switzerland

Order Isolate SAF acces‑
sion

Original 
accession

NCBI 
GenBank 
accession

Village and 
canton of 
origin in 
Switzerland

Land use at 
origin site

Soil pH In pure 
culture 
since

Soil  type1 at 
originFamily

Species

Glomerales
Glomeraceae
Oehlia 

diaphana
O.dia1 SAF106 11‑FO106 MN996942 Uettlingen 

BE
Arable Field 

(Winter 
Wheat)

5.3 2011 Eutric Cam‑
bisol

Oehlia 
diaphana

O.dia2 SAF107 11‑FO290 MN996943 Graswil BE Arable field 
(winter 
barley)

5.6 2011 Eutric Cam‑
bisol

Oehlia 
diaphana

O.dia3 SAF108 11‑FO292 MN996944 Graswil BE Arable field 
(winter 
barley)

5.6 2011 Eutric Cam‑
bisol

Rhizoglomus 
irregulare

R.irr1 SAF130 11‑FO113 MN996945 Uettlingen 
BE

Arable field 
(winter 
wheat)

5.3 2011 Haplic Luvisol

Rhizoglomus 
irregulare

R.irr2 SAF131 11‑FO190 MN996946 Frick AG Arable field 
(winter 
wheat)

7.6 2011 Vertic Cam‑
bisol

Rhizoglomus 
irregulare

R.irr3 SAF170 11‑FO420 MN996947 Langnau BE Permanent 
grassland

5.5 2011 Eutric Cam‑
bisol

Rhizoglomus 
irregulare

R.irr4 SAF96 11‑FO181 MN996948 Frick AG Arable field 
(winter 
wheat)

7.6 2011 Vertic Cam‑
bisol

Rhizoglomus 
invermaium

R.inv1 SAF205 11‑FO84 LN624111‑12 Hindelbank 
BE

Arable field 
(grass–clo‑
ver)

7.1 2011 Eutric Cam‑
bisol

Rhizoglomus 
invermaium

R.inv2 SAF206 11‑FO424 MN996965 Langnau BE Permanent 
grassland

5.5 2011 Eutric Cam‑
bisol

Rhizoglomus 
invermaium

R.inv3 SAF207 11‑FO432 Rubigen BE Permanent 
grassland

5.8 2011 Eutric Cam‑
bisol

Rhizoglomus 
invermaium

R.inv4 SAF147 11‑FO336 MN996959 Rubigen BE Permanent 
grassland

5.8 2011 Eutric Cam‑
bisol

Funneliformis 
mosseae

F.mos1 SAF87 11‑FO85 MN996949 Hindelbank 
BE

Arable field 
(grass–clo‑
ver)

7.1 2011 Haplic Luvisol

Funneliformis 
mosseae

F.mos2 SAF139 11‑FO239 MN996950 Graswil BE Arable field 
(winter 
barley)

5.6 2011 Haplic Luvisol

Funneliformis 
mosseae

F.mos3 SAF160 11‑FO418 MN996951 Langnau BE Permanent 
grassland

5.5 2011 Eutric Cam‑
bisol

Funneliformis 
caledonius

F.cal SAF111 11‑FO269 MN996952 Graswil BE Arable field 
(winter 
barley)

5.6 2011 Haplic Luvisol

Funneliformis 
fragilistratus

F.fra1 SAF109 11‑FO185 Frick AG Arable field 
(winter 
wheat)

7.6 2011 Vertic Cam‑
bisol

Funneliformis 
fragilistratus

F.fra2 SAF110 11‑FO193 MN996960 Frick AG Arable field 
(winter 
wheat)

7.6 2011 Vertic Cam‑
bisol

Septoglomus 
nigrum

Se.nig1 SAF86 11‑FO61 MK234700 Niederösch 
BE

Permanent 
grassland

5.7 2011 Haplic Luvisol
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Table 1  (continued)

Order Isolate SAF acces‑
sion

Original 
accession

NCBI 
GenBank 
accession

Village and 
canton of 
origin in 
Switzerland

Land use at 
origin site

Soil pH In pure 
culture 
since

Soil  type1 at 
originFamily

Species

Septoglomus 
nigrum

Se.nig2 SAF175 11‑FO471 MK234701 Rubigen BE Arable field 
(winter 
barley)

7.1 2011 Eutric Cam‑
bisol

Dominikia 
compressa

Do.com1 SAF145 11‑FO332 Rubigen BE Permanent 
grassland

5.8 2011 Eutric Cam‑
bisol

Dominikia 
compressa

Do.com2 SAF203 11‑FO352 HG798895‑
99

Rubigen BE Permanent 
grassland

5.8 2011 Eutric Cam‑
bisol

Entrophosporaceae (late synonym  Claroideoglomeraceae2)
Claroideo-

glomus 
candidum

Cl.can SAF112 11‑FO411 MN996953 Langnau BE Permanent 
grassland

5.5 2011 Eutric Cam‑
bisol

Claroideo-
glomus 
claroideum

Cl.cla1 SAF92 11‑FO55 MN996961 Niederösch 
BE

Permanent 
grassland

5.7 2011 Haplic Luvisol

Claroideo-
glomus 
claroideum

Cl.cla2 SAF181 11‑FO94 Hindelbank 
BE

Permanent 
grassland

7.1 2011 Haplic Luvisol

Claroideo-
glomus 
claroideum

Cl.cla3 SAF166 11‑FO370 Bantigen BE Arable field 
(grass–clo‑
ver)

6.2 2011 Haplic Luvisol

Entrophos-
pora infre-
quens

E.inf1 SAF209 11‑FO321 Bantigen BE Arable field 
(grass–clo‑
ver)

6.2 2011 Eutric Cam‑
bisol

Entrophos-
pora infre-
quens

E.inf2 SAF210 11‑FO313 Bantigen BE Arable field 
(grass–clo‑
ver)

6.2 2011 Eutric Cam‑
bisol

Diversispo‑
rales

Diversispo‑
raceae

Diversispora 
celata

Di.cel1 SAF5 HG‑234 MN996954 Eschikon ZH Permanent 
grassland

7.0 20023 Haplic Luvisol

Diversispora 
celata

Di.cel2 SAF151 11‑FO387 MN996955 Bantigen BE Permanent 
grassland

5.3 2011 Haplic Luvisol

Diversispora 
celata

Di.cel3 SAF152 11‑FO403 MN996956 Langnau BE Permanent 
grassland

5.5 2011 Haplic Luvisol

Diversispora 
epigaea

Di.epi1 SAF118 11‑FO459 MN996962 Rubigen BE Arable field 
(winter 
barley)

7.1 2011 Eutric Cam‑
bisol

Diversispora 
epigaea

Di.epi2 SAF128 11‑FO338 MN996963 Rubigen BE Permanent 
grassland

5.8 2011 Eutric Cam‑
bisol

Diversispora 
epigaea

Di.epi3 SAF129 11‑FO460 MN996964 Rubigen BE Arable field 
(winter 
barley)

7.1 2011 Eutric Cam‑
bisol

Gigasporales
Gigasporaceae
Gigaspora 

margarita
G.mar1 SAF14‑1 JJ‑4 Tänikon TG Arable field 6.2 20003 Haplic Luvisol

Gigaspora 
margarita

G.mar2 SAF14‑2 JJ‑4 Tänikon TG Arable field 6.2 20003 Haplic Luvisol

Racocetraceae
Cetraspora 

helvetica
Ce.hel1 SAF15‑1 JJ17/19 HM565946 Tänikon TG Arable field 6.2 20003 Haplic Luvisol
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of nucleotide substitution was estimated using Topali 2.5 
(Milne et al. 2004). Bayesian analysis (two runs over 3 ×  106 
generations with a sample frequency of 300 and a burn‑in 
value of 25%) was performed in MrBayes 3.1.2 (Ronquist 
and Huelsenbeck 2003), launched from Topali 2.5, using the 
GTR + G model. Our annotations follow the most recent sys‑
tematics of the Glomeromycota (e.g., Baltruschat et al. 2019; 
Błaszkowski et al. 2018a, b; Corazon‑Guivin et al. 2019; 
Oehl et al. 2019a; Silva et al. 2012; Tedersoo et al. 2018). 
Table 1 gives detailed information about sequence origin.

Isolates A.eur1, A.eur2, A.eur3, R.inv3, F.fra1, Do.com1, 
Cl.cla2, Cl.cla3, E.inf1, E.inf2, G.mar1, and G.mar2 were 
not included in the phylogenetic analyses because no DNA 
sequences could be obtained.

Experiment setup

To test the effect of the different AMF isolates on leek 
growth promotion and leek macronutrient uptake, a pot 
experiment was established in a glasshouse. In addition 
to the 44 AMF isolates (see Table 1), a non‑mycorrhizal 
control was included. Each treatment was replicated six 
times, resulting in a total of 270 pots. As substrate, a mix‑
ture (1:1) of Loess subsoil which had been passed through 
a 5 mm sieve before autoclaving and mixing, and quartz 
sand was used. Soil and sand were separately sterilized by 
autoclaving (121 °C, 90 min) and afterwards mixed in equal 
proportion by weight. The chemical parameters of the sub‑
strate were as follows: pH  (H2O) = 6.0,  Corg = 1.4 g  kg−1, 

Table 1  (continued)

Order Isolate SAF acces‑
sion

Original 
accession

NCBI 
GenBank 
accession

Village and 
canton of 
origin in 
Switzerland

Land use at 
origin site

Soil pH In pure 
culture 
since

Soil  type1 at 
originFamily

Species

Cetraspora 
helvetica

Ce.hel2 SAF15‑2 JJ17/19 HM565945 Tänikon TG Arable field 6.2 20003 Haplic Luvisol

Scutello‑
sporaceae

Scutellospora 
calospora

Sc.cal1 SAF202‑1 01‑FO30 MN996957 Vogtsburg, 
Germany

Vineyard 7.7 20014 Eutric Cam‑
bisol

Scutellospora 
calospora

Sc.cal2 SAF202‑2 01‑FO30 Vogtsburg, 
Germany

Vineyard 7.7 20014 Eutric Cam‑
bisol

Archaeopspo‑
rales

Archae‑
osporaceae

Archaeospora 
europaea

A.eur1 SAF113 11‑FO107 Uettlingen 
BE

Arable field 
(winter 
wheat)

5.3 2011 Eutric Cam‑
bisol

Archaeospora 
europaea

A.eur2 SAF114 11‑FO126 Frick AG Arable field 
(winter 
wheat)

7.6 2011 Vertic Cam‑
bisol

Archaeospora 
europaea

A.eur3 SAF115 11‑FO345 Rubigen BE Permanent 
grassland

5.8 2011 Eutric Cam‑
bisol

Paraglom‑
erales

Paraglomer‑
aceae

Paraglomus 
laccatum

P.lac1 SAF56‑1 BEG21 MN996958 Nenzlingen 
BL

Permanent 
grassland

7.7 19945 Calcaric Lep‑
tosol

Paraglomus 
laccatum

P.lac2 SAF56‑2 BEG21 Nenzlingen 
BL

Permanent 
grassland

7.7 19945 Calcaric Lep‑
tosol

1 According to IUSS Working Group WRB (2015)
2 Taxa names are given based on nomenclatural rules. Here, we follow nomenclature after Oehl et al. (2011a, b), updated in Baltruschat et al. 
(2019) and Wijayawardene et al. (2020). The nomenclature of AMF is still partly under debate and some AMF are named differently by different 
authors (e.g., Krüger et al. 2012; Wijayawardene et al. 2020)
3 Deposited at SAF 2008
4 Propagated 2011/2012 for this study
5 Pure culture in 1994; re‑established in 2008
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P = 8.3  mg   kg−1, potassium (K) = 31.5  mg   kg−1, 
Ca = 910 mg  kg−1, Mg = 149 mg  kg−1. Parameters were 
measured according to standard methods in the laboratory 
of F.M. Balzer, Wetter‑Amönau, Germany. Phosphorus (P), 
potassium (K), and magnesium (Mg) were extracted with 
double lactate according to the method of Hoffmann (1991). 
In that method, plant available nutrients are extracted from 
soil with 0.02 M Ca‑lactate and 0.02 M hydrochloric acid. 
Calcium (Ca) was extracted with HCl and  H2SO4. Each pot 
was filled with 500 g of the substrate and watered to 100% 
water capacity. For the AMF treatments, 5 ml inoculum was 
placed in a small, shallow hole in the center of each pot. 
The inoculum contained spores, root fragments, and sub‑
strate from the pot cultures of the AMF isolates. The control 
treatment received 5 ml of the same substrate, in which 
no AMF symbiosis was established during AMF inoculum 
propagation. The inocula were covered with a thin layer of 
substrate and ten seeds of leek (Allium porrum L., variety 
‘Belton’, F1 hybrid) were sown exactly above the inocula. 
Seedlings were thinned after emergence to four plants per 
pot. The plants were maintained in the glasshouse under 
natural light and average temperatures of 25 °C by day and 
18 °C at night. To ensure equal growth conditions, pots 
were completely randomized every 3 to 4 days. Plants were 
fertilized 3 weeks after emergence with 25 mg N, 10 mg P, 
and 25 mg K per pot. Aboveground biomass of leek plants 
was harvested 8 weeks after emergence to avoid plants 
becoming pot‑bound.

Leek biomass and nutrient analyses

Aboveground biomass was oven dried at 60 °C for 48 h 
and afterwards weighed. Before nutrient analyses, the 
dry matter was ground with a ball mill. Carbon and nitro‑
gen concentrations of the shoots were determined with a 
CHNS‑O Elemental Analyzer (Euro EA 3000, EuroVector 
SpA, Milan, Italy). For phosphorus, potassium, calcium, 
and magnesium, leek samples were dry ashed, solubilized 
in hydrochloric acid and subsequently measured with 
inductively coupled plasma optical emission spectrometry 
(Arcos FHS 16, Spectro Analytical Instruments GmbH, 
Kleve, Germany).

AMF root colonization

To measure AMF root colonization, all leek roots were 
washed, stained with a 5% ink vinegar solution and mounted 
on microscope slides (Vierheilig et  al. 1998). Hyphal, 
vesicular, and arbuscular root colonization were estimated 
according to the intersection method of McGonigle et al. 
(1990) using 100 intersections per sample.

Statistical analyses

The total root length colonized and the formation of vesicles 
and arbuscules were analyzed by using a beta regression 
model suitable for rates with the link function probit. For the 
effects of AMF isolates, species and genera on leek biomass 
one‑way analyses of variance (ANOVA) were performed, 
each followed by Dunnett’s test. To estimate the variance 
among species and of isolates within species, we used the 
restricted maximum likelihood (REML) method. When 
AMF family and order were used as explanatory variables, 
assumptions for an ANOVA—i.e., normal distribution of 
residuals and homogeneity of variances—could not be met; 
therefore, Kruskal–Wallis tests followed by Conover’s many‑
to‑one test were applied. For the response variables P, N, K, 
Ca, and Mg concentrations in plant tissues, MANOVA was 
not possible; therefore, again Kruskal–Wallis and Conover’s 
many‑to‑one tests were run to compare AMF isolates. All 
significance levels were set at p < 0.05. In every post hoc test 
(Dunnett’s tests and Conover’s many‑to‑one tests), p values 
were adjusted according to the Benjamini–Hochberg proce‑
dure to correct for multiple testing (Benjamini and Hochberg 
1995). The statistical analyses and graphing were carried 
out with the software R 4.0.5 (R Core Team 2021) using the 
packages stats, graphics, ggplot2 (Wickham 2016), betareg 
(Zeileis et al. 2021), PMCMRplus (Pohlert 2021), and lme4 
(Bates et al. 2015).

Results

AMF root colonization

Total AMF root colonization differed significantly among 
the 44 AMF isolates tested (Fig. 1 and Table S1). With 
the exception of Dominikia compressa, leek plants inocu‑
lated with AMF isolates of the families Glomeraceae and 
Entrophosporaceae (both belonging to the order Glomerales) 
had higher percentages of AMF root colonization than iso‑
lates of other families (Fig. 1). Isolates of Oehlia, Rhizoglo-
mus, and Claroideoglomus had the highest percentages of 
AMF root colonization (on average 88% for O. diaphana, 
66% for R. irregulare, and around 55% for R. invermaium, 
Cl. candidum, and Cl. claroideum). Funneliformis, Septoglo-
mus, and Entrophospora spp. showed medium to high AMF 
root colonization (41% for F. mosseae, 34% for F. caledo-
nius, 26% for Septoglomus nigrum, and 20% for Entrophos-
pora infrequens), while Dominikia compressa had low colo‑
nization (4%). From the Diversisporaceae, Di. celata and Di. 
epigaea had only 7% and 3% AMF root colonization, respec‑
tively. Of the Gigasporaceae, Gigaspora margarita had 21%, 
and Cetraspora helvetica 4% AMF root colonization. AMF 
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isolates of the Archaeosporaceae and Paraglomeraceae had 
low AMF colonization (3% for Archaeospora europaea and 
2% for Paraglomus laccatum). No root colonization was 
observed in the control treatment without AMF added.

For some isolates, barely any colonization (isolate aver‑
age of less than one percent) was detected, namely A.eur3, 
Ce.hel2, Di.cel1, Di.epi3, P.lac2, Sc.cal1, and Sc.cal2.

Linear regression analyses revealed no correlation 
between AMF spore densities of the AMF inocula and AMF 
root colonization (r2 = 0.03; p = 0.24; Fig. S1).

In the leek roots, vesicle formation was highest in Oehlia, 
Rhizoglomus and Claroideoglomus species (11% for O. 
diaphana, 12% for R. irregulare, 7% for R. invermaium, 5% 
for Cl. claroideum, and 3% for Cl. candidum). Vesicle for‑
mation was low to absent for other species of Glomeraceae 
and Entrophosporaceae, e.g., in Funneliformis, Septoglomus, 
Dominikia, and Entrophospora spp (Fig. 1). Vesicle forma‑
tion was not observed for isolates of other AMF families.

Intraradical arbuscules were found in leek roots for all 
Glomeraceae and Entrophosporaceae species under study 

with the highest records for Cl. candidum (25%), Cl. claroi-
deum (11%), R. irregulare and R. invermaium (each 9%), F. 
fragilistratus (5%), and O. diaphana (4%) and lowest in the 
Dominikia, Septoglomus, and Entrophospora isolates (c. 1%). 
For almost all other isolates, virtually no arbuscules were 
detected, with the exception of one G. margarita isolate (3%).

Effects of AMF on plant biomass

Inoculation with 44 different AMF isolates clearly affected 
the shoot biomass production of the leek plants. Inoculation 
with 20 AMF isolates lead to significantly higher biomass 
than that of the controls (Fig. 2). None of the isolates had a 
statistically significant negative effect on leek shoot biomass. 
Overall, isolates with plant growth responses in similar mag‑
nitude belonged to the same taxonomic group (Fig. 2) and 
same phylogenetic clades, respectively (Fig. 3).

Results of restricted maximum likelihood analyses 
showed a highly significant effect of AMF species on leek 
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Fig. 1  Intraradical hyphae, arbuscules, and vesicles summed to total 
root length colonization of leek plants inoculated with 44 different iso‑
lates of arbuscular mycorrhizal fungi (AMF) and one non‑mycorrhizal 

control. Data are reported as means (n = 6) and their standard errors. 
Significant total root length colonization is indicated by asterisks and 
was determined with a beta regression model (p < 0.05)
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biomass, but no significant effect of isolates within spe‑
cies (Table S2).

For species, the highest biomass production was 
observed for Oehlia and Rhizoglomus species (Fig. S2). 
For instance, the biomass of plants inoculated with O. 
diaphana, R. invermaium, and R. irregulare increased by 
112%, 107%, and 91%, respectively, compared to the non‑
mycorrhizal controls. Also, after inoculation with F. cal-
edonius (+ 90%), F. mosseae (+ 70%), and Cl. claroideum 
(+ 67%), leek plants produced significantly more biomass 
than the non‑mycorrhizal controls. For other isolates from 
the families Glomeraceae and Entrophosporaceae (e.g., 
Dominikia compressa, Septoglomus nigrum, Entrophos-
pora infrequens, and Cl. candidum); however, no signifi‑
cant differences versus the non‑mycorrhizal control plants 
were detected. Although for three of the Diversisporales 
isolates, fairly high plant growth promotion was observed, 
these effects (+ 47 to + 57%) were not significant. Members 

of Gigasporales, Archaeosporales, and Paraglomerales 
showed no significant effect on leek biomass.

Significant effects were also found at the level of AMF 
genera (Fig. S3).

Multiple comparisons between AMF families showed 
that Glomeraceae had a significantly higher leek biomass 
than all other AMF families (+ 97 to + 17%) and than the 
control treatment (+ 76%; Fig. S4). Entrophosporaceae and 
Diversisporaceae also differed significantly from the control 
treatment (+ 50% and + 46%; Fig. S4).

Leek biomass was positively correlated with root length 
colonization (r2 = 0.45; p < 0.05; Fig. 4).

Effects of AMF on nutrient concentrations in leek 
shoots

Phosphorus concentrations of the leek shoots were substan‑
tially affected by AMF inoculation. The effects of the AMF 
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Fig. 2  Aboveground biomass of leek inoculated with 44 different 
isolates of arbuscular mycorrhizal fungi (AMF) and one non‑mycor‑
rhizal control. Data are reported as means (n = 6) and their standard 
errors. Significant differences between AMF isolates and the control 

treatment (bar and dashed horizontal line) are indicated by asterisks 
and were determined with Dunnett’s test (p < 0.05) after a one‑way 
ANOVA
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isolates on total P contents in leek plants were even stronger 
than those observed for shoot biomass. The phosphorus con‑
centration in leek shoots was highest after inoculation with 
isolates of the species O. diaphana (+ 155% in average), R. 
invermaium (+ 166%), and R. irregulare (+ 156%; Fig. 5a). 
Funneliformis isolates led to elevated P concentrations; but 
these effects were not always significant. This also was found 
for Claroideoglomus and Diversispora isolates. Two species 
led to significantly increased P concentrations, namely F. 
mosseae and Cl. claroideum. There was no enhancement or 
a slight reduction of shoot P concentration after inoculation 
with Do. compressa, Ce. helvetica, and Paraglomus lacca-
tum (Fig. 5a).

Similar to phosphorus assimilation, shoot nitrogen con‑
centration was affected by AMF inoculation. The most effec‑
tive isolates were F.mos3, F.cal, and F.mos1. There was no 
significant increase in shoot N concentration for a few Glom‑
erales and Diversisporales isolates as well as for Ce.hel1 

and P.lac1 (Fig. 5b). Taking the averages of the species, the 
shoot N concentration was highest after inoculation with F. 
caledonius (+ 53% when compared to the control treatment), 
followed by values obtained after inoculation with F. mos-
seae (+ 50%), O. diaphana (+ 43%), R. irregulare (+ 40%), 
Cl. claroideum (+ 37%), and R. invermaium (+ 33%).

N:P ratios of dry leek biomass ranged from 11.6 mgN/
mgP (R.inv3) to 47.9 (Sc.cal1) mgN/mgP. Compared to the 
control treatment—which had a N:P ratio of 24.7—N:P 
ratios were significantly lower than the controls for all iso‑
lates of the genera Oehlia and Rhizoglomus as well as for the 
two isolates Cl.cla1 and E.inf2. Some isolates showed higher 
N:P ratios than controls, but with a high standard deviation 
of the means, effects were not significant (Fig. S5).

For some isolates—namely Oehlia, Rhizoglomus, Claroideo-
glomus, and Diversispora species—potassium concentration in 
leek aboveground biomass was slightly enhanced. In contrast, 
Funneliformis and Paraglomus isolates tended to result in a 
lower K concentration than that of the controls. However, these 
effects were not statistically significant (Fig. S6). Also, for mag‑
nesium concentration, there was no effect of AMF inoculation 
(Fig. S7). The majority of AMF isolates and species resulted in a 
lower calcium concentration of leek plants compared to the non‑
mycorrhizal controls (Fig. S8). The lowest Ca concentrations 
were found for all isolates of Funneliformis and Septoglomus 
with a decrease between 30% (Fu.mos1) and 36% (Fu.mos3).

Fig. 3  Phylogenetic tree of arbuscular mycorrhizal fungi (AMF) 
obtained by analysis of partial LSU rDNA sequences. The tree is 
based on the Bayesian Inference method. Sequences are labeled with 
their database accession numbers. Only support values of at least 60% 
are shown. Thick branches represent clades with 100% support. The 
tree was rooted by Boletus edulis and Mortierella ambigua. Isolates 
which are used for the inoculation experiment are marked in yellow 
(twelve isolates that could not be sequenced are missing)

◂

Fig. 4  Linear regression 
between leek shoot dry 
weight and AMF root length 
colonization across all isolates 
(r2 = 0.45; p < 0.05) with 95% 
prediction (dashed lines) and 
confidence intervals (dash and 
dot lines)
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Fig. 5  Phosphorus a and nitrogen b concentrations in above ground 
leek biomass inoculated with 44 different AMF isolates and one non‑
mycorrhizal control. Data are reported as means (n = 6) and their 
standard errors. Significant differences between AMF isolates and 

the control treatment (bar and dashed horizontal line) are determined 
with Conover’s many‑to‑one test (p < 0.05) after the non‑parametric 
Kruskal–Wallis test and are indicated by asterisks
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Discussion

This study demonstrates that different AMF taxa differ 
in their effects on plant growth. Especially ancient AMF 
lineages were least beneficial in terms of stimulating plant 
growth. The intraspecific differences among isolates of the 
same AMF species were small compared to those among 
AMF species. AMF species, genera and families displayed 
different performances in root colonization. Furthermore, 
we showed that taxonomic and phylogenetic characteriza‑
tion of AMF isolates based on morphology and molecular 
analysis were largely congruent. To obtain the best clas‑
sification, it is recommended to apply both methods in 
combination (Oehl et al. 2011a).

Almost all AMF isolates that were tested showed a posi‑
tive effect on leek biomass versus the non‑mycorrhizal 
control. This was expected, because leek is known to be 
responsive to mycorrhizal fungi (e.g., Plenchette et al. 
1982; Jansa et al. 2008; Karaca 2012; Kohler‑Milleret 
et al. 2013). Some AMF isolates, however, resulted in 
higher growth promotion than other isolates. Such differ‑
ences among AMF species in their ability to promote plant 
growth or nutrient acquisition have been observed multiple 
times (Jansa et al. 2008; Klironomos 2003; Pringle and 
Bever 2008; Tchabi et al. 2010; Thonar et al. 2011). Also, 
in the present study, different AMF species affected leek 
growth and nutrient uptake differently depending on the 
clade to which they belong. Oehlia and Rhizoglomus spp. 
provided the highest benefit to leek growth, followed by 
species belonging to Funneliformis, Claroideoglomus, and 
Diversispora, while Paraglomerales, Archaeosporales, and 
Gigasporales did not significantly affect leek growth.

From an evolutionary point of view, Paraglomerales 
and Archaeosporales are the most ancient AMF. These 
fungal clades date back about 460 million years, while 
members from the Glomerales and Gigasporales evolved 
more recently (Morton and Redecker 2001; Redecker et al. 
2000a; Silva et al. 2012). A study by Koch et al. (2017) 
observed conservatism in fungal traits but did not find 
effects of fungal phylogeny on plant growth stimulation. 
In our study, however, species that diverged early in evo‑
lutionary history (e.g., Paraglomus laccatum and Archae-
ospora sp.; Redecker et al. 2000b) were less beneficial in 
stimulating plant biomass than phylogenetically younger 
taxa (especially Glomeraceae species). Different effects of 
ancient and more recently evolved AMF on plant biomass 
might be due to niche differentiation—e.g., members of 
the Paraglomeraceae have reduced root colonization and 
appear to be build extensive extra‑radical mycelium in 
the soil (Hempel et al. 2007). Alternatively, the differ‑
ent effects might be due to differences in terms of carbon 
and nutrient exchange between plants and particular AMF 
taxa—e.g., ancient AMF appear to provide only limited 

amounts of nutrients to plants. As we did not assess extra‑
radical mycelium or carbon exchange, we only can hypoth‑
esize that these two factors may have caused differences 
in leek growth.

In a meta‑analysis by Hoeksema et al. (2018), fungal 
phylogeny and fungal identity (genus) did not explain plant 
responses to AMF. Besides context dependency, this could 
be due to few studies actually having tested the response of 
plants to ancient AMF and very few data entries for ancient 
AMF taxa being included in the database making it diffi‑
cult to test this. Additionally, our study was unbalanced in 
that only a few isolates of Paraglomus and Archaeospora 
were tested, making these ancient AMF taxa underrepre‑
sented. Nevertheless, in this study, we analyzed clearly 
more “ancient” AMF taxa than did preceding works. It also 
should be taken into account that our study reflects the natu‑
ral distribution of AMF genera, as the current classification 
of AMF accepts 20 genera in the order Glomerales, while 
there are only ten in Diversisporales, eleven in Gigaspo‑
rales, five in Archaeosporales and three in Paraglomerales 
(Wijayawardene et al. 2020). This indicates that there simply 
are fewer ancient species available. Sieverding and Howeler 
(1985) and Howeler et al. (1987) evaluated a range of AMF 
species, including the ancient species Paraglomus occultum 
and found varying effects of this species, ranging from no 
effect to significant plant growth promotion. Powell et al. 
(2009) examined 27 AMF species and assessed with com‑
piled data from three different glasshouse studies whether 
AMF phylogeny is related to functional traits of AMF (root 
and soil colonization, plant growth benefit). They observed 
that some traits, like root and soil colonization or host ben‑
efits, may be phylogenetically conserved with which our 
study agrees.

Hart and Reader (2002a) showed that in two plant spe‑
cies (Plantago lanceolata and Poa annua) Glomeraceae 
provided the greatest and Acaulosporaceae the least plant 
growth promotion. They related this to the large internal 
mycelium of Glomeraceae. Differences in carbon demand 
(Elbon and Whalen 2015) also are considered. Tchabi et al. 
(2010) showed that also several Acaulospora species derived 
from tropical areas, however, might provide significant plant 
growth promotion under tropical conditions, and that spe‑
cies such as A. scrobiculata, A. minuta, and A. spinosissima, 
might also be able to elaborate substantial internal mycelium 
(Tchabi et al. 2010; Oehl et al. 2014a, b).

Because our experiment was run only for 8 weeks from 
plant emergence, life cycles of the symbionts may play a 
significant role in the positive effects on plant growth. Life 
cycles of Rhizoglomus, Funneliformis, Oehlia, and Clar-
oideoglomus species are faster than those of Dominikia 
and Septoglomus species and Gigasporales species in the 
temperate zones (Oehl et al. 2009). These observations do 
not explain the ineffectiveness of the Archaeospora and 
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Paraglomus isolates, which have similarly fast life cycles 
to Oehlia diaphana, Funneliformis mosseae, Rhizoglomus 
irregulare, Claroideoglomus claroideum, and Cl. etunicatum 
(Oehl et al. 2005, 2009). Nevertheless, there are differences 
in colonization rate, i.e., the time from inoculation to the 
first colonization of roots. In a screening of 21 AMF iso‑
lates by Hart and Reader (2002b), species of Glomeraceae 
were found to be the fastest in root colonization with an 
initial root colonization from 1 to 3 weeks after inocula‑
tion depending on the species, while some members Giga‑
sporaceae and Acaulosporaceae needed 6 to 8 weeks. This 
may be one reason—among others—that in our experiment, 
inoculation with isolates of Glomeraceae resulted in highest 
leek biomass gain.

Another aspect is the cultivation duration of isolates. 
Although all AMF isolates were propagated under same 
conditions, some isolates—namely Di.cel1, all isolates of 
Gigasporales and Paraglomerales—were propagated for a 
longer time than the others. Bentivenga et al. (1997) showed 
that propagation can change characteristics such as spore 
size and color in a few generations. We cannot exclude that 
interaction traits of AMF with plants changed over the time 
in pot culture.

Some studies found functional variation within AMF spe‑
cies (e.g., de Novais et al. 2014; Koch et al. 2006; Munkvold 
et al. 2004). In our study, however, the variation among 
isolates of the same species was less pronounced than that 
among species. This probably is because the inocula of dif‑
ferent isolates of the same species had similar spore densi‑
ties, identical ages and were obtained in similar conditions. 
Therefore, they probably were of very similar quality which 
could explain why intra‑specific variability was low in our 
study.

Overall, AMF isolates which increased leek biomass 
enhanced shoot P and N concentrations as well. Previous 
studies also showed the effect of AMF accumulating P and/
or N in plant biomass for leek (Fusconi et al. 2005; Hart and 
Forsythe 2012) and for other plant species such as tomato 
(Ortas et al. 2013), Medicago truncatula (Burleigh et al. 
2002), M. sativa (Avio et al. 2006), and apple (Cavallazzi 
et al. 2007). Lendenmann et al. (2011) suggested that dif‑
ferences in P acquisition between R. intraradices and Cl. 
claroideum are due to differences in mycelium length den‑
sity and in P transporters. In addition, there also is evidence 
that Gigasporaceae can retain P in their hyphae before it is 
transported to the host plant (Jakobsen et al. 1992; Dodd 
et al. 2000; Solaiman and Saito 2001). Even if there is no 
growth response by an AMF inoculated plant, P uptake via 
the mycorrhizal pathway can occur; hence, the fungus con‑
tributes to the plant’s nutrition (Smith et al. 2004). Thus, 
under experimental conditions with P as the growth‑limiting 
factor, optimal plant growth promotion can be attained by 

AMF that provide the greatest P transfer to the host plant 
with the least demand for carbon (Burleigh et al. 2002).

Güsewell (2004) stated that plants with N:P ratios < 10 
often are N‑limited in biomass production, while plants with 
N:P ratios > 20 instead are limited by phosphorous. More 
than half of the AMF isolates of the present study resulted 
in a N:P ratio over 20, indicating that those treatments prob‑
ably were P limited. There was no N:P ratio below 10, so 
we suppose that none of the leek plants lacked N. Those iso‑
lates that led to low N:P ratios also are those that resulted in 
elevated plant biomass. Therefore, we conclude that growth 
promotion by those isolates was most likely because they 
improved P supply.

While the acquisition of most nutrients was positively 
influenced (N and P) or not affected (K and Mg) by AMF, 
Ca concentrations were notably low in the control treat‑
ment. This also was observed by Baslam et al. (2011). 
They attributed this to a dilution effect because inoculated 
plants showed elevated biomass. In our case, plants with 
no growth response also had low Ca concentrations; there‑
fore, we think this does not apply for our case. As we did 
not assess Ca concentrations in roots, we cannot identify if 
uptake from the soil via roots or via the AMF pathway is 
reduced, or if Ca is retained in the roots of AMF inoculated 
leek plants.

In our study, root colonization was positively correlated 
with biomass gain with species of Archaeosporaceae and 
Paraglomeraceae having the lowest colonization and plant 
growth responses. As expected, vesicle formation by Giga‑
sporales, Archaeosporales, and Paraglomerales isolates was 
not observed. Two Diversisporales species also formed no 
vesicles in contrast to earlier reports (Oehl et al. 2011b; 
Błaszkowski 2012; Błaszkowski et al. 2019). It must be 
considered that hyphae, arbuscules, and vesicles of Archae‑
osporaceae and Paraglomeraceae barely stain in trypan blue 
or ink (Oehl et al. 2011a, b) and therefore might have been 
underestimated. For sparsely colonizing isolates, it also is 
possible that the establishment of the symbiosis was not suc‑
cessful. Previous studies show divergent results. Intense fun‑
gal root colonization often is not associated with improved 
plant growth (Burleigh et al. 2002; Mensah 2015; Munkvold 
et al. 2004; Smith et al. 2004; Tchabi et al. 2010). Avio 
et al. (2006) showed a positive correlation between these two 
factors, however, and Treseder (2013) revealed in a meta‑
analysis that plant growth generally tends to improve with 
increased root colonization.

Early plants did not have extensive root systems and 
therefore they likely were limited in their uptake of min‑
eral nutrients (Fitter 2005). As plants developed extensive, 
complex root systems, AMF co‑evolved. Hence, plants pro‑
vided an important habitat for AMF which became depend‑
ent on their host plants, while plants became more efficient 
in mycorrhiza formation (Brundrett 2002). Thus, the reduced 
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ability of ancient AMF to promote nutrient uptake and plant 
growth might be related to limited root colonization.

There might be other factors than taxonomic and phylo‑
genetic traits of AMF that determine the beneficial effects 
of AMF species on leek growth. Gigasporales species are 
known to be frequent in warm climates and thus may be 
inefficient for leek in cool/temperate climates than bet‑
ter adapted clades such as Funneliformis, Rhizoglomus or 
Oehlia (Oehl et al. 2017). From our results, we conclude 
that taxonomic relatedness of AMF species likely can be 
used to make predictions about functional relationships in 
the symbiosis between plants and AMF. In our study, how‑
ever, only a few ancient isolates like Paraglomus laccatum 
were available and our dataset was biased towards lineages 
of Glomeraceae. Therefore, these results may not provide 
a complete picture. We highly recommend integration of 
additional ancient species in future tests.
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