Native fungi against invasive beetle

Tanja Sostizzo and Giselher Grabenweger Ecological Plant Protection in Arable Crops, Agroscope

V Invader: Japanese beetle (*Popillia japonica*)

History of Invasion

Native to Japan

Introduced:

- 1916 North America
- 1970s Azores
- 2014 northern Italy
- 2020 first larval population in Switzerland

Risk for great parts of Europe

Adults

Gregarious

One year life cycle, flight season June to August

Polyphage

Feed on leafs, flowers and fruits

Host plants

Vine, berries, stone fruit, pome, corn, soy, forest trees, roses etc.

← Organic vine yard in Italy in August after heavy feeding of Japanese beetles.

Larvae

Typical white grubs

Overwinter in third larval instar

Feed on roots, preferably in lawns and meadows

State of the art control of native relatives of *P. japonica*

B. brongniartii growing on cockchafer larva

Cockchafer (*Melolontha melolontha*), garden chafer (*Phyllopertha horticola*) or June beetles (*Amphimallon* ssp.) are native relatives of the Japanese beetle.

The larvae of those beetles are controlled by the application of entomopathogenic fungi *Beauveria brongniartii* or *Metarhizium brunneum*.

Within the last 20 years damage of more than CHF 20 millions could be prevented with this method!

The entomopathogenic fungi *M. brunneum* and *B. brongniartii* can be cultivated on sterilised barley kernels.

Fungus colonized barley kernels (FCBK) are applied with a no-till seeder.

Larvae get infected when they meet FCBK in the soil.

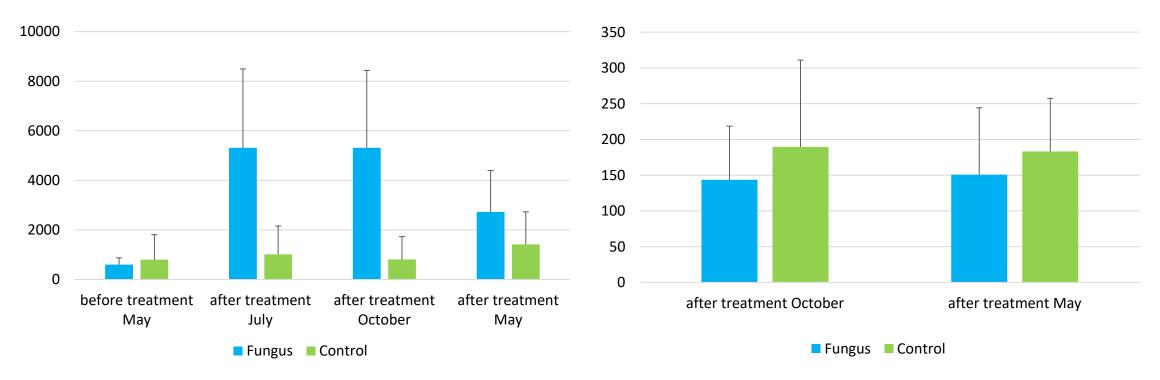
Field application of *M. brunneum* Bipesco 5 against *P. japonica* larvae in northern Italy

Metarhizium brunneum Bipesco 5 10¹⁴ spores/ha Untreated control

Application of FCBK with no-till seeder before flight of adult *P. japonica* → fungus is present when eggs are laid

Evaluation	l			
	May 2019	July 2019	October 2019	May 2020
Treatment	✓			
CFU	✓	~	~	\checkmark
Larvae/m ²			\checkmark	\checkmark

Larvae/m²: Larvae were counted in 5 soil cubes (20 x 20cm) per plot



Colony froming units (CFU): - 5 soil cores per plot - Dilution plating of soil samples on selective media, counting of *Metarhizium* sp. colonies

Higher Metarhizium CFU counts in treated plots, no strong effect of fungus on larval population

Number of *Metarhizium* sp. colonies / g soil

Number of larvae / m2

→ No clear control effect of *M. brunneum* strain Bipesco 5 on Japanese beetle larvae under field conditions

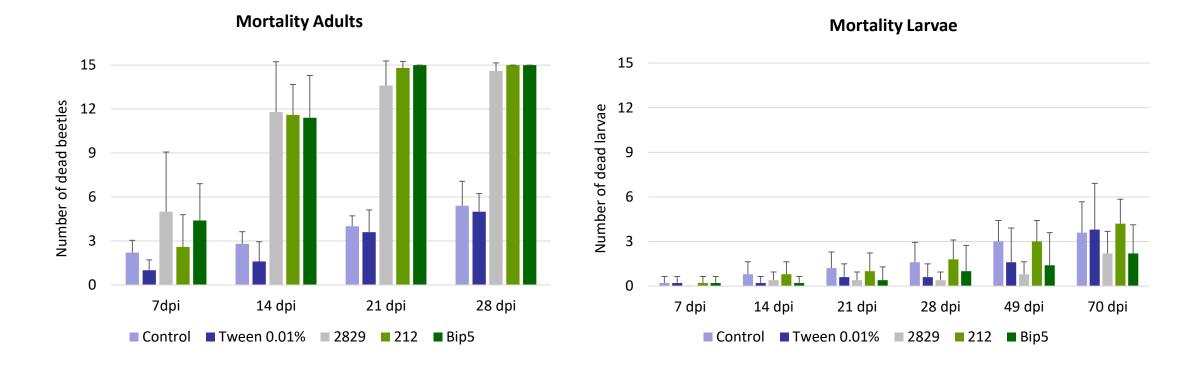
Spray inoculation experiment *P. japonica* adults and larvae

Insects were sprayed from two sides with the corresponding spore solution or Tween.

15 individuals per treatment

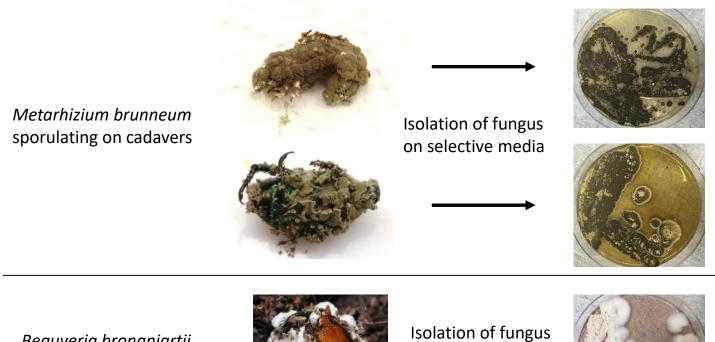
т

Beetles or larvae were held in individual containers with peat, fed with carrots (larvae) or hazel leafs (adults).


For each treatment 15 containers in 1 box

x 5 Replicates

Treatments	Description
Beauveria brongniartii ART 2829107 conidia spores/ml	Specific pathogen of cockchafer, regularly applied in Switzerland to control cockchafer larvae
Metarhizium brunneum ART 212107 conidia spores/ml	Used to control garden chafer and June beetle larvae in Switzerland
Metarhizium brunneum BIPESCO 5 (Bip 5)	Standard strain, licensed in EU and Switzerland to control garden chafer, June beetle, vine
10 ⁷ conidia spores/ml	weevils, wireworms
Tween 0.01%	Solvent of fungal spores
Control	No treatment


High mortality for adults, low mortality for larvae

Adults: weekly checks for mortality over 4 weeks

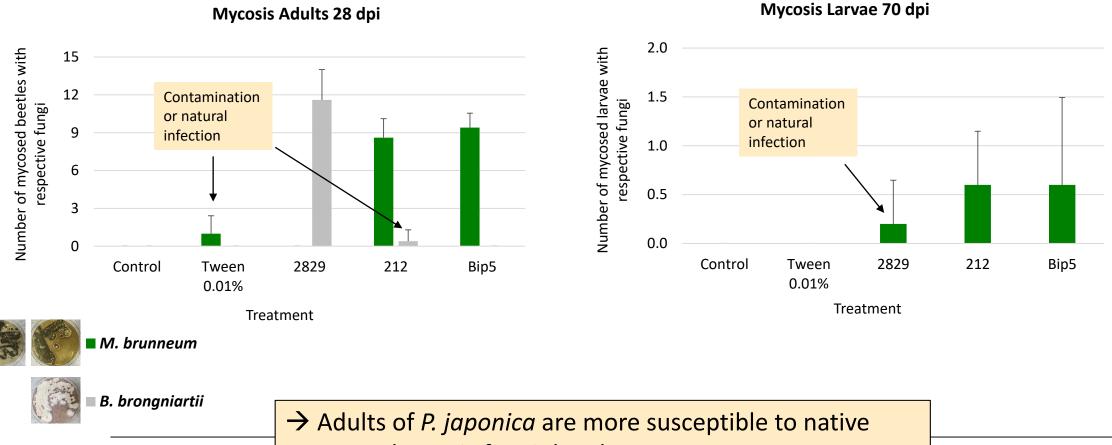
Larvae: weekly checks for mortality over 10 weeks

D Weekly checks for mycosis and isolation of fungus

Fungi isolated from mycosed cadavers were categorised in B. brongniartii and M. brunneum concerning their morphology

M. Brunneum strains ART 212 and Bipesco 5 cannot be distinguished morphologically

Selective media turns red when *B. brongniartii* releases mycotoxins.


Beauveria brongniartii sporulating on cadavers

on selective media

Mycosis on more than 50% of cadavers from fungus treated adults, nearly no mycosis on treated larvae

Agroscope

9

	Schweizerische Eidgenossenschaft
,	Confédération suisse
	Confederazione Svizzera
	Confederaziun svizra

Bundesamt für Landwirtschaft BLW Office fédéral de l'agriculture OFAG Ufficio federale dell'agricoltura UFAG Uffizi federal d'agricultura UFAG

Support:

- Giovanni Bosio, Phytosanitary Service Piedmont
- Molecular Ecology, Agroscope

Funding:

- Federal Office for Agriculture FOAG, Switzerland
- Agroscope
- This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 861852

Pictures:

Tanja Sostizzo, Christian Schweizer and Giselher Grabenweger, Ecological Plant Protection in Arable Crops, Agroscope

