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An endophytic fungal strain isolated from a seagrass endemic to the Mediterranean Sea
(Posidonia oceanica) was studied in order to identify its antimicrobial constituents and
further characterize the composition of its metabolome. It was identified as Fusarium
petroliphilum by in-depth phylogenetic analyses. The ethyl acetate extract of that strain
exhibited antimicrobial activities and an ability to inhibit quorum sensing of Staphylococcus
aureus. To perform this study with a few tens of mg of extract, an innovative one-step
generic strategy was devised. On one side, the extract was analyzed by UHPLC-HRMS/
MS molecular networking for dereplication. On the other side, semi-preparative HPLC
using a similar gradient profile was used for a single-step high-resolution fractionation. All
fractions were systematically profiled by 1H-NMR. The data were assembled into a 2D
contour map, which we call “pseudo-LC-NMR,” and combined with those of UHPLC-
HRMS/MS. This further highlighted the connection within structurally related compounds,
facilitated data interpretation, and provided an unbiased quantitative profiling of the main
extract constituents. This innovative strategy led to an unambiguous characterization of all
major specialized metabolites of that extract and to the localization of its bioactive
compounds. Altogether, this approach identified 22 compounds, 13 of them being
new natural products and six being inhibitors of the quorum sensing mechanism of S.
aureus and Pseudomonas aeruginosa. Minor analogues were also identified by annotation
propagation through the corresponding HRMS/MS molecular network, which enabled a
consistent annotation of 27 additional metabolites. This approach was designed to be
generic and applicable to natural extracts of the same polarity range.
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networking, high-resolution semi-preparative HPLC, pseudo-LC-NMR, antimicrobial natural products, anti-
quorum sensing assaysQ8

INTRODUCTIONQ9

The rapid and efficient identification of novel natural products
(NPs) in complex biological systems is a priority for the search for
new lead compounds (Atanasov et al., 2021). In this context, the
development of approaches that allow both rapid and
unambiguous identification of natural compounds and
estimation of their biological activity is key to NP research.
This is particularly true in the context of the search for anti-
infective compounds from microorganism cultures that are often
obtained on a small scale in screening programs dedicated to
finding new molecules to combat the challenging resistance
problems in the field (Paytubi et al., 2017).

Following physical isolation, a classical approach for the
structural determination of a metabolite naturally consists of
combining high-resolution mass spectrometry (HRMS) and
nuclear magnetic resonance (NMR) data to obtain a definitive
identification (Breton and Reynolds, 2013; Halabalaki et al.,
2014). To speed up this process, HPLC coupled with NMR
has proven to be an interesting alternative to working directly
in mixtures but also has some limitations. On-line and at-line LC-
1H-NMR hyphenations have permitted us to partly characterize
metabolites in crude extracts (Bohni et al., 2014). However, they
are limited by their low sensitivity and resolution, in addition to
practical issues such as solvent compatibility and solvent
suppression (Exarchou et al., 2005; Wolfender et al., 2005).
One way to solve these problems and to improve both spectral
quality and sensitivity was the introduction of solid phase
extraction (SPE) in the LC-NMR process, which resulted in
the development of the LC-SPE-NMR (Lambert et al., 2007;
Gebretsadik et al., 2021). Several recent works have
demonstrated the benefits of this approach to working on
natural extracts (Silva et al., 2018; Chu et al., 2019; Li et al.,
2019). A limitation, however, may be that this approach often
requires repeated collection of chromatographic peaks in order to
yield sufficient amounts of metabolites from given LC peaks of
interest.

One of the main axes of research on NPs is the discovery of
new antibiotics. In this context, the integration of new approaches
to rapidly identifying antibacterials is of great interest. Indeed, the
emergence of bacterial strains resistant to classical antibiotics
represents a major health problem (Hernando-Amado et al.,
2019). New chemical entities with original activity profiles are
particularly needed in drug discovery to fight such multi-resistant
pathogenic bacterial strains (Brown and Wright, 2016). Among
these multi-resistant bacteria, special attention must be paid to
methicillin-resistant Staphylococcus aureus (MRSA) and
Pseudomonas aeruginosa (PA). The gram-positive bacterium S.
aureus causes superficial and potentially fatal infections, such as
sepsis and pneumonia (Holden et al., 2013; Foster et al., 2014).
The gram-negative bacterium P. aeruginosa is an opportunistic
pathogen considered to be life-threatening to

immunocompromised patients and to cystic fibrosis patients.
In addition, it is a major cause of sepsis upon burn injuries
(Church et al., 2006). Unfortunately, currently available
antibiotics are often ineffective against multi-resistant bacterial
strains due to the loss of their efficacy against what are now called
“superbugs” (Cordell, 2000; Foster et al., 2014). In this respect, the
discovery of molecules which are capable of blocking quorum
sensing (QS) could offer a promising alternative to current
antibiotics. Indeed, QS or cell-to-cell communication in
bacteria is a regulatory process, governed by chemical
signaling, that ensures sufficient cell density before inducing
the expression of certain genes at the same time throughout
the bacterial population. In the case of pathogens, these genes
often code for virulence factors. The disruption of this system can
therefore limit the virulence of pathogenic bacteria (Bassler and
Losick, 2006; Ng and Bassler, 2009; Saeki et al., 2020).

In this context, NPs and their derivatives represent a historical
source of unique chemical scaffolds with potential anti-infective
properties. They represent 55% of FDA-approved antibiotics
introduced in the period of 1981–2019 (Newman and Cragg,
2020). Today, intense research is still ongoing (Schneider, 2021),
which led, for example, to the discovery of plazomicin, a recent
FDA-approved antibiotic which targets multi-drug–resistant
Enterobacteriaceae (Saravolatz and Stein, 2019). This
underlines the importance of NPs as a valuable source of
chemical entities for new treatments of bacterial diseases. At
present, the majority of naturally originated antibiotics have been
isolated from soil microorganisms. Thus, investigation of
specialized metabolites from marine microbial strains in this
regard is an expanding field (Blunt et al., 2018; Sun et al., 2019).

Microbial communities which often exist in competitive
environments with other strains are evolving specialized
metabolite pathways to produce a wide range of chemical
entities which could be an interesting source of novel NPs
with antibiotic activity (Peric-Concha and Long, 2003). In this
relation, metabolomics study of endophyte communities is a first
step to orienting further drug discovery approaches on such
sources. Endophytes are organisms, often fungi and bacteria,
that live inside plant tissues (Nisa et al., 2015). They establish
different relationships with plants that vary from symbiotic to
bordering on pathogenic. Endophytes have shown promising
potential as a source of bioactive NPs by evolving the diversity
of specialized metabolites (Gouda et al., 2016).

Among the possible sources of NPs from endophytes, the
marine-derived fungus F. petroliphilum isolated from Posidonia
oceanica (Posidoniaceae) was chosen in this work. P. oceanica is
an underwater seagrass endemic to the Mediterranean Sea; it
forms dense meadows from the surface down to a depth of 40 m.
This marine vascular plant is known for its longevity and being,
potentially, the host for a diverse microbial community including
endophytes and epiphytes (Cuomo et al., 1985; Panno et al.,
2013). However, only a few studies on Posidonia reported true
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fungal endophytes (Torta et al., 2015; Vohnik et al., 2015). P.
oceanica plays an important role at the ecological and
sedimentary levels (Vassallo et al., 2013); however, the species
is endangered due to intense human activities. In this study, we
hypothesize that the interactions between different
microorganisms in such a closed environment and the long-
living characteristic of P. oceanica would result in NP
biosynthesis, which could be of bioactive interest.
Furthermore, a better understanding of its endophytic
community and its biosynthetic potential is of interest to
better preserving this marine plant. To this end, we
investigated the metabolome of F. petroliphilum in depth for
its composition novelty and antimicrobial activity.

In the present work and from a methodological aspect, we
developed an alternative approach to LC-SPE-NMR to obtain
consecutive NMR spectra of all fractions from a single high-
resolution semi-preparative HPLC injection which is hereafter
defined as pseudo-LC-NMR. This approach enables NMR
analyses obtained at the semi-preparative level to be linked to
UHPLC-HRMS metabolite profiling on the analytical scale with
high spectral quality data on both NMR and MS dimensions. The
combination of these HRMS/MS and NMR data, fraction by
fraction, often allows an unambiguous identification of the
metabolites present and an estimation of their amounts in
parallel with biological activity tests. On the other hand,
working on a semi-preparative scale enables a collection of
numerous metabolites in the low mg range which is
compatible with different types of biological assays. This
approach was applied to a strain of F. petroliphilum and
allowed us to identify metabolites responsible for antibacterial
activity. It also provided a good overview of the metabolome
composition of this marine endophyte.

RESULTS AND DISCUSSION

In order to identify a fungal strain that produces bioactive
compounds and to rapidly identify the metabolites responsible
for this activity, the following procedure was applied in this study.
1) A bioactivity screen was performed on a set of Posidonia fungal
endophytes. 2) The most active strain was selected for the study.
3) An aliquot from the extract was subjected to UHPLC-HRMS
and automated data-dependent acquisition MS/MS for
metabolite profiling, followed by dereplication of known
compounds through molecular network (MN) analysis. 4)
Since the annotated compounds were not reported to act as
QS inhibitors, their unambiguous characterization had to be
performed. 5) In order to localize and identify the bioactive
compounds, the fungal extract was thoroughly analyzed by
pseudo-LC-NMR. The pseudo-LC-NMR process was
developed for the purpose of this study but was intended to be
generic in order to rapidly provide complementary NMR
information to the LC-MS metabolite profiling of crude
extracts available in limited amounts.

The key steps for pseudo-LC-NMR were as follows: 1) an
optimized geometrical transfer was applied from the scale of
UHPLC to analytical HPLC and then to semi-preparative HPLC

(Figures 1A,D,E). 2) The crude extract was injected by LC on the
semi-preparative scale with automated fraction collection every
30 s. 3) All fractions were submitted to 1H-NMR analyses,
followed by LC-HRMS/MS. 4) 1H-NMR spectra were stacked
and plotted in a 2D map sequenced according to the retention
time generating the pseudo-LC-NMR plot (Figure 1F). 5) The
concomitant processing of the pseudo-LC-NMR with the LC-MS
profile allowed us to increase the level of annotation and to
conduct specific 2D-NMR experiments when needed.

In order to localize the bioactivity, the fractionation strategy
had to be adapted to the sensitivity of the assays. In this specific
study, the measurement of antibacterial and anti-QS activity
required larger quantities than those obtained from the 30 s/
fraction on the semi-preparative scale described above. Thus, a
pooling of fractions was designed to highlight the area of
chromatographic activity (Figures 1D,E). This finally
permitted the conducting of a specific targeted purification of
bioactive compounds on an enriched extract with the same
experimental setting.

Identification of the Fungal Strain
Although ITS is presently the best barcode sequence for fungi
(Schoch et al., 2012), it did not allow the assignment of the
selected fungal strain, FEP 16, at the species rank. The BLAST top
score results in GenBank (GB) indicated that the FEP 16 ITS
sequence was 100% similar with a 100% coverage to the sequences
of several species: F. petroliphilum (Q.T. Chen and X.H. Fu) (D.
Geiser, O’Donnell, Short and Zhang) (2013) (GB accession
number: LC512834), F. macroceras (Wollenweber and
Reinking 1925) (MH854821), and F. solani (Mart. 1842)
(MH855493). These species, based on ITS BLAST results,
belong to the F. solani species complex in which many species
are still not formally described (Short et al., 2013; Chehri et al.,
2015; O’Donnell, 2019). Trying to further determine to which
species FEP 16 belongs, we sequenced four more loci for that
strain (see the experimental section) and combined these data
with data sampled in the study by Bohni et al. (2016).
Unfortunately for F. macroceras, only ITS and part of the
nuclear large subunit (28S) were available in GB. After a
similarity search of the 28S (MH866321) of F. macroceras in
GB, that sequence appeared to be 100% similar to several
sequences for F. solani (i.e., AY097317) with 100% sequence
coverage but also to four sequences for F. petroliphilum
(i.e., MH874378) but with 90% sequence coverage.
Consequently, these two taxa are likely to be identical but
without sequences for other more variable loci (RPB2, beta-
tubulin, and calmodulin) for F. macroceras, and without type
sequences for these species, it is not possible to clarify the
situation. Combined analyses for the Fusarium 5 locus-64 taxa
(Figure 2) (Supplementary Table S1) allowed us to identify FEP
16 as F. petroliphilum.

Evaluation of the Antibacterial Activity of the
Crude Extracts
The minimum inhibitory concentration (MIC) of the extracts of
all strains was tested against a methicillin-resistant strain of
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Staphylococcus aureus (ATCC 33591-MRSA) and a strain of
Pseudomonas aeruginosa (ATCC 27853) (Supplementary
Table S2). The crude extract of the fungus F. petroliphilum
(FEP 16) presented an antibacterial activity against MRSA
with an MIC at 32 μg/ml but no activity against the Gram-
negative P. aeruginosa strain.

In order to further verify if activity could be revealed at the
level of quorum sensing (QS) inhibition for P. aeruginosa, we
performed a reporter assay based on percentage of fluorescence to

evaluate the potential of the crude extract on QS (Hentzer et al.,
2002). Interestingly, the crude extract displayed about 80%
reduction of the fluorescence level of 2 reporter genes (pqsA
and lasB) normally induced by QS in P. aeruginosa (Table 1). The
pqsA gene encodes an enzyme involved in the synthesis of PQS,
which is a signaling molecule of QS, while the lasB gene encodes
an important elastase enzyme (Jimenez et al., 2012). These
primary bioassay results encouraged us to go for further
investigations.
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FIGURE 1 | Schematic overview of the workflow of this study. (A)Optimized UHPLC-DAD-MS profile of the ethyl acetate crude extract (base peak intensity (BPI), PI
mode) and UV trace (254 nm). (B) HRMS/MS spectra of the LC peaks from the UHPLC-HRMS/MS extract profile corresponding to the isolated compounds 9 and 10.
(C) Selected part of an MN cluster highlighting the features of 9, 10, 16, and 17 (series of structurally related pyrone derivatives). Some of the other features were
dereplicated based on MN annotation propagation (see Table 2). (D) HPLC-DAD chromatogram after gradient transfer from (A). Z1 to Z14 indicate
chromatographic zones combined in semi-preparative HPLC for the bioassay monitoring, shown on (D) for a clearer display. (E) Semi-preparative HPLC-UV
chromatogram after gradient transfer from (D) and dryload sample introduction; vertical lines represent collected fractions. (F) Pseudo-LC-NMR obtained by a
combination of the 1H-NMR spectra of all fractions from (E) into a single matrix (ppm vs. Rt or fraction N

o). (G) 1H-NMR spectra of fractions F51 and F55 highlighted in the
2D plot (F).Q16
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Metabolite Dereplication by
UHPLC-HRMS/MS
In order to have a primary overview of the crude extract chemical
content, it was analyzed by UHPLC-HRMS/MS in positive (PI)
and negative (NI) ionization modes; MS/MS spectra of all
detected features were recorded by data-dependent analysis
(DDA). Feature-based molecular networks (Nothias et al.,

2020) for both modes were built to arrange the extracted ions
(precursor ions) into clusters based on MS/MS similarity. This
process was done by filtering ions below an intensity threshold at
106, which yielded 1900 features in the PI mode and 2270 in the
NI mode for building the corresponding MNs (Supplementary
Figures S1, S2). The precursor masses and their associated MS/
MS spectra were matched against experimental data from Global
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FIGURE 2 |Most likely tree (-ln � 20922.71682) inferred from the Fusarium 5 locus-64 taxa dataset (alignment length after exclusion of ambiguously aligned regions
� 2442 characters (char); calmodulin � 142 char, beta-tubulin � 262 char, ITS � 364 char, RPB2 � 1500 char, TEF-1 � 174 char). The fungal collection newly sequenced
for that study is in blue. Branches that received significant bootstrap (BS) values (≥70%) are in bold with BS values reported along the branches.
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Natural Products Social Molecular Networking (GNPS) (Wang
et al., 2016) and predicted spectra obtained using the in silicoMS/
MS fragmentation database (ISDB-DNP) (Allard et al., 2016).

For each node of the MN, possible structure candidates were
listed according to MS/MS similarity (initial rank) up to a
maximum of the top 50 compounds reported to occur in
fungi. To increase the level of confidence in annotation, a
reweighting step based on taxonomy was performed. This step
takes into consideration the matching between the biological
source reported in the DNP at the level of species > genus >
family, resulting in a maximum of the top 5 candidates (final
rank) for each annotated node (Rutz et al., 2019). As a result, in
the PI mode, 823 of the 1900 detected features were annotated,
214 of them were found in the family Nectriaceae, 148 of them
were present in the genus Fusarium, and 28 features were
reported in the closely related species F. solani. In the NI
mode, 705 features were annotated out of 2720, 200 of them
belonged to Nectriaceae, 135 of them were reported in the same
genus, and 19 of them have been found in F. solani. The
annotated metabolites corresponding to the most intense MS
peaks detected in both PI (threshold > 5 × 107) and NI (threshold
> 107) are presented in Table 2. Their annotation was further
refined by taxonomical ranking and by structural consistency of
corresponding clusters. Compounds not previously found in the
Nectriaceae family at least were not considered in this LC-MS
dereplication process. The full MNs with the complete annotation
are deposited in Figshare (https://doi.org/10.6084/m9.figshare.
14706198). The same MN will be used later on in this study
to apply annotation propagation through the location of isolated
molecules in the MN.

Most of the annotated metabolites belong to pyran and pyrone
derivatives, furan lactones, naphthoquinones, isocoumarins,
terpenes, and sterols. Such data are consistent with previously
reported studies on the chemical content of Fusarium species
(Wei and Wu, 2020), in particular, the presence of some
frequently reported compounds in Fusarium, such as
gibepyrone D (Wang et al., 2011), aloesol (Kashiwada et al.,
1984), fusarubin (Tatum and Baker, 1983), anhydrofusarubin
(Shao et al., 2010), and bostrycoidin (Arsenault, 1965), which are
highlighted in Table 2. As shown in Table 2, more than 30% of
the most intense MS peaks could not be annotated through this
process, which could be either unknown compounds or
compounds never reported in the Nectriaceae family.

Based on these dereplication results and the bioactivity data
measured on the extract, this prompted us to establish an efficient
approach to obtaining complementary NMR data in line with
metabolite profiling. This workflow is designed to run with
amounts in the range of 30–60 mg of extract to preserve
column resolution while maximizing sample loading. Such
amounts of crude extracts are usually generated with solid
culture of fungi in 10–20 petri dishes scale.

Culture Scale-Up and Semi-Preparative
HPLC Fractionation
In order to obtain enough material, the culture of F.
petroliphilum was scaled up to 100 petri dishes under the
conditions described in Materials and Methods. This yielded
300 mg of ethyl acetate crude extract which exhibited bioactivity
results comparable to those obtained during screening
(Table 1).

To effectively link the expected fractionation of this
extract with the metabolite profiling data (see above), a
chromatographic gradient transfer method was used to find
the correct separation parameters, ideally for a single separation
at the semi-preparative level. In practice, an intermediate step at
the analytical HPLC level (Figure 1D) was necessary on a
column having the exact same phase chemistry as the one
used at the semi-preparative level (see experimental section).
The optimum HPLC conditions were determined with UV
monitoring at 254 nm. This latter linear gradient method was
then geometrically transferred to the semi-preparative scale
(Guillarme et al., 2008).

In order to obtain an efficient high-resolution separation of
this complex mixture and to avoid any loss of chromatographic
resolution, the crude extract (40 mg) was introduced into a dry
loading cell according to our previously published protocol
(Queiroz et al., 2019). Using this approach, it was possible to
obtain equivalent separations on analytical and semi-preparative
scales (Figures 1A,D,E). To match the high chromatographic
resolution that was obtained, 135 fractions were automatically
collected on the basis of one fraction per 30 s. All fractions were
immediately dried under vacuum and weighted. This ensured a
full removal of solvent for high-quality NMR profiling and
estimation of the amount for the bioactivity assay to be
performed.
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TABLE 1 | Minimum inhibitory concentration (MIC) and quorum sensing inhibition (QS) assays of crude extract compared to several antibiotics.

MIC (µg/ml) QS (% of fluorescence)

MRSA PA PA (pqsA) PA (lasB)

Crude extract (small scale) 32 >128 21 19
Crude extract (large scale) 32 >128 20 25
Azithromycin NA 10 32 39
Gentamicin 1 NA
Tetracycline 16
Erythromycin 16
Chloramphenicol 32

Values show the mean of triplicates. Test results were compared to DMSO fixed at 100%. MRSA, methicillin-resistant Staphylococcus aureus; PA, Pseudomonas aeruginosa; NA, not
applicable.
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TABLE 2 | Annotated compounds by UHPLC-HRMS/MS in both PI and NI modes in the crude extract of F. petroliphilum.

N° F. N°

C.
Rt C.

index
Isolated as Annotated as T.

score
Chemical class MF I. mode m/z Error

(ppm)

F4 1 1.03 Sgl Adenosine Adenosine 3 Purine
nucleoside

C10H13N5O4 [M+H]+ 268.1039 −1.49

F10 3 2.31 19 6-(1-hydroxyethyl)-3-
methyl-2H-pyran-2-one

- 3 Pyrone C8H10O3 [M+H]+ 155.0703 −3.22

F10 2a 2.21 155 6-(2,3-dihydroxybutan-
2-yl)-3-methyl-2H-
pyran-2-one

Fusanolide B 3 Pyrone C10H14O4 [M+H]+ 199.0967 −2.51

F10 2b 2.27 155 Isomer of 2a Fusanolide B 3 Pyrone C10H14O4 [M+H]+ 199.0872 −1.51
- - 2.45 3 - Arthropsolide A 2 Polyketide C13H14O5 [M−H]− 249.0766 −1.2
- - 2.47 145 - Fusaquinone A 2 Naphthofuran C16H18O6 [M+H]+ 307.1178 −1.17
- - 2.56 145 - Fusarnaphthoquinone B 2 Naphthofuran C15H16O5 [M+H]+ 277.1066 −3.61
- - 2.59 9 - Diaporthin 1 Benzopyone C13H14O5 [M+H]+ 251.0911 −3.65
F20 4 2.65 329 Gibepyrone D Gibepyrone D 2 Pyrone C10H10O4 [M−H]− 193.0498 −1.55
F26 5 2.71 37 Aloesol Aloesol 2 Benzopyran C13H14O4 [M+H]+ 235.0963 −2.97

Sgl [M−H]− 233.0821 3.42
- - 2.74 Sgl - Cladobotrin V 2 Pyranone C10H12O4 [M−H]− 195.0655 −0.85
- - 2.95 222 - Javanicin O-De-Me 2 Naphthoquinone C14H12O6 [M−H]− 275.0564 3.08
- - 3.01 Sgl - Gibepyrone A 3 Pyranone C10H12O2 [M−H]− 163.0753 −0.22
- - 3.2 19 - Fusarpyrone A 3 Pyran C10H12O3 [M+H]+ 181.0858 0.8
- - 3.23 222 - 5,8-dihydroxy-6-

hydroxymethyl-7-(2-
hydroxypropyl)-2-methoxy-1,4-
naphthoquinone

3 Naphthoquinone C15H15O7 [M−H]− 307.0825 2.44

- - 3.24 9 - Fusarubin 5-deoxy 3 Benzoquinone C15H14O6 [M+H]+ 291.086 −2.8
- - 3.37 207 - Bostrycoidin 6-deoxy 3 Quinone C15H11NO4 [M+H]+ 270.0759 −2.76
F35 6 6.63 207 5-hydroxy-4-

(hydroxymethyl)-8-
methoxy-2-methyl-1H-
benzo[g]indole-6,9-
dione

- 3 Quinone C15H13NO5 [M+H]+ 288.0868 −1.38

- - 3.37 5 - Sescandelin 1’-ketone 1 Isocoumarin C11H8O5 [M−H]− 219.0295 1.6
- - 3.85 306 - 5-acetyl-1,2,4,6-

tetrahydroxyanthraquinone2-
me ether

2 Quinone C17H12O7 [M+H]+ 329.0636 2.6

F43 7 3.86 9 Fusarubin Fusarubin 3 Benzoquinone C15H14O7 [M+H]+ 307.0823 1.62
F44 8 3.86 - 3-O-methylfusarubin 3-O-methylfusarubin 3 Quinone C16H16O7 [M−H]− 319.0825 2.19
- - 3.86 45 - Anhydrofusarubin 3 Quinone C15H12O6 [M+H]+ 289.0715 1.03
- - 3.87 54 - 3-acetonyl-2,5,8-trihydroxy-6-

methoxy naphthoquinone
3 Naphthoquinone C14H12O7 [M−H]− 291.0511 1.04

F51 9 3.96 25 (6E)-7-(4-methoxy-6-
oxo-6H-pyran-2-yl)-3,5-
dimethyloct-6-enoic
acid

7S-hydroxy-O-
demethyllasiodiplodin

3 Pyran C16H22O5 [M+H]+ 295.1544 −3.72

- x 3.97 54 - Rhodolamprometrin 2 Anthracene C16H10O7 [M−H]− 313.0352 1.13
F55 10 4.4 29 6-((E)-6-ethyl-7-

hydroxy-4-methylhept-
2-en-2-yl)-4-methoxy-
2H-pyran-2-one

- 3 Pyrone C16H24O4 [M+H]+ 281.1745 −2.13

- - 4.54 45 - Solaniol or karuquinone C 3 Naphthalene C15H16O6 [M+H]+ 293.1017 −2.73
4.55 54 [M−H]− 291.0885 4.8

- - 4.61 45 - Dihydroanhydrojavanicin 3 Naphthofuran C15H14O5 [M+H]+ 275.0912 −1.89
F60 11 5.63 19 Bostrycoidin Bostrycoidin 3 Quinone C15H11NO5 [M+H]+ 286.0695 −0.34
F62 12 5.34 Sgl 5β,6β-23,26-diepoxy-

3β,7α,9α-trihydroxy-
(20Z,23S,24S,25R)
ergosta-8(14),20-dien-
15-one

- 3 Steroid C28H40O6 [M+Na]+ 495.2706 −3.23

F64 13 5.44 86 2-(2,3,5,6,7,7a-
hexahydro-1-((E)-6-
hydroxy-5,6-
dimethylhept-3-en-2-
yl)-7a-methyl-5-oxo-
1H-inden-4-yl)acetic
acid

- 3 Cyclohexenone C21H32O4 [M+H]+ 349.2378 −0.28
5.44 Sgl [M−H]− 347.2228 1.72

(Continued on following page)
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Combination of NMR Spectra for an
Overview as a Pseudo-LC-NMR Plot
With the idea to obtain a comprehensive NMR profile of all
fractions and be able to align all spectra over the extended polarity
range of the various metabolites that were separated, each fraction
was diluted in 600 µl of DMSO-d6 and submitted to 1H-NMR
analysis. DMSO-d6 was selected since it is known to have good
solubility properties and for its compatibility with bioassays. The
1H-NMR spectra of all fractions were obtained by automated
acquisition (29 h of total acquisition). In order to visualize all
1H-NMR signals from the 135 fractions (F1-F135), a 2D plot was
generated. For this, all individual spectra were binned and
combined into a single matrix (ppm vs. Rt or fraction No).
This plot simulates the actual output of a classic on-flow LC-
NMR analysis (Queiroz et al., 2002). The chromatographic
dimension of the plot was expressed either as fraction number
or retention time since all spectra were stacked according to their
elution order, which allows a straightforward correlation with the
corresponding analytical HPLC-DAD trace (Figure 1F). An
interactive version of the plot can be explored here: (https://
oolonek.github.io/pseudo_lcnmr_plotter/2dNMR.html).

The generated 2D plot from collected and dried micro-fractions
has several advantages over classical LC-NMR. In this case, all
1H-NMR signals are perfectly aligned, since all spectra are recorded
with the same solvent across the whole separation (DMSO-d6). By
comparing our approach to on-flow LC-NMR, no solvent
suppression is necessary. In addition, compared to at-line LC-
NMR detection methods, such as LC-SPE-NMR (Chang et al.,
2020), the spectra obtained are recorded from a single LC
separation, and multiple injections for sample enrichment are
not necessary. We define this workflow as a pseudo-LC-NMR
analysis, which can be viewed either as a 2D plot (Figure 1F) or as a
stacked view (Figure 3A) for a comprehensive analysis of the
evolution of the 1H signals across the chromatographic dimension.
Since the NMR response is directly proportional to the amounts of
compounds, the overall observation of the 2D plot provides, in a
first instance, an unbiased view of the molar ratios between
constituents. However, this is of course also related to the
number of magnetically diverse protons for each constituent.

In order to determine molar ratios between fractions, a
histogram was created based on 1H-NMR peak integration,
which represents total proton intensities of each recorded

799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855

856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912

TABLE 2 | (Continued) Annotated compounds by UHPLC-HRMS/MS in both PI and NI modes in the crude extract of F. petroliphilum.

N° F. N°

C.
Rt C.

index
Isolated as Annotated as T.

score
Chemical class MF I. mode m/z Error

(ppm)

F66 14 5.68 86 2-(2,3,5,6,7,7a-
hexahydro-1-((E)-7-
hydroxy-5,6-
dimethylhept-3-en-2-
yl)-7a-methyl-5-oxo-
1H-inden-4-yl)acetic
acid

- 3 Cyclohexenone C21H32O4 [M+H]+ 349.2386 2
Sgl [M−H]− 347.2232 2.87

F69 15 3.38 7 5-hydroxy-8-methoxy-
2,4-dimethyl-1H-benzo
[g]indole-6,9-dione

- 3 Quinone C15H13NO4 [M+H]+ 272.0923 0.1

- - 7.05 173 - kauranoic acid ent-16β-
hydroxy-19

2 Fatty acid C20H32O3 [M+H]+ 321.2442 2.1

- - 7.81 19 - Fusarone 2 Cyclopentanone C14H22O3 [M+H]+ 239.1661 0.5
F91 16 8.89 29 4-methoxy-6-((E)-4,6-

dimethyloct-2-en-2-yl)-
2H-pyran-2-one

- 3 Pyrone C16H24O3 [M+H]+ 265.1805 0.37

F93 17 9.6 Sgl 4-methoxy-3-methyl-6-
((E)-4,6-dimethyloct-2-
en-2-yl)-2H-pyran-
2-one

- 3 Pyrone C17H26O3 [M+H]+ 279.1956 −1.43

F103 18 11.34 Sgl 2-(2,3,5,6,7,7a-
hexahydro-7a-methyl-
1-((E)-5,6-dimethylhept-
3-en-2-yl)-5-oxo-1H-
inden-4-yl)acetic acid

- 3 Cyclohexenone C21H32O3 [M+H]+ 333.2426 0.3
[M−H]− 331.228 2.11

107 19 14.5 - 3-O-β-D-
glucopyranoside-
stigmast-8-en-3-ol

- 3 Steroid C35H60O6 [M+Na]+ 599.428 −1.16

F116 20 14.6 - 24R/24S cerevisterol - 3 Steroid C28H46O3 [M+Na]+ 453.3397 11.6
F117 21 14.27 - 6-dehydrocerevisterol - 3 Steroid C28H44O3 [M+H]+ 429.3387 4.42
F122 x 16.48 - - 3-acetoxy-2,3-

dihydropiptoporic acid
1 Fatty acid C23H28O5 [M-H]− 383.1898 1.8

F132 22 13.62 - Ergosterol Ergosterol 3 Steroid C28H44O [M−H]− 395.3325 2.78

N° F., Number of semi-preparative fractions; N° C., Isolated compounds 1–22; Rt, retention time in UHPLC-HRMS/MS analysis of the extract; C. index, component index (cluster number in
MN); Sgl, singleton node; T. score, taxonomically informed score; I.mode, ionization mode; 1, family (Nectriaceae); 2, genus (Fusarium); 3, species (F. solani); MF, molecular formula.
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spectrum (Supplementary Figure S3A). This histogram was
rather similar to the one obtained using weighed dry fractions
(Supplementary Figure S3B) which shows mainly major apolar
constituents eluting at the end of the chromatogram between
fractions F110 and F132. Analysis of the related 1H-NMR spectra
revealed signal patterns, which mainly correspond to fatty acids,
that is, a methyl group at δH 0.5 and an intense signal from
methylene protons around δH 1.25. A specific histogram based on
the methylene chain signal found typically in fatty acids was built
across all fractions; it allows us to highlight their presence mainly

in fractions F110, 111, 114, 115, 117, 118, 119, 122, and 123
(Supplementary Figure S3C). This trace matches well with the
ELSD detection as shown in Supplementary Figure S3D and
demonstrates that the crude extract was dominated by apolar
constituents. Most of these fatty acids were found to be
unsaturated fatty acids and exhibited a characteristic signal of
their ethylenic protons around δH 5.3, whereas fractions F117,
122, and 123 contained saturated fatty acids.

In addition to fatty acids, steroids and triterpenes were also
identified in this chromatographic region. For example,

913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969

970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999

1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026

FIGURE 3 | (A) Stacked view of the 1H-NMR spectra of all fractions ordered by retention time from the top to the bottom, all recorded in DMSO-d6 as the bridging
solvent. The green shadow highlights common signals in fractions F51–56 in the regions of δH 5.5 to 5.7 and δH 6.0 to 6.3. The orange shadow highlights common
signals in fractions F64–F65 and F103–F104 in the region of δH 5.2 to 5.3. The yellow shadow highlights the presence of fatty acids. (B) UV trace of the semi-preparative
HPLC chromatogram for LC peak localization (Figure 1E). (C) Inset showing characteristic signals of the series across a set of fractions, F51–F56 and F90–F93. (D)
Inset showing characteristic signals of the series across a set of fractions, F64–F65 and F103–F104.
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ergosterol (22), a main constituent of the fungal membrane, could
be identified in F132, yielding an intense signal in the histogram
(Supplementary Figure S3A). Its 1H-NMR spectrum was in
good agreement with reported data (Kwon et al., 2002; Yang
et al., 2003) and confirmed the dereplication results (Table 2).
Moreover, cerevisterol (20) could be confirmed in F116 by
comparing its 1H-NMR spectrum with those in the literature
(Kawagishi et al., 1988). Based on the extraction procedure, the
presence of these main common apolar fungal constituents is not
surprising. The analysis of the pseudo-LC-NMR 2D plot
facilitated their identification and estimations of the ratio in
an unbiased manner.

Further inspection of this pseudo-LC-NMR plot revealed the
presence of specialized metabolites with aromatic signals
(between δH 6.5 and 8.0), which were easily identified at the
beginning of the chromatogram (F1-F27). In this part of the semi-
preparative HPLC chromatogram, the LC-UV profile exhibited
main peaks that were not fully separated (Figure 1E). The
inspection of the 2D plot and the related 1H-NMR profile of
each fraction was in line with this observation and exhibited
spectra with overlapping signals. In this polar region, several
compounds were dereplicated by HRMS/MS (Table 2) and
confirmed by NMR upon comparison with reported data in
the literature: adenosine (1) (Ciuffreda et al., 2007) was
identified in fraction F4, gibepyrone D (4) (Wang et al., 2011)
in fraction F20, and aloesol (5) (Kashiwada et al., 1984) in fraction
F26. In this region of the chromatogram, arthropsolide A (Ayer
et al., 1992) (Table 2) was dereplicated by HRMS/MS, but in this
case, it could not be confirmed by 1H-NMR, and this could
indicate that this common Fusarium metabolite is most likely
present but in quantities below the NMR detection limit.

In the intermediate region of the chromatogram (fractions
F28–F109), three known compounds which are common to
Fusarium were dereplicated by HRMS/MS and confirmed by
1H-NMR as bostrycoidin (11) (Arsenault, 1965) in F60 and a
mixture of fusarubin (7) and 3-O-methylfusarubin (8) (Tatum
and Baker, 1983) in F43 and F44. Gibepyrone A (Westphal 2018)
was dereplicated by HRMS/MS and confirmed by some of its
characteristic 1H-NMR signals in fraction F42; this compound
was, however, present in very low concentrations. In addition,
minor metabolites such as dihydroanhydrojavanicin (Tatum
et al., 1989) and solaniol (Niu et al., 2019) were dereplicated
by HRMS/MS but could not be verified by NMR (Table 2). In this
medium-polarity region, several fractions (F51–F56 and
F91–F93) seem to have 1H signals in common, particularly in
the regions between δH 5.5 and 5.7 and between δH 6.0 and 6.3
(Figure 3A, highlighted in green), indicating that these fractions
may contain structures with close skeletons (9, 10, 16, and 17).
Another class of molecules (cyclohexanones) could be
highlighted in fractions F64–F65 and F103–F104, which were
characterized by their signals between δH 5.2 and 5.3 (orange).
The analysis of NMR spectra of these fractions, for which no
confident HR-MS/MS annotations were obtained, revealed three
new compounds (13, 14, and 18), as shown in Figure 4.

Since all NMR spectra were recorded in DMSO-d6, the low
field region (δH 11.0–14.0) of the pseudo-LC-NMR 2D plot
highlighted characteristic deshielded mobile protons. Among

them, the acidic protons of fatty acids were clearly seen (δH
12.0) in F113–F119, and quinonic–phenolic groups of fusarubin
(7) and 3-O-methylfusarubin (8) were observed (Figure 1F).
Several similar types of signals were linked to the unknown
metabolites in F35 and F69.

These selected examples show a good complementarity of
NMR and HRMS/MS data for the dereplication of main
constituents and help highlight new Fusarium metabolites. For
full de novo structure identification, 2D-NMR spectra were
recorded for the compounds of interest and those exhibiting a
sufficient S/N ratio in the 1H-NMR spectra.

Structure Elucidation of New Compounds
Careful interpretation of the HRMS/MS and 1H-NMR data
resulted in the identification of 22 compounds in one step
(1–22). Among them, 13 are original NPs described here for
the first time (2a/2b, 3, 6, 9, 10, 12, 13, 14, 15, 16, 17, 18, and 19)
and presented in Figure 5. The known dereplicated compounds
described above were also confirmed, when necessary, by
additional 2D-NMR data and were all previously reported in
Fusarium species: adenosine (1) (Hou et al., 2015), gibepyrone D
(4) (Wang et al., 2011), aloesol (5) (Kashiwada et al., 1984),
fusarubin (7) and 3-O-methylfusarubin (8) (Tatum and Baker,
1983), bostrycoidin (11) (Yamamoto et al., 2002), cerevisterol
(20) (Wang et al., 2011), 6-dehydrocerevisterol (21) (Qiao et al.,
2017), and ergosterol (22) (Thammawong et al., 2011).

Compound 6 (F35) was isolated as a pale rose amorphous
solid. The HRMS spectrum showed a molecular ion at m/z
288.0846 [M + H]+ (calculated for C15H14NO5, 288.0866). No
valid annotations based on MS/MS could be obtained for this
compound among all described Nectriaceae metabolites. The 1H
and edited-HSQC NMR spectra showed three exchangeable
protons at δH 5.06 (1H, t, J � 5.6 Hz, OH-15), 11.39 (1H, s,
NH-13), and 12.88 (1H, s, OH-5), two aromatic protons at δH
6.23 (1H, s, H-3) and 6.44 (1H, dd, J � 2.1, 1.1 Hz, H-11), an
oxymethylene at δH 4.75 (2H, d, J � 5.5 Hz, H2-15), a methoxy
group at δH 3.89 (3H, s, H3-16), and amethyl at δH 2.44 (3H, d, J �
1.0 Hz, H3-14). A methoxy naphthoquinone moiety such as that
found in fusarubin (7) was identified, thanks to the HMBC
correlations from H-3 to the carbonyl C-4 (δC 191.0) and C-1
(δC 179.5) to the quaternary carbons C-2 (δC 160.5) and C-10 (δC
107.4) and from the methoxy group to C-2 (Table 3). The
methoxy signals were clearly shared in the pseudo-LC-NMR
plot between compounds 6 (F35) and 15 (F69) as well as the
two furarubins, 7 and 8 (F43-F44). This was also clearly visible for
the common H-3 aromatic signal of these molecules (Figure 4).
The HMBC correlations from the deshielded hydroxyl OH-5 to
C-10, C-5 (δC 152.1), and C-6 (δC 126.8) and from the
oxymethylene H2-15 to C-5, C-6, and C-7 allowed us to
position these two groups. In addition, a 2-methyl-pyrrole
group was placed in C7–C8 according to the HMBC
correlations from the aromatic proton H-11 to C-6, C-7, and
C-8 (δC 130.5), from the methyl protons H3-14 to C-11 (δC 99.8)
and C-12 (δC 156.7), and from NH-13 to C-7, C-8, C-11, and C-
12. The ROESY correlations from H-3 to the methoxy H3-16 and
from H-11 to H2-15 and H3-14 confirmed the structure.
Compound 6 was thus identified as 5-hydroxy-4-
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(hydroxymethyl)-8-methoxy-2-methyl-1H-benzo[g]indole-6,9-
dione.

Compound 15 (F69) showed a molecular ion at m/z 272.0923
[M+H]+ and a molecular formula of C15H13NO4, which actually
correspond to one oxygen less than the one of 6. The NMR data of
15 also showed close similarities to those of 6 (Table 3), except
that the oxymethylene H2-15 was replaced by a methyl, H3-15, at
δH 2.36. This compound was thus identified as 5-hydroxy-8-
methoxy-2,4-dimethyl-1H-benzo[g]indole-6,9-dione (Figure 4).

The HRMS spectrum of 9 (F51) displayed a molecular ion at
m/z 295.1542 [M + H]+, corresponding to the molecular formula
C16H22O5. A 4-methoxy-6-substituted-α-pyrone was identified
based on the HMBC correlations from the aromatic proton H-5
to C-3, C-6, and C-7, fromH-3 to C-5, C-4, and C-2, and from the
methoxy signal H3-17 to C-4 (Table 4). An alkyl side chain was
attached in C-7; the HMBC correlations from H3-16 to C-6, C-7,
and C-8, from H3-15 to C-8, C-9, and C-10, from H3-14 to C-10,
C-11, and C-12, and from H2-12 to C13 allowed us to
unambiguously assign this 3,5,7-trimethylhept-6-enoic acid

side chain. The E configuration of the double bond of the side
chain was deduced from the ROE correlation between H3-16 and
H-9. As discussed previously on the pseudo-LC-NMR plot, some
of the 1H-NMR signals of 9 were common to other metabolites
(10, 16, and 17) found in F55, F91, and F93, suggesting a common
pyrone moiety (Figure 4). Compound 9 was identified as (6E)-7-
(4-methoxy-6-oxo-6H-pyran-2-yl)-3,5-dimethyloct-6-
enoic acid.

The NMR data of 10 (F55) indeed exhibited close similarities
to those of 9 (Table 4); they share the same 4-methoxy-α-pyrone
and the difference lies in the side chain. One of the methyl doublet
signals present in 9 was replaced in 10 by a methyl triplet at δH
0.81 (3H, t, J � 7.3 Hz, H3-13). An additional oxymethylene was
observed at δH 3.25 (1H, dt, J � 10.2, 5.0 Hz, H-14’’) and 3.30 (1H,
dt, J � 10.2, 5.0 Hz, H-14’) in addition to a hydroxyl at δH 4.34
(1H, t, J � 5.2 Hz, OH-14), whereas the carbonyl of the acid group
was no longer observed. The 2D-NMR experiments were in good
agreement with the structure presented in Figure 4, and the ion at
m/z 281.1744 [M +H]+ confirmed the structure as 6-((E)-6-ethyl-
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FIGURE 4 | Structures of the isolated compounds 1–22.
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7-hydroxy-4-methylhept-2-en-2-yl)-4-methoxy-2H-pyran-
2-one.

Compound 16, which has a molecular formula of C16H24O3

and ionized at m/z 265.1816 [M + H]+ in F91, shares the same
skeleton as 9 and 10. The carboxyl group presented at the end of
the side chain of 9 was replaced in this case by a methyl group at
δH 0.82 (3H, t, J � 7.4 Hz, H3-13) (Table 4). Compound 16 was
thus identified as 4-methoxy-6-((E)-4,6-dimethyloct-2-en-2-yl)-
2H-pyran-2-one.

Compound 17 (C17H26O3) which was ionized atm/z 279.1956
[M + H]+ in F93 also belongs to the same family. The side chain
was the same as that of 16, but an additional methyl group was
observed in C-3 at δH 1.69 (3H, s, H3-18). The HMBC
correlations from the methyl H3-18 to the ester carbon C-2
(δC 179.7), the olefinic carbon C-3 (δC 98.9), and the
oxygenated olefinic carbon C-4 (δC 162.0) confirmed this
structure as 4-methoxy-3-methyl-6-((E)-4,6-dimethyloct-2-en-
2-yl)-2H-pyran-2-one (Table 4). A zoom-in on the stacked
plot also clearly highlights this similarity on the side chain
(Figure 3D).

As discussed above, compounds 13, 14, and 18, which shared
many common 1H-NMR signals in the pseudo-LC-NMR plot,
were assigned to the same structural type. Among them, 18
exhibited the most intense signals and was analyzed in depth first.

Compound 18 in F103 was isolated as a pale yellow
amorphous solid. The HRMS spectrum showed a protonated
ion at m/z 333.2441 corresponding to a molecular formula of
C21H32O3. Its NMR data are summarized in Table 5. The HMBC
correlations from methyl H3-18 to the methylene C-12, the
quaternary carbon C-13, the sp2 carbon C-14, and the methine
C-17, from the methylene H2-7 to C-14, the sp2 carbon C-8, the
carbonyl C-9, and to the carboxyl C-6, from the methylene H2-11
to C-6, and from H2-15 to C-14 and C-17 in combination with
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FIGURE 5 | (A) Structure of 12. (B) ROESY NMR spectrum of 12 in
DMSO-d6. (C) Observed ROESY correlations for compound 12.

TABLE 3 | NMR chemical shifts of compound 6 and 15 in DMSO-d6 at 600 MHz.

N° Compound 6 Compound 15

δH (multiplicity, J, nH) δC HMBC ROESY δH δC

1 - 179.5 - - 179.2
2 - 160.5 - - 160.5
3 6.23 (s, 1H) 109.0 C-2, C-1, C-10, C-4 H-16 6.21 (s, 1H) 108.8
4 - 191.0 - - -
5 - 152.1 - - 152.2
6 - 126.8 - - 123.9
7 - 137.5 - - 137.6
8 - 130.5 - - 129.8
9 - - -
10 - 107.4 - - 107.3
11 6.44 (dd, 2.1, 1.1 Hz, 1H) 99.8 C-8, C-7, C-12 H-15, OH-5 6.28 (s, 1H) 98.9
12 - 146.7 - - 146.2
NH-13 11.39 (s, 1H) - C-8, C-7, C-12, C-11 H-14 11.39 (s, 1H) -
14 2.44 (d, 1.0 Hz, 3H) 13.8 C-12, C-11 H-13 2.44 (s, 3H) 13.7
15 4.75 (d, 5.5 Hz, 2H) 55.1 C-7, C-6, C-5 H-11, OH-15 2.36 (s, 3H) 12.0
16 3.89 (s, 3H) 56.6 C-2 H-3 3.89 (s, 3H) 56.5
OH-5 12.88 (s, 1H) - C-10, C-6, C-5 - 12.84 (s, 1H) -
OH-15 5.06 (d, 5.5 Hz, 3H) - C-6, C-15 H-11, H-15
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COSY correlations from H2-11 to H2-12 and from H-17 to H2-16
allowed us to identify fused six- and five-membered rings. The
side chain in C-17 was identified and positioned, thanks to the
HMBC correlation from the methyl H3-21 to the methines C-17
and C-20 and the olefinic carbon C-22, from the methyl H3-28 to
the olefinic carbon C-23 and the methines C-24 and C-25, and
from the methyls H3-26 and H3-27 to the methines C-24 and C-
25 (Table 5). This compound corresponds to a highly degraded
ergostane-type steroid identified as 2-(2,3,5,6,7,7a-hexahydro-7a-
methyl-1-((E)-5,6-dimethylhept-3-en-2-yl)-5-oxo-1H-inden-4-
yl)acetic acid.

The NMR signals of the isomeric 13 and 14, both possessing
anMF of C21H32O4 and protonated ions atm/z 349.2349, showed
great similarities to those of 18 in F103 (C21H32O3), except for the
terminal part of the side chain. Compound 13 contains an
additional hydroxy group in C-25 as evidenced by the HMBC
correlations from themethyls H3-26 and H3-27 (δH 1.03 and 0.99,
respectively) to the oxygenated quaternary carbon C-25 (δC 70.5)
and the methine C-24 (δC 47.1). In compound 14, the terminal
methyl H3-27 was hydroxylated and replaced by an oxygenated
methylene at δH/δC 3.17/64.4.

Compound 12 in F62 was found to possess anMF of C28H40O6

with 8 degrees of unsaturation, as evidenced by HRMS at m/z
473.2877 [M+H]+ (calculated for C28H41O6). The

1H-NMR data
of 12 showed typical signals of an oxygenated steroid: 2 methyl
singlets at δH 0.77 (3H, s, H3-18) and 0.89 (3H, s, H3-19), three
methyl doublets at δH 0.85 (3H, d, J � 7.0 Hz, H3-28), 0.90 (3H, d,
J � 6.8 Hz, H3-26), and 1.73 (3H, d, J � 1.2 Hz, H3-21), four
oxygenated methines at δH 3.27 (1H, d, J � 3.7 Hz, H-6), 3.59 (1H,
tq, J � 10.6, 5.0 Hz, H-3), 4.18 (1H, t, J � 8.5 Hz, H-23), and 5.53
(1H, dd, J � 5.2, 3.7 Hz, H-7), an oxygenated methylene at δH 3.31
(1H, overlapped, H-27’’) and 3.93 (1H, dd, J � 8.2, 6.4 Hz, H-27’),
an ethylenic proton at δH 5.22 (1H, d, J � 8.4 Hz, H-22), and a
series of methines and methylenes between δH 1.20 and 2.63. The
HMBC also indicated the presence of two oxygenated quaternary
carbons at δC 68.1 (C-5) and 74.8 (C-9), two quaternary sp2

carbons at δC 134.1 (C-20) and 142.8 (C-14), and a carbonyl at δC
206.7 (C-15). HMBC correlations fromH3-19 to C-1 (δC 25.6), C-
5, C-9, and C-10 (δC 37.0), from H3-18 to C-12 (δC 32.1), C-13
(δC 43.1), C-14, and C-17 (δC 51.5), and from the methylene H2-
16 at δH 2.16 (1H, dd, J � 18.3, 7.3 Hz, H-16α) and 2.63 (1H, m,
H-16β) to C-15 allowed us to identify the four member rings of
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TABLE 4 | NMR chemical shifts of compound 9, 10, 16, and 17 in DMSO-d6 at 600 MHz.

N° Compound 9 Compound 10 Compound 16 Compound 17

δH (multiplicity, J, nH) δC HMBC ROESY δH δC δH δC δH δC

2 - 180.2 - - 180.2 - 179.7
3 5.52 (d, 1.8 Hz, 1H) 88.7 C-5, C-4, C-2 H-17 5.52 (d,

1.8 Hz, 1H)
88.6 5.52 (d,

1.8 Hz, 1H)
88.8 - 98.9

4 - 167.2 - - 167.2 - 167.4 - 162.0
5 6.11 (d, 1.8 Hz, 1H) 108.7 C-3, C-6, C-7 H-16 6.10 (d,

1.8 Hz, 1H)
108.6 6.10 (d,

1.8 Hz, 1H)
108.9 6.17 (s, 1H) 108.3

6 - 159.6 - - 159.6 - 159.7 - 158.3
7 - 124.3 - - 124.1 - 124.2 - 124.4
8 6.15 (dd, 9.8,

1.4 Hz, 1H)
140.0 C-6, C-16, C-9, C-10,

C-15
H-10’’, H-15 6.14 (dd, 9.9,

1.5 Hz, 1H)
140.3 6.16 (dq, 9.8,

1.2 Hz, 1H)
140.5 6.19 (d,

9.4 Hz, 1H)
140.1

9 2.67 (m, 1H) 29.9 C-7, C-8, C-10, C-15 H-16, H-12’,
H-14

2.69 (m, 1H) 29.9 2.66 (m, 1H) 30.1 2.66 (m, 1H) 30.1

10 1.34 (dt, 3.4,
6.8 Hz, 1H)

43.3 C-8, C-9, C-15, C-11,
C-12, C-14

- 1.35 (m, 1H) 37.8 1.32 (m, 1H) 43.5 - 43.5

1.21 (dt, 13.4,
7.4 Hz, 1H)

C-8, C-9, C-15, C-11,
C-12, C-14

H-8 1.22 (m, 1H) 1.14 (m, 1H)

11 1.79 (dqd, 8.5, 6.8,
5.1 Hz, 1H)

27.6 C-10, C-12, C-14 - 1.23 (m, 1H) 39.1 1.32 (m, 1H) 31.5 1.34 (m, 1H) 31.4

12 2.25 (m, 1H) 40.9 C-10, C-11, C-13,
C-14

H-9 1.27 (m, 2H) 22.6 1.32 (m, 1H) 28.6 1.34 (m, 1H) 28.7

1.96 (dd, 15.0,
8.5 Hz, 1H)

C-10, C-11, C-13,
C-14

- 1.08 (m, 1H) 1.24 (m, 1H)

13 11.99 (s, 1H) 173.7 - 0.81 (d,
7.3 Hz, 3H)

10.5 0.82 (t,
7.4 Hz, 3H)

11.0 0.83 (d,
7.4 Hz, 3H)

11.1

14 0.89 (d, 6.6 Hz, 3H) 19.8 C-10, C-11, C-12 H-9 3.30 (dt, 10.2,
5.0 Hz, 1H)

62.9 0.84 (d,
6.3 Hz, 3H)

19.3 0.85 (d,
6.1 Hz, 3H)

19.3

3.25 (dt, 10.2,
5.0 Hz, 1H)

15 0.96 (d, 6.6 Hz, 3H) 19.9 C-8, C-9, C-10 H-8 0.98 (d,
6.6 Hz, 3H)

20.4 0.96 (d,
6.5 Hz, 3H)

20.1 0.98 (d,
6.7 Hz, 3H)

20.1

16 1.86c 12.3 C-6, C-7, C-8 H-5, H-9 1.86 (d,
1.3 Hz, 3H)

12.1 1.86 (d,
1.2 Hz, 3H)

12.3 1.88 (d,
1.3 Hz, 3H)

12.3

17 3.88 (s, 3H) 56.4 C-4 H-3 3.88 (s, 3H) 56.3 3.88 (s, 3H) 56.5 4.02 (s, 3H) 56.0
OH-
14

4.34 (t,
5.2 Hz, 1H)

1.69 (s, 3H) 6.5

18
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sterol in compound 12, which was identical to the 5β,6β-epoxy-
3β,7α,9α-trihydroxy-(22E,24R)ergosta-8(14),22-dien-15-one
previously isolated by Wang et al. (2012) from the culture of the
Basidiomycete Polyporus ellisii. The chain attached to C-17 was
found to be new; its linkage was established by the HMBC
correlations from the methyl H3-21 to C-17 (δC 51.5), C-20,
and C-22 (δC 128.1) and, thus, the presence of a double bond
between C-20 and C-22. The HMBC correlations from H3-28 to
C-23 (δC 79.7), C-24 (δC 42.9), and C-25 (δC 35.9), from H3-26 to
C-24, C-25, and C-27 (δC 73.7), and fromH2-27 to C-23 indicated
the formation of a furan ring. The ROESY correlations from H3-
18 to H3-21 and H-11β, from H3-19 to H-11β and H-2β, from H-
4α to H-3 and H-6, from OH-7 to H-6, from H-1α to OH-9, from
H-23 to H3-21 and H3-28, and from H-22 to H-17 and H-24
allowed us to determine the relative configuration of this new
sterol (Figure 5). Compound (12) was characterized as 5β,6β-
23,26-diepoxy-3β,7α,9α-trihydroxy-(20Z,23S,24S,25R) ergosta-
8(14),20-dien-15-one.

Compound 19 in F107 showed a sodium adduct ion at m/z
599.4380 [M+Na]+ which correlated with C35H60O6. The NMR
spectra of 19 indicated the presence of stigmast-8-en-3-ol with
typical signals like two methyl singlets at δH 0.65 (3H, s, H3-18)
and 0.96 (3H, s, H3-19), three methyl doublets at δH 0.79 (3H, d,
J � 6.9 Hz, H3-27), 0.82 (3H, d, J � 6.9 Hz, H3-26), and 0.90 (3H,
d, J � 6.5 Hz, H3-21), one methyl triplet at δH 0.82 (3H, t, J �
7.3 Hz, H3-29), one oximethine at δH 3.46 (1H, tt, J � 11.2, 4.3 Hz,
H-3), and one olefinic carbon detected on the HMBC spectrum
from the correlations of methyl H-18 with C-9 (δC 140.4).

Additional signals corresponding to a glucose unit were
detected at δH 2.89 (1H, td, J � 8.4, 4.8 Hz, H-2’), 3.01 (1H,
td, J � 9.2, 5.0 Hz, H-4’), 3.06 (1H, m, H-5’), 3.12 (1H, td, J � 8.9,
4.8 Hz, H-3’), 3.40 (1H, m, H-6’b), 3.64 (1H, dd, J � 11.1, 6.2 Hz,
H-6’a), and 4.22 (1H, d, J � 7.8 Hz, H-1’). Due to the very small
amount of isolated compound and the presence of an overlapping
fatty acid in the fraction, it was not possible to obtain a complete
assignment of the molecule. However, the ROESY correlation
between the H-1’ proton of glucose and the H-3 proton of the
stigmasterol skeleton allowed the positioning of glucose in C-3
and the identification of 19 as 3-O-β-D-glucopyranoside-
stigmast-8-en-3-ol.

In addition to the compounds described in the polar part of the
chromatogram (F1-27), F10 exhibited a 1H-NMR spectrum of
possibly two to three metabolites. The HRMS data confirmed the
presence of two ions at m/z 199.0965 and 155.0703 [M + H]+

which are typical for C10H15O4 and C8H11O3, respectively.
A detailed 2D-NMR analysis of the fraction revealed the

presence of three compounds which share a 3-methyl-pyran-2-
one moiety similar to the one of 4, as indicated by the aromatic H-
4 and H-5 at δH/δC 7.35–7.36/140.4–140.5 and 6.26–6.33/
100.4–101.4, respectively, and the methyl at δH/δC 1.95–1.96/
16.0–16.2. Compounds 2a and 2b (C10H15O4) were
diastereoisomers with a 2,3-dihydroxybutan-2-yl side chain
characterized by a methyl doublet (J � 6.3 Hz, H3-9) at δH
0.97 and 1.03, an oxygenated methine (m, H-8) at δH 3.73 and
3.74, and a methyl singlet (H3-10) at δH 1.37 and 1.24 for 2a and
2b, respectively. The hydroxylation in C-7 and the linkage of the
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TABLE 5 | NMR chemical shifts of compound 18, 13, and 14 in DMSO-d6 at 600 MHz.

N° Compound 18 Compound 13 Compound 14

δH (multiplicity, J, nH) δC HMBC ROESY δH δC δH δC

6 - 171.7 - - 171.7 - 171.8
7 3.02 (d, 16.5 Hz, 1H) 30.9 C-9, C-8, C-14, C-6 - 3.02 (d, 16.5 Hz, 1H) 30.8 3.02 (d, 16.4 Hz, 1H) 30.9

2.98 (d, 16.5 Hz, 1H) 2.99 (d, 16.5 Hz, 1H) 2.98 (d, 16.4 Hz, 1H)
8 - 125.0 -
9 - 196.3 -
11 2.56 (m, 1H) 32.7 C-9 H-18 2.22 (m, 1H) 32.7 2.53 (overlapped, 1H) 32.7

2.22 (m, 1H) - 2.19 (m, 1H) 2.22 (dd, 18.7, 4.8 Hz, 1H)
12 2.15 (m, 1H) 35.8 - - 2.16 (m, 1H) 35.8 2.17 (m, 1H) 35.9

1.79 (m, 1H) 1.79 (m, 1H) 1.78 (m, 1H)
13 - 44.6 - - 44.7 - 44.6
14 - 175.2 - - 175.2 - 175.2
15 2.46 (m, 1H) 27.3 C-14, C-17 -

2.34 (m, 1H) H-7’’
16 1.78 (m, 1H) 27.2 - - 1.78 (m, 1H) 27.0 1.78 (m, 1H) 27.3

1.51 (m, 1H) H-18 1.51 (m, 1H) 1.51 (p, 11.4 Hz, 1H)
17 1.42 (m, 1H) 55.4 - H-21 1.42 (m, 1H) 55.5 1.43 (m, 1H) 55.5
18 1.06 (s, 3H) 16.3 C-14, C-13, C-12, C-17 H-11’, H-16’’, H-20 1.06 (s, 3H) 16.2 1.06 (s, 3H) 16.3
20 2.18 (m, 1H) 38.1 C-17, C-22, C-23 H-18 2.17 (m, 1H) 38.1 2.17 (m, 1H) 38.2
21 1.03 (d, 6.6 Hz, 3H) 20.9 C-17, C-20, C-22 H-17 1.03 (d, 7.1 Hz, 3H) 20.8 1.03 (d, 6.7 Hz, 3H) 21.0
22 5.25 (dd, 15.2, 7.9 Hz, 1H) 134.7 C-24 - 5.26 (dd, 15.3, 8.7 Hz, 1H) 135.0 5.27 (m, 1H) 135.0
23 5.29 (dd, 15.2, 7.0 Hz, 1H) 132.0 C-20, C-28 - 5.41 (dd, 15.3, 7.0 Hz, 1H) 131.1 5.27 (m, 1H) 130.9
24 1.88 (m, 1H) 42.0 C-22, C-23, C-25, C-28 - 2.01 (p, 7.0 Hz, 1H) 47.1 2.17 (m, 1H) 37.0
25 1.48 (m, 1H) 32.4 C-24 - - 70.5 1.43 (m, 1H) 40.6
26 0.83 (d, 6.9 Hz, 3H) 19.7 C-24, C-25, C-27 - 1.03 (s, 3H) 28.2 0.75 (d, 6.9 Hz, 3H) 13.1
27 0.81 (d, 6.9 Hz, 3H) 19.4 C-24, C-25, C-26 - 0.99 (s, 3H) 26.0 3.16 (d, 6.4 Hz, 1H) 64.4

3.17 (d, 6.4 Hz, 1H)
28 0.91 (d, 6.7 Hz, 3H) 17.3 C-23, C-24, C-25 - 0.92 (d, 7.0 Hz, 3H) 14.9 0.94 (d, 7.0 Hz, 3H) 18.3
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2,3-dihydroxybutyl chain in C-6 were confirmed by the HMBC
correlations from themethyl H3-10 to C-6 (δC 167.0 and 167.2 for
2a and 2b, respectively), C-7 (δC 74.5 and 75.0 for 2a and 2b,
respectively), and C-8 (δC 70.2 and 70.4 for 2a and 2b,
respectively), and from the aromatic protons H-4 and H-5 to
C-6. On the other hand, the 3-methyl-pyran-2-one of 3
(C8H11O3) was substituted by a hydroxyethyl group in C-6 as
indicated by the methyl doublet at δH 1.30 (3H, d, J � 6.6 Hz, H3-
8), the methine at δH 4.41 (1H, q, J � 6.6 Hz, H-7), and the HMBC
correlation from the methyl to C-6 (δC 165.6) and C-7 (δC 64.9).

Overall, the combination of the LC-HRMS/MS data and the
pseudo-LC-NMR plot together with in-depth 2D-NMR analysis
of selected peaks provided a good overview of all the main
constituents of fractions F1–F135 in a single semi-preparative
HPLC separation.

Determination of Bioactive Zones
Our workflow permitted us to identify all main compounds from
the crude extract in one step. However, as many of the fractions
were in very small quantities (in the sub-mg range), we had to

find a strategy to collect enough amounts of compounds for the
bioassays. This was indeed a limitation since the bioassays could
only be conducted with at least 500 µg of pure compound.

To ensure the accumulation of enough material for the
bioassays, the 135 collected fractions were pooled into 14
chromatographic zones (Z1–Z14), where each zone represents
a 5-min window of elution time (Figure 6A). Submitting of the
pooled fractions to bioactivity tests gives an approximate location
of the active compounds and facilitates targeting them in an
additional chromatographic separation. Since the extract was
active against a methicillin-resistant Staphylococcus aureus
(MRSA), the 14 zones were first subjected to MIC tests against
this strain. As a result, only zone 9 (Z9) showed significant
inhibitory effect at 32 μg/ml, which suggested the presence of
an antibacterial compound in fractions F81–F91. In parallel, the
14 zones were evaluated for anti-QS of PA in the same way as for
the crude extract and on the same reporter genes (pqsA and lasB).

For this purpose, we considered zones with bioactive
candidates, those that have shown values of 70% or less in the
fluorescence level for at least one of the reporters. The value of
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FIGURE 6 |HPLC-DAD-ELSD analysis highlighting the effect of the extract enrichment and the location of various bioactivities monitoring. (A)Chromatogram of the
crude extract; dashed lines represent the 14 chromatographic zones. Highlighted zones represent the part of the chromatogram for possible bioactivity. The square in
the ELSD highlights the presence of fatty acids. (B)Chromatogram of the hydroalcoholic part. (C)Chromatogram of the hexane. Compounds that possess bioactivity are
annotated by colored circles, and the process demonstrates that they can be precisely localized after enrichment.
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70% was chosen since each zone is still a mixture of several
constituents and to avoid missing pure bioactive candidates. As a
result, seven zones from Z3–Z9, which represent the mid-polarity
region, presented activity as QS inhibitors. Z5 was the most active
one and significantly reduced the fluorescence level of the gene
pqsA to 31% and that of lasB to 43% (Table 6). In order to
determine the specific molecules responsible for these activities,
an additional LC-peak targeted chromatographic separation at
the semi-preparative level was performed. Thus, an enrichment
step was designed to remove the very lipophilic compounds
which clearly were not responsible for bioactivity, as shown
when the chromatographic zones of the crude extracts were
tested.

Enrichment of the Crude Extract for
Targeted Purification of Bioactive
Compounds
In order to increase the concentration of the bioactive
compounds in Z3–Z9, the ethyl acetate crude extract was
submitted to liquid–liquid separation using water/methanol in
a ratio of 7:3 and hexane. This yielded approximately 70 mg of the
hydroalcoholic fraction and 90 mg of the hexane fraction from
160 mg of crude extract. As seen in Figures 6B,C, all zones of
interest (Z3–Z9) are retained in the hydroalcoholic part except
Z9, and the ELSD traces highlight well the efficiency of the
enrichment procedure.

Taking into account the enrichment factor (2.3 folds), a single
semi-preparative HPLC fractionation was carried out on 30 mg of
the hydroalcoholic fraction under the same conditions as for the
crude extract (Supplementary Figure S4). This yielded a good
baseline separation in most compounds that ease the peak
targeted collection. Purity of collected fractions was checked
by 1H-NMR and LC-ELSD-MS (data not shown) and enabled
the bioactivity assessment of compounds 1–14. Since Z9 was also
a bioactive target, the apolar hexane fraction was purified
similarly. Interestingly, by comparing the dry weights of

collected fractions from enriched extract with the equivalent
ones from crude extract, all compounds were collected in
amounts higher than 500 µg, which was the threshold for the
bioassay we selected. This also granted supplementary amounts
to perform further bioassay experiments such as
quantitative PCR.

As shown, in our strategy, the precise assignment of the
bioactive LC peaks was dependent on the amounts of extract
injected. While working with fungal extracts, the pseudo-LC-
NMR analysis performed directly at the crude extract level
identified all main metabolites and highlighted a high content
of fatty acids. Such a profiling based on NMR detection was of
interest to provide an unbiased view of the metabolome.
However, our fractionation process did not allow a direct
biological assessment of all the LC peaks collected, due to lack
of assay sensitivity, and necessitated the pooling of fractions. The
enrichment procedure followed by the targeted isolation using the
same semi-preparative fractionation finally provided a sufficient
amount for bioactivity assessments.

Biological Assay of Pure Compounds
In order to assign compounds which are responsible for the
antibacterial and anti-QS activity, purified compounds (4–16)
that belong to Z3–Z9 were submitted to the same biological tests
as described before.

For the QS test on P. aeruginosa, compounds 5, 10, 13, and 16
presented moderate to weak activity profiles as they did not reach
values under 30% in fluorescence reduction at 128 μg/ml
(Table 6). However, a mixture of the known Fusarium
quinones fusarubin (7) and 3-O-methylfusarubin (8), which
previously located in the active Z5, presented an enhanced and
significant QS inhibition (12 and 15%) in pqs and las systems,
respectively, at 128 μg/ml. To further confirm these results, we
performed quantitative RT-PCR analyses on the QS-regulated
genes pqsA, lasB, and rhlA involved in rhamnolipid production
(Van Gennip et al., 2009). The relative expression of the QS-
regulated gene pqsA in the presence of 7 and 8 was two times less
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TABLE 6 |Minimum inhibitory concentration (MIC) and quorum sensing inhibition (QS) assays of zones of fractions and their corresponding compounds compared to several
positive controls.

Zone % PA (pqsA) % PA (lasB) Compound % PA (pqsA) % PA (lasB) % SA (lacZ)

Control 32 ± 0.2 39 ± 2.9 NA 32 ± 0.2 39 ± 2.9 27 ± 1.6
Z_3 68 ± 0.0 85 ± 0.2 (4) 60 ± 4.5 76 ± 8.0 79 ± 0.7

(5) 40 ± 8.5 51 ± 7.7 11 ± 5.0
Z_4 48 ± 2.6 65 ± 1.2 (6) 59 ± 2.7 69 ± 0.9 37 ± 0.0
Z_5 31 ± 1.6 43 ± 0.4 (7/8) 12 ± 0.6 15 ± 1.0 3 ± 0.5a

Z_6 45 ± 0.7 60 ± 0.9 (9) 58 ± 3.6 68 ± 2.7 90 ± 0.0
(10) 36 ± 2.2 41 ± 0.4 17 ± 4.2

Z_7 60 ± 4.3 75 ± 0.4 (11) 66 ± 10.1 71 ± 0.5 121 ± 22.0
(12) 58 ± 3.6 68 ± 2.7 79 ± 0.7
(13) 34 ± 2.6 39 ± 0.4 13 ± 0.2

Z_8 64 ± 0.3 82 ± 1.8 (14) 72 ± 6.5 73 ± 0.2 31 ± 1.2
(15) 57 ± 2.9 63 ± 0.1 36 ± 3.3

Z_9 (MIC MRSA at 32 μg/ml) 63 ± 0.6 82 ± 0.0 (16) (MIC MRSA at 32 μg/ml) 37 ± 2.1 39 ± 6.9 15 ± 11.0

Values show the mean of triplicates ± SD. Values in bold are lower than the corresponding control. Positive controls of QS assays are azithromycin at 2 μg/ml for PA and S. caprae AIP
1 µM for SA. Results were compared to DMSO fixed at 100%. MRSA, methicillin-resistant Staphylococcus aureus; PA, Pseudomonas aeruginosa; NA, not applicable.
aFluorescence was biased due to the natural coloration of the compound.
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expressed than the reference (Figure 7B). However, relative
expression of lasB and rhlA did not show significant effects
(data not shown) unlike results obtained by gfp transcriptional
fusions (Table 6). In addition, since the zone Z9 was the only one
showing MRSA inhibition activity, its main compound is one of
the new pyrones. 16 was evaluated against MRSA following the
protocol of Wiegand et al. (2008). Compound 16 presented with
an MIC at 32 μg/ml (Table 6).

On the whole, a series of the isolated compounds’ anti-QS
assay for S. aureus on the reporter strain rnaIII-lacZ targeting the
reporter gene agr was also performed following the method of
(Nielsen et al., 2010). Compounds 5, 10, 13, and 16 presented a
QS rnaIII-lacZ inhibition at 32 μg/ml, showing fluorescence
values less than 20% (Table 6). These results were confirmed
by real-time quantitative reverse transcription (RT-qPCR) in the
gene expression of hla and hld, both coding for QS regulated
exotoxins (Figure 7A). Compared to the positive control, the
antagonist auto-inducing peptide (AIP) from Staphylococcus
caprae, all of these compounds show a better inhibition on hla
gene expression, which codes for the alpha-hemolysin. The
tendency is the same for hld gene expression, which codes for
the delta-hemolysin, except for 16, which shows a less efficient
effect with an inhibition of only two folds (Figure 7A).

Overall, this comprehensive study of F. petroliphilum enables
an unambiguous characterization of 22 compounds based on one
single high-resolution semi-preparative HPLC separation of the
crude extract which highlighted 13 compounds that were never
reported to our knowledge. This allowed a better characterization
of the composition of F. petroliphilum, which is a rarely
chemically studied member of the F. solani species complex.
Our genetic investigation of this endophyte also enabled its
unambiguous identification and positioned this strain as a
member of the F. solani species complex.

The pseudo-LC-NMR process correlated well with the
dereplication results obtained from the molecular networks.
For most of the unannotated metabolites, full de novo
structure assignment unambiguously identified new fungal

NPs. This also provided a valid set of standards which allowed
efficient MN annotation propagation. In its current state,
however, the proposed workflow still requires partial manual
inspection/processing of both NMR and MS data. Future
development of algorithms for connecting NMR information
into the MN would facilitate the efficiency of a full
metabolome composition assessment process. Our study
mainly highlights the potential of such data integration and
demonstrates that with well-optimized chromatographic
conditions at the semi-preparative HPLC level and high-
quality spectral data that can be efficiently generated in a
restricted laboratory time frame.

On the bioactivity aspects, we were also able to show that the
generic fractionation obtained by semi-preparative HPLC
allowed a consistent concentration of activity from the broad
chromatographic zones to the active ingredients. Several of the
identified metabolites exhibited weak-to-moderate MIC values
on a gram-positive MRSA and no growth inhibition on the gram-
negative P. aeruginosa. However, an in-depth study of the QS
activity of both strains through our selected assays revealed
significant QS inhibition for some of the metabolites,
especially for the known fusarubins for which anti-QS
activities were never reported. Based on this approach, we
plan to further study the different endophytes found in
Posidonia oceanica, which we identify as an interesting model
for the study of the endophytic community.

MATERIALS AND METHODS

Plant Material, Fungal Endophyte Isolation
and Identification
Posidonia oceanica shoots were collected from the shores of
Banyuls-sur-Mer in France at a depth of 5–10 m. Fresh plant
parts (leaves, roots, and rhizomes) were cleaned under stream
water and then dipped into 70% ethanol for 3 min. Samples of all
plant parts were cut into 1-cm2 pieces and placed in a culture
plate containing potato dextrose agar (PDA). Fungal tips were
transferred to a new PDA culture plate as soon as they appeared
and were left to grow for 30 days.

Samples of the fungal cultures were sent to Bio2Mar, France
(http://bio2mar.obs-banyuls.fr), who performed the
amplification and sequencing of the internal transcribed
spacers plus the 5.8S (ITS). After the removal of small and
large subunit ITS flanking regions, a first identification of this
fungal isolate was performed, searching for similarity of that ITS
sequence to those deposited in GenBank (National Center for
Biotechnology Information, U.S.) (Benson et al., 2018). Sequence
similarity search in GenBank (BLAST; https://blast.ncbi.nlm.nih.
gov/Blast.cgi) used the “blastn” (Megablast) option excluding
“uncultured/environmental sample sequences.”

To identify the selected Fusarium strain FEP 16 more
precisely, DNA was extracted from a sample of the fungal
culture placed in 500 µl of cetyl-trimethyl-ammonium bromide
buffer (CTAB 1x). DNA extraction was performed according to
Hofstetter et al. (2002). Four more loci were amplified and
sequenced: part of the transcription elongation factor 1-alpha
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FIGURE 7 | (A) Quantitative PCR test of S. aureus QS regulated genes
hla and hld. AIP (auto-inducer from S. caprae) is used as the positive inhibitor
control. (B) Quantitative PCR test of P. aeruginosa for QS regulated gene
pqsA. Fold induction is represented relative to DMSO alone (fixed at 1).
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(TEF1-α) using primers EF1-1F and EF1-1R (Morehouse et al.,
2003), part of the RNA polymerase II second largest subunit
[RPB2] using primers fRPB2-5F and fRPB2-7cR for regions 5–7
and fRPB2-7cF and fRPB2-11aR for regions 7–11 (Liu et al.,
1999), part of β-tubulin using primers Bt2a and Bt2b (Glass and
Donaldson, 1995), and part of calmodulin with primers CAL-
228F and CAL-737R (Carbone and Kohn, 2019). Amplification of
these loci used the reagents and conditions of a Taq PCR core kit
(Qiagen Inc., Valencia, CA, United States). Sanger sequencing
was performed using the amplification primers by Fasteris SA
(Life Science Genesupport, Geneva, Switzerland). The obtained
sequences were assembled in Sequencher v4.9 (Gene Codes
Corp., United States). These sequences were combined with
sequences sampled from the study by Bohni et al. (2016). The
alignments of sequences were done in MacClade v4.08
(Maddison and Maddison, 1989). Ambiguously aligned regions
(mostly spliceosomal introns in protein-coding genes and gap
regions in ribosomal loci) were excluded from phylogenetic
analyses.

Searches for the most likely tree included three independent
runs conducted in PhyML v3.0 (Guindon and Gascuel, 2003),
with evolutionary model � GTR and other parameters estimated
during the search. Bootstrap values (BS) were inferred based on
500 replicates using the same settings as for the search of the most
likely tree. Branch support was considered significant when BS
values were ≥70% (Alfaro et al., 2003).

Cultivation and Extraction of Fusarium
petroliphilum
For the whole study, the same strain of F. petroliphilum, FEP 16,
was used. The strain was cultivated in the laboratory using
Sabouraud dextrose agar (CM0041; Oxoid). The agar was
suspended in artificial sea water (Supplementary Table S3)
and then poured over 8.5-cm petri dishes. The incubation was
at room temperature for 18 days when the fungus fully dominated
the plate (Kour et al., 2007). This setup was applied on both the
small scale (10 plates) and the large scale (100 plates) to ensure
equal outcomes. The fresh agar was cut into 1-cm squares and
directly dipped into ethyl acetate and then agitated overnight
(Orbitron, Infors®, Bottmingen, Switzerland, room temperature,
at 100 rpm), followed by 20 min of ultrasound sonication, and
filtered through Whatman™ No. 1. This process was repeated
three times with fresh solvent. The filtrates were gathered, and the
solvent was evaporated to dryness using a rotary evaporator
(Buchi®, Flawil, Switzerland) to yield 300 mg of crude extract.

General Experimental Procedures
The NMR spectroscopic data were recorded at 298 K on a Bruker
Avance III HD 600 MHz. An NMR spectrometer equipped with a
QCI 5 mm Cryoprobe and a SampleJet automated sample
changer (Bruker BioSpin, Rheinstetten, Germany) was used.
Chemical shifts are measured in parts per million (δ) using
the residual DMSO-d6 (δH 2.50; δC 39.5) as the internal
standard for 1H and 13C, respectively, and coupling constants
(J) are reported in Hz. Complete assignments were performed
based on 2D-NMR experiments (correlation spectroscopy

(COSY), rotational nuclear Overhauser effect spectroscopy
(ROESY), heteronuclear single quantum correlation (HSQC),
and heteronuclear multiple bond coherence (HMBC)). Optical
rotations were measured using a Jasco P-2000 polarimeter
(JASCO Corporation, Tokyo, Japan). UV absorbance was
measured using a JASCO FT/IR-4100 spectrometer (JASCO
Corporation) equipped with a PIKE MIRacle™ (JASCO
Corporation).

UHPLC-DAD-MS-ELSD and
UHPLC-HRMS/MS Analyses
UHPLC-DAD-MS-ELSD analyses were conducted on an Acquity
UHPLC system (Waters, Milford, MA, United States), equipped
with DAD and MS single quadrupole (Acquity QDa) as detectors
supplemented with an electrospray ionization source (ESI). DAD
detection was set between 190 and 500 nm. The system was
controlled using MassLynx® v4.2 (Waters), and the ESI and MS
acquisition conditions were set according to the work of (Righi
et al., 2020). For the metabolite profiling of the ethyl acetate
extract, 3 µl was injected on an Acquity BEH C18 column (100 ×
2.1 mm i.d., 1.7 µm; Waters, Milford, MA, United States). The
solvent system was H2O (A) and MeOH (B), both containing
0.1% formic acid (FA). The separation conditions were optimized
by decreasing the slope of the LC linear gradient to ensure the best
distribution of the metabolites across the chromatographic
window. The gradient was set as follows: 34–100% of B in
16.57 min, followed by 3 min of washing at 100% B. The flow
rate was 0.3 ml/min, and the separation was conducted at 40°C.

UHPLC-HRMS/MS analyses was performed on a Thermo
Dionex Ultimate 3000 UHPLC system interfaced with a Q
Exactive Plus MS (Thermo Scientific, Bremen, Germany)
supplemented with a heated electrospray ionization source
(HESI-II). Thermo Scientific Xcalibur 3.1 software was used
for instrument control. The HESI-II parameters were set
according to the work of (Rutz et al., 2019). For the profile of
the ethyl acetate extract, 2 µl of the extract was injected using the
same column as mentioned above. The mobile phase was H2O
(A) and MeCN (B), both containing 0.1% FA. The gradient mode
was as follows: 5–100% of B in 18 min, followed by 4 min of 100%
B. The flow rate was 0.6 ml/min, and the separation was
conducted at 25°C. Metabolite profiling of all fractions was
conducted on the same system and the same ESI settings; 2 µl
was injected through an Acquity BEH C18 column (50 × 2.1 mm
i.d., 1.7 µm; Waters, Milford, MA, United States). The mobile
phase was H2O (A) andMeCN (B), both containing 0.1% FA. The
gradient mode was 5–100% of B in 4 min, followed by 2 min of
washing and reconditioning.

Generation of Molecular Networks
Raw spectral data of the extract were analyzed usingMZmine 2.53
(Pluskal et al., 2010). The parameters were adjusted as follows:
mass detection performed as MS level 1 (noise level at 106) and
MS level 2 (noise level at 0). The ADAP chromatogram builder
was used with the threshold set to 4 × 105. Chromatogram
deconvolution (algorithm ADAP) was set within its default
parameters, except for the Rt wavelet range, which was set as
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0–0.1. The most intense isotopes were kept through the isotope
peak grouper. Peak alignment was performed using the join
aligner method where absolute Rt tolerance is at 0.03 min.
Adduct search was performed for Na+, K+, NH4

+, and ACN+

in the positive mode and [M-2H+Na]− and [M-2H+K]− in the
negative mode (Thomas et al., 2014). Custom database search
restricted to Fusarium was performed using the Dictionary of
Natural Products v29.2. Molecular networks were built through
GNPS (Wang et al., 2016) and visualized using Cytoscape v3.8
(Shannon et al., 2003).

HPLC-DAD-ELSD Analysis
HPLC-DAD analyses were conducted on an HP 1260 system
equipped with a diode-array detection unit (Agilent
Technologies, Santa Clara, CA, United States) using an
X-Bridge C18 column (250 × 4.6 mm i.d., 5 μm; Waters,
Milford, MA, United States). The HPLC conditions were as
follows: mobile phase H2O (A) and MeOH (B), both
containing 0.1% FA. The flow rate was 1 ml/min, the injection
volume was 10 μl, the separation temperature was 25°C, and the
sample concentration was 10 mg/ml dissolved in MeOH. The
gradient conditions were set following a gradient transfer from
UHPLC to HPLC according to the work of (Guillarme et al.,
2008). The separation conditions were optimized by decreasing
the slope of the mobile phase gradient to ensure the best
distribution of the metabolites across the chromatographic
window. The gradient method was set as follows: 34–100% of
B in 60 min, followed by 10 min of washing with 100% B. The
detection was performed by DAD and ELSD. The DAD
parameters were set as follows: UV wavelength at 210, 254,
280, and 366 nm, five spectra acquired per peak, and the
threshold was 5 mAU. The ELSD parameters were set as
follows: pressure 3.4 bar, 45°C, split to provide a 500 μl/min
flow rate, gain 8.

Generation of 2D Pseudo-LC-NMR Plot
For the generation of the pseudo-LC-NMR 2D plot (Figure 1F),
aligned 1H-NMR spectra of all 135 fractions were divided into
equally sized bins (0.01 ppm) in a range from −1 to 15 ppm and
then exported as an Excel file (.csv) usingMNova v14 (MasterLab,
Santiago De Compostela, Spain). Sample names (number of
fractions) were added manually to the Excel file. The file was
loaded into an R script using Rstudio V1.2.5042, which was
written to create an interactive 2D plot that combines all binned
spectra in a matrix (sample vs. ppm). The following R packages
were used: “plotly,” “stringr,” “reshape2,” “dplyr,” and “readr.”
The R script is freely available here: (https://github.com/oolonek/
pseudo_lcnmr_plotter/blob/main/src/plotter/NMR_data_plotter.
Rmd). To improve the visualization, retention time (Rt) of the
semi-preparative separation was manually added to the created
plot (Figure 1F).

Liquid/Liquid Extraction and Extract
Purification on the Semi-Preparative Scale
The crude extract was subjected to liquid/liquid partition;
160 mg was suspended in 50 ml 7:3 methanol/water, and

50 ml of hexane was added to the suspension and then
gently mixed to avoid emulsion. The two phases were
separated using a separating funnel, and this procedure was
repeated four times. Both phases were completely dried
using a rotary evaporator (Buchi, Flawil, Switzerland). The
hydroalcoholic fraction yielded 70 mg, and the hexane
fraction yielded 90 mg.

The original crude extract and enriched extracts were purified
using semi-preparative HPLC-UV equipment (Shimadzu® SPD-
20A, Kyoto, Japan) through an X-Bridge C18 column (250 ×
19 mm i.d., 5 μm; Waters, Milford, MA, United States). The
gradient transfer from analytical to semi-preparative HPLC
was calculated according to the work of (Guillarme et al.,
2008). The flow rate was set at 17 ml/min, and the separation
was conducted at room temperature. In order to avoid loss of
resolution, samples were introduced into the column through a
homemade dry load cell (Queiroz et al., 2019). Collection of
fractions from the crude extract was done automatically every
30 s. For enriched extracts, all peaks have been collected manually
by observing the UV response at 254 nm. After collection, each
fraction was evaporated to dryness using a high-performance
evaporation system (HT-4X Genevac®, Stone Ridge, NY,
United States).

Description of the New Compounds
The spectral data for all new NPs are summarized below; those
recorded for previously isolated compounds can be found in the
supplementary materials. The 1D- and 2D-NMR spectra of all
described compounds below can be found in the supplementary
materials (Supplementary Figures S5–S109). All NMR data
produced in the article are available in the public archive
Yareta (https://doi.org/10.26037/yareta:
tmpbgvbqsvfrvltepotmjuunua).

6-(2,3-dihydroxybutan-2-yl)-3-methyl-2H-pyran-2-one (2):
white amorphous solid; 2a: 1H-NMR (DMSO-d6, 600 MHz) δ
0.97 (3H, d, J � 6.3 Hz, H3-9), 1.31 (3H, s, H3-10), 1.95 (3H, d, J �
1.2 Hz, H3-11), 3.73 (1H, m, H-8), 4.67 (1H, d, J � 6.1 Hz, OH-8),
5.19 (1H, s, OH-7), 6.32 (1H, d, J � 5.7 Hz, H-5), 7.35 (1H, m, H-
4); 13C-NMR (DMSO-d6, 151 MHz) δ 16.0 (C-11), 17.4 (C-9),
21.8 (C-10), 70.2 (C-8), 74.5 (C-7), 101.4 (C-5), 121.3 (C-3), 140.4
(C-4), 162.7 (C-2), 167.0 (C-6); 2b: 1H-NMR (DMSO-d6,
600 MHz) δ 1.03 (2H, d, J � 6.4 Hz, H3-9), 1.24 (3H, s, H3-
10), 1.95 (3H, d, J � 1.2 Hz, H3-11), 3.74 (1H, m, H-8), 4.59 (1H,
d, J � 5.8 Hz, OH-8), 5.09 (1H, s, OH-7), 6.33 (1H, d, J � 5.8 Hz,
H-5), 7.35 (1H, m, H-4); 13C-NMR (DMSO-d6, 151 MHz) δ 16.0
(C-11), 17.1 (C-9), 22.6 (C-10), 70.4 (C-8), 75.0 (C-7), 101.4 (C-
5), 120.9 (C-3), 140.4 (C-4), 162.7 (C-2), 167.2 (C-6). HRMS m/z
199.0962 [M + H]+ (calculated for C10H15O4, 199.0966).

6-(1-hydroxyethyl)-3-methyl-2H-pyran-2-one (3): white
amorphous solid; 1H-NMR (DMSO-d6, 600 MHz) δ 1.30 (3H,
d, J � 6.6 Hz, H3-8), 1.96 (3H, d, J � 1.2 Hz, H3-9), 4.41 (1H, q, J �
6.6 Hz, H-7), 5.56 (1H, d, J � 4.4 Hz, OH-7), 6.26 (1H, dd, J � 6.7,
0.8 Hz, H-5), 7.36 (1H, m, H-4); 13C-NMR (DMSO-d6, 151 MHz)
δ 16.2 (C-9), 21.5 (C-8), 64.9 (C-7), 100.4 (C-5), 122.0 (C-3),
140.5 (C-4), 162.7 (C-2), 165.6 (C-6). HRMS m/z 155.0703 [M +
H]+ (calculated for C8H11O3, 155.0708). 2a, 2b and 3 occurred as
a mixture in a fraction 10 (0.6 mg)

2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109

2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166

Frontiers in Molecular Biosciences | www.frontiersin.org September 2021 | Volume 8 | Article 72569119

Alfattani et al. Combination of Pseudo-LC-NMR and HRMS/MS

https://github.com/oolonek/pseudo_lcnmr_plotter/blob/main/src/plotter/NMR_data_plotter.Rmd
https://github.com/oolonek/pseudo_lcnmr_plotter/blob/main/src/plotter/NMR_data_plotter.Rmd
https://github.com/oolonek/pseudo_lcnmr_plotter/blob/main/src/plotter/NMR_data_plotter.Rmd
https://doi.org/10.26037/yareta:tmpbgvbqsvfrvltepotmjuunua
https://doi.org/10.26037/yareta:tmpbgvbqsvfrvltepotmjuunua
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


5-hydroxy-4-(hydroxymethyl)-8-methoxy-2-methyl-1H-benzo
[g]indole-6,9-dione (6): pale rose amorphous solid (0.2 mg); UV
λmax 213, 280 nm; 1H-NMR (DMSO-d6, 600 MHz) δ 2.44 (3H,
d, J � 1.0 Hz, H3-14), 3.89 (3H, s, H3-16), 4.75 (2H, d, J � 5.5 Hz,
H2-15), 5.06 (1H, t, J � 5.5 Hz, OH-15), 6.23 (1H, s, H-3), 6.44
(1H, dd, J � 2.1, 1.1 Hz, H-11), 11.39 (1H, s, NH-13), 12.88 (1H,
s, OH-5); 13C-NMR (DMSO-d6, 151 MHz) δ 13.8 (C-14), 55.1
(C-15), 56.6 (C-16), 99.8 (C-11), 107.4 (C-10), 109.0 (C-3),
126.8 (C-6), 130.5 (C-8), 137.5 (C-7), 146.7 (C-12), 152.1 (C-5),
160.5 (C-2), 179.5 (C-1), 191.0 (C-4); HRMSm/z 288.0846 [M +
H]+ (calculated for C15H14NO5, 288.0866).

(6E)-7-(4-methoxy-6-oxo-6H-pyran-2-yl)-3,5-dimethyloct-6-
enoic acid (9): Red amorphous solid (0.4 mg); [α]20D +22.3 (c
0.04, MeOH);UV (DAD) λmax 218, 269; 1H-NMR (DMSO-d6,
600 MHz) δ 0.89 (3H, d, J � 6.6 Hz, H3-14), 0.96 (3H, d, J � 6.6 Hz,
H3-15), 1.21 (1H, dt, J � 13.4, 7.4 Hz, H-10’’), 1.34 (1H, dt, J � 13.4,
6.8 Hz, H-10’), 1.79 (1H, dqd, J � 8.5, 6.8, 5.1 Hz, H-11), 1.86 (3H,
d, J � 1.4 Hz, H3-16), 1.96 (1H, dd, J � 15.0, 8.5 Hz, H-12’’), 2.25
(1H, m, H-12’), 2.67 (1H, m, H-9), 3.88 (3H, s, H3-17), 5.52 (1H, d,
J � 1.8 Hz, H-3), 6.11 (1H, d, J � 1.8 Hz, H-5), 6.15 (1H, dd, J � 9.8,
1.4 Hz,H-8), 11.99 (1H, s, COOH); 13C-NMR (DMSO-d6, 151MHz)
δ 12.3 (C-16), 19.8 (C-14), 19.9 (C-15), 27.6 (C-11), 29.9 (C-9), 40.9
(C-12), 43.3 (C-10), 56.4 (C-17), 88.7 (C-3), 108.7 (C-5), 124.3 (C-7),
140.0 (C-8), 159.6 (C-6), 167.2 (C-4), 173.7 (C-13), 180.2 (C-2).
HRMSm/z 295.1542 [M + H]+ (calculated for C16H23O5, 295.1545).

6-((E)-6-ethyl-7-hydroxy-4-methylhept-2-en-2-yl)-4-methoxy-
2H-pyran-2-one (10): Red amorphous solid (0.7 mg); [α]20D +82.7
(c 0.03, MeOH); UV (DAD) λmax 286, 422;

1H-NMR (DMSO-d6,
600 MHz) δ 0.81 (3H, t, J � 7.3 Hz, H3-13), 0.98 (3H, d, J � 6.6 Hz,
H3-15), 1.22 (1H, m, H-10’’), 1.23 (1H, m, H-11), 1.27 (2H, m,
H2-12), 1.35 (1H, m, H-10’), 1.86 (3H, d, J � 1.3 Hz, H3-16), 2.69
(1H, m, H-9), 3.25 (1H, dt, J � 10.2, 5.0 Hz, H-14’’), 3.30 (1H, dt,
J � 10.2, 5.0 Hz, H-14’), 3.88 (3H, s, H3-17), 4.34 (1H, t, J � 5.2 Hz,
OH-14), 5.52 (1H, d, J � 1.8 Hz, H-3), 6.10 (1H, d, J � 1.8 Hz,
H-5), 6.14 (1H, dd, J � 9.9, 1.5 Hz, H-8); 13C-NMR (DMSO-d6,
151 MHz) δ 10.5 (C-13), 12.1 (C-16), 20.4 (C-15), 22.6 (C-12),
29.9 (C-9), 37.8 (C-10), 39.1 (C-11), 56.3 (C-17), 62.9 (C-14), 88.6
(C-3), 108.6 (C-5), 124.1 (C-7), 140.4 (C-8), 159.6 (C-6), 167.2
(C-4), 180.2 (C-2). HRMSm/z 281.1745 [M + H]+, calculated for
C16H25O4, 281.1747.

5β,6β-23,26-diepoxy-3β,7α,9α-trihydroxy-(20Z,23S,24S,25R)
ergosta-8(14),20-dien-15-one (12): pale yellow amorphous solid
(0.4 mg); [α]20D +18.9 (c 0.04, MeOH); UV λmax 248, 229, 229;
1H-NMR (DMSO-d6, 600 MHz) δ 0.77 (3H, s, H3-18), 0.85 (3H,
d, J � 7.0 Hz, H3-28), 0.89 (3H, s, H3-19), 0.90 (3H, d, J � 6.8 Hz,
H3-26), 1.20 (1H, dt, J � 13.6, 3.3 Hz, H-4α), 1.45 (3H, m, H-1β,
H-2β, H-11α), 1.66 (2H, m, H2-12), 1.69 (1H, m, H-11β), 1.73
(3H, d, J � 1.2 Hz, H3-21), 1.85 (2H, m, H-2α, H-24), 2.00 (1H, td,
J � 14.4, 4.0 Hz, H-1α), 2.06 (1H, dd, J � 13.6, 11.5 Hz, H-4β), 2.16
(1H, dd, J � 18.3, 7.3 Hz, H-16α), 2.26 (1H, m, H-25), 2.35 (1H,m,
H-17), 2.63 (1H, m, H-16β), 3.27 (1H, d, J � 3.7 Hz, H-6), 3.59
(1H, tq, J � 10.6, 5.0 Hz, H-3), 3.93 (1H, dd, J � 8.2, 6.4 Hz, H-27’),
4.18 (1H, t, J � 8.5 Hz, H-23), 4.77 (1H, d, J � 5.0 Hz, OH-3), 4.77
(1H, d, J � 2.3 Hz, OH-9), 4.91 (1H, d, J � 5.2 Hz, OH-7), 5.22
(1H, d, J � 8.4 Hz, H-22), 5.53 (1H, dd, J � 5.2, 3.7 Hz, H-7);
13C-NMR (DMSO-d6, 151 MHz) δ 11.2 (C-28), 13.5 (C-26), 17.6
(C-18), 18.8 (C-21), 19.8 (C-19), 25.6 (C-1), 26.7 (C-11), 30.2

(C-2), 32.1 (C-12), 35.9 (C-25), 37.0 (C-10), 39.5 (C-16), 39.9
(C-4), 42.9 (C-24), 43.1 (C-13), 51.5 (C-17), 59.7 (C-7), 60.4
(C-6), 66.5 (C-3), 68.1 (C-5), 73.7 (C-27), 74.8 (C-9), 79.7 (C-23),
128.1 (C-22), 134.1 (C-20), 142.8 (C-14), 206.7 (C-15). HRMS
m/z 473.2877 [M + H]+ (calculated for C28H41O6, 473.2903).

2-(2,3,5,6,7,7a-hexahydro-1-((E)-6-hydroxy-5,6-dimethylhept-
3-en-2-yl)-7a-methyl-5-oxo-1H-inden-4-yl)acetic acid (13):
pale yellow amorphous solid (0.4 mg); [α]20D +21.5 (c 0.04,
MeOH); UV λmax 247, 207; 1H-NMR (DMSO, 600 MHz) δ
0.92 (3H, d, J � 7.0 Hz, H3-28), 0.99 (3H, s, H3-27), 1.03 (3H,
d, J � 7.1 Hz, H3-21), 1.03 (3H, s, H3-26), 1.06 (3H, s, H3-18), 1.42
(1H, m, H-17), 1.50 (1H, m, H-16’’), 1.78 (1H, m, H-16’), 1.79
(1H, m, H-12’’), 2.01 (1H, p, J � 7.0 Hz, H-24), 2.16 (1H, m,
H-12’), 2.17 (1H, m, H-20), 2.19 (1H, m, H-11’’), 2.22 (1H, m,
H-11’), 2.99 (1H, d, J � 16.5 Hz, H-7’’), 3.02 (1H, d, J � 16.5 Hz,
H-7’), 5.26 (1H, dd, J � 15.3, 8.7 Hz, H-22), 5.41 (1H, dd, J � 15.3,
7.0 Hz, H-23); 13C-NMR (DMSO-d6, 151 MHz) δ 14.9 (C-28),
16.2 (C-18), 20.8 (C-21), 26.0 (C-27), 27.0 (C-16), 28.2 (C-26),
30.8 (C-7), 32.7 (C-11), 35.8 (C-12), 38.1 (C-20), 44.7 (C-13), 47.1
(C-24), 55.5 (C-17), 70.5 (C-25), 131.1 (C-23), 135.0 (C-22), 171.7
(C-6), 175.2 (C-14). HRMS m/z 349.2383 [M + H]+ (calculated
for C21H33O4, 349.2378).

2-(2,3,5,6,7,7a-hexahydro-1-((E)-7-hydroxy-5,6-dimethylhept-
3-en-2-yl)-7a-methyl-5-oxo-1H-inden-4-yl)acetic acid (14):
pale yellow amorphous solid (0.3 mg); [α]20D +19.8 (c 0.07,
MeOH); UV λmax 245, 212; 1H-NMR (DMSO-d6, 600 MHz) δ
0.75 (3H, d, J � 6.9 Hz, H3-26), 0.94 (3H, d, J � 7.0 Hz, H3-28),
1.03 (3H, d, J � 6.7 Hz, H3-21), 1.06 (3H, s, H3-18), 1.43 (2H, m,
H-17, H-25), 1.51 (1H, p, J � 11.4 Hz, H-16’’), 1.78 (2H, m, H-12’’,
H-16’), 2.17 (3H, m, H-12’, H-20, H-24), 2.22 (1H, dd, J � 18.7,
4.8 Hz, H-11’’), 2.53 (1H, overlapped, H-11’), 2.98 (1H, d,
J � 16.4 Hz, H-7’’), 3.02 (1H, d, J � 16.4 Hz, H-7’), 3.16 (1H,
d, J � 6.4 Hz, H-27’), 3.17 (1H, d, J � 6.4 Hz, H-27’’), 5.27 (2H, m,
H-22, H-23); 13C-NMR (DMSO-d6, 151 MHz) δ 13.1 (C-26), 16.3
(C-18), 18.3 (C-28), 21.0 (C-21), 27.3 (C-16), 30.9 (C-7), 32.7
(C-11), 35.9 (C-12), 37.0 (C-24), 38.2 (C-20), 40.6 (C-25), 44.6
(C-13), 55.5 (C-17), 64.4 (C-27), 130.9 (C-23), 135.0 (C-22), 171.8
(C-6), 175.2 (C-14). HRMS m/z 349.2349 [M + H]+ (calculated
for C21H33O4, 349.2378).

5-hydroxy-8-methoxy-2,4-dimethyl-1H-benzo[g]indole-6,9-
dione (15): pale yellow amorphous (0.1 mg) solid; UV λmax 280,
239; 1H NMR (DMSO-d6, 600 MHz) δ 2.36 (3H, s, H3-15), 2.44
(3H, s, H3-14), 3.89 (3H, s, H3-16), 6.21 (1H, s, H-3), 6.28 (1H, s,
H-11), 11.39 (1H, s, NH-13), 12.84 (1H, s, OH-5); 13C-NMR
(DMSO-d6, 151 MHz) δ 12.0 (C-15), 13.8 (C-14), 56.6 (C-16),
98.9 (C-11), 107.3 (C-10), 108.8 (C-3), 123.9 (C-6), 129.8 (C-8),
137.6 (C-7), 146.2 (C-12), 152.2 (C-5), 160.5 (C-2), 179.1 (C-1).
HRMSm/z 258.0771 [M+H]+, calculated for C14H12NO4, 258.0766.

4-methoxy-6-((E)-4,6-dimethyloct-2-en-2-yl)-2H-pyran-2-
one (16): light brown amorphous solid (0.1 mg); [α]20D +17.5 (c
0.04, MeOH); UV λmax 220,274; 1H-NMR (DMSO-d6,
600 MHz) δ 0.82 (3H, t, J � 7.4 Hz, H3-13), 0.84 (3H, d, J �
6.3 Hz, H3-14), 0.96 (3H, d, J � 6.5 Hz, H3-15), 1.08 (1H, m,
H-12’’), 1.14 (1H, m, H-10’’), 1.32 (3H, m, H-10’, H-11, H-12’),
1.86 (3H, d, J � 1.2 Hz, H3-16), 2.66 (1H, m, H-9), 3.88 (3H, s,
H3-17), 5.52 (1H, d, J � 1.8 Hz, H-3), 6.10 (1H, d, J � 1.8 Hz, H-
5), 6.16 (1H, dq, J � 9.8, 1.2 Hz, H-8); 13C-NMR (DMSO-d6,

2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223

2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280

Frontiers in Molecular Biosciences | www.frontiersin.org September 2021 | Volume 8 | Article 72569120

Alfattani et al. Combination of Pseudo-LC-NMR and HRMS/MS

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


151 MHz) δ 11.0 (C-13), 12.3 (C-16), 19.3 (C-14), 20.1 (C-15),
28.6 (C-12), 30.1 (C-9), 31.5 (C-11), 43.5 (C-10), 56.3 (C-17),
88.8 (C-3), 108.9 (C-5), 124.2 (C-7), 140.5 (C-8), 159.7 (C-6),
167.4 (C-4). HRMS m/z 265.1816 [M + H]+, calculated for
C16H25O3, 265.1803.

4-methoxy-3-methyl-6-((E)-4,6-dimethyloct-2-en-2-yl)-2H-
pyran-2-one (17): light brown amorphous solid (0.1 mg); [α]20D
+19.7 (c 0.04, MeOH); UV λmax 218, 252;

1H-NMR (DMSO-d6,
600 MHz) δ 0.83 (3H, t, J � 7.4 Hz, H3-13), 0.85 (3H, d, J � 6.1 Hz,
H3-14), 0.98 (3H, d, J � 6.7 Hz, H3-15), 1.24 (1H, m, H-12’’), 1.34
(2H, m, H-11, H-12’), 1.69 (3H, s, H3-18), 1.88 (3H, d, J � 1.3 Hz,
H3-16), 2.66 (1H, m, H-9), 4.02 (3H, s, H3-17), 6.17 (1H, s, H-5),
6.19 (1H, d, J � 9.4 Hz, H-8); 13C-NMR (DMSO-d6, 151 MHz) δ
6.5 (C-18), 11.1 (C-13), 12.3 (C-16), 19.3 (C-14), 20.1 (C-15),
28.7 (C-12), 30.1 (C-9), 31.4 (C-11), 43.5 (C-10), 56.0 (C-17),
98.9 (C-3), 108.3 (C-5), 124.4 (C-7), 140.1 (C-8), 158.3 (C-6),
162.0 (C-4), 179.7 (C-2). HRMS m/z 279.1967 [M + H]+

(calculated for C17H27O3, 279.1955).
2-(2,3,5,6,7,7a-hexahydro-7a-methyl-1-((E)-5,6-dimethylhept-

3-en-2-yl)-5-oxo-1H-inden-4-yl)acetic acid (18): pale yellow
amorphous solid (0.6 mg); [α]20D +14.9 (c 0.05, MeOH); UV
λmax 246, 239; 1H-NMR (DMSO-d6, 600 MHz) δ 0.81 (3H, d,
J � 6.9 Hz, H3-27), 0.83 (3H, d, J � 6.9 Hz, H3-26), 0.91 (3H, d, J �
6.7 Hz, H3-28), 1.03 (3H, d, J � 6.6 Hz, H3-21), 1.06 (3H, s, H3-
18), 1.42 (1H, m, H-17), 1.48 (1H, m, H-25), 1.51 (1H, m, H-16’’),
1.78 (1H, m, H-16’), 1.79 (1H, m, H-12’’), 1.88 (1H, m, H-24),
2.15 (1H, m, H-12’), 2.18 (1H, m, H-20), 2.22 (1H, m, H-11’’),
2.34 (1H, m, H-15’’), 2.46 (1H, m, H-15’), 2.56 (1H, m, H-11’),
2.98 (1H, d, J � 16.5 Hz, H-7’’), 3.02 (1H, d, J � 16.5 Hz, H-7’),
5.25 (1H, dd, J � 15.2, 7.9 Hz, H-22), 5.29 (1H, dd, J � 15.2, 7.0 Hz,
H-23); 13C-NMR (DMSO-d6, 151 MHz) δ 16.3 (C-18), 17.3
(C-28), 19.4 (C-27), 19.7 (C-26), 20.9 (C-21), 27.2 (C-16), 27.3
(C-15), 30.9 (C-7), 32.4 (C-25), 32.7 (C-11), 35.8 (C-12), 38.1
(C-20), 42.0 (C-24), 44.6 (C-13), 55.4 (C-17), 125.0 (C-8), 132.0
(C-23), 134.7 (C-22), 171.7 (C-6), 175.2 (C-14), 196.3 (C-9). HRMS
m/z 333.2426 [M + H]+ (calculated for C21H33O3, 333.2429).

3-O-β-D-glucopyranoside-Stigmast-8-en-3-ol (19): pale
yellow amorphous solid (0.1 mg); [α]20D +6.2 (c 0.08, MeOH);
UV λmax 234, 207;

1H-NMR (DMSO-d6, 600 MHz) δ 0.65 (3H, s,
H3-18), 0.79 (3H, d, J � 6.9 Hz, H3-27), 0.82 (3H, d, J � 6.9 Hz,
H3-26), 0.82 (3H, t, J � 7.3 Hz, H3-29), 0.88 (1H, m, H-5), 0.90
(3H, d, J � 6.5 Hz, H3-21), 0.91 (1H, m, H-24), 0.96 (3H, s, H3-19),
0.97 (2H, m, H-1b, H-14), 1.01 (1H, m, H-22b), 1.09 (1H, m, H-
17), 1.20 (1H, m, H-28b), 1.25 (1H, m, H-28a), 1.30 (1H, m, H-
22a), 1.33 (1H, m, H-20), 1.47 (1H, m, H-2b), 1.63 (1H, m, H-25),
1.79 (1H, m, H-1a), 1.80 (3H, s), 2.12 (1H, t, J � 12.5 Hz, 4’’), 1.81
(1H, m, H-2a), 2.12 (1H, m, H-4b), 2.37 (1H, m, H-4a), 2.89 (1H,
td, J � 8.4, 4.8 Hz, H-2’), 3.01 (1H, td, J � 9.2, 5.0 Hz, H-4’), 3.06
(1H, m, H-5’), 3.12 (1H, td, J � 8.9, 4.8 Hz, H-3’), 3.40 (1H, m, H-
6’b), 3.46 (1H, tt, J � 11.2, 4.3 Hz, H-3), 3.64 (1H, dd, J � 11.1,
6.2 Hz, H-6’a), 4.22 (1H, d, J � 7.8 Hz, H-1’), 4.42 (1H, t, J �
5.8 Hz, OH-6’), 4.85 (1H, d, J � 5.0 Hz, OH-4’), 4.86 (1H, d, J �
4.8 Hz, OH-2’), 4.88 (1H, d, J � 4.8 Hz, OH-3’); 13C-NMR
(DMSO-d6, 151 MHz) δ 11.6 (C-18), 11.8 (C-29), 18.6 (C-21),
19.0 (C-27), 19.1 (C-19), 19.6 (C-26), 22.5 (C-28), 28.7 (C-25),
29.3 (C-2), 33.3 (C-22), 35.4 (C-20), 36.3 (C-10), 36.7 (C-1), 38.3
(C-4), 39.1 (C-12), 41.8 (C-13), 45.1 (C-24), 49.6 (C-5), 55.4

(C-17), 56.1 (C-14), 61.0 (C-6’), 70.1 (C-4’), 73.4 (C-2’), 76.7 (C-
5’), 76.8 (C-3, C-3’), 100.7 (C-1’), 140.4 (C-9). HRMS m/z
599.4280 [M + Na]+, calculated for C35H59O6Na, 599.4287.

Minimum Inhibitory Concentration Test
Methicillin-resistant Staphylococcus aureus (MRSA, ATCC 33591)
and Pseudomonas aeruginosa (ATCC 27853) strains were used for
the antibacterial assay. The minimum inhibitory concentration
(MIC) of the extract and the isolated compounds were determined
in triplicate according to Wiegand et al. (2008) in Mueller–Hinton
medium (MH). After the incubation of the inoculated 96-well
plates at 37°C for 24 h, iodonitrotetrazolium chloride (INT, Sigma-
Aldrich) was added to each well at a final concentration of 0.2 mg/
ml and incubated for 20 min (Eloff, 1998). The highest dilution of a
compound in which no growth appears corresponds to its MIC.
Gentamicin for P. aeruginosa and chloramphenicol for S. aureus
were used as controls.

Anti-Quorum Sensing Assay for
Pseudomonas aeruginosa
The assay was performed according to the protocol proposed by
Hentzer et al. (2002) on a black 96-well plate with a clear bottom.
The reporter strain PPAO1 pqsA-gfp was constructed using the
following primers, GCTCTAGATCGAGCAAGGGTTGTAACG
GTTTTTG and GCTGCTGCATGCGACAGAACGTTCCCT
CTTCAGCGA, to amplify the pqsA gene promoter and cloned
using usual molecular methods into XbaI-SphI sites of the lasB-
gfp plasmid (Hentzer et al., 2002), in place of the lasB promoter.
Reporter strains containing the lasB-gfp or the pqsA-gfp plasmid
were grown at a starting OD600 of 0.05 in PTSB (5% peptone,
0.25% trypticase soy broth) supplied with gentamicin 50 μg/ml
and each sample at 128 μg/ml. Azithromycin (2 μg/ml) was used
as the positive control. Plates were incubated at 37°C and
160 rpm. After 15 h, OD600 and fluorescence at 480/520 nm
were measured using a microplate reader (SynergyHT BioTek).
Results are represented in percentage of fluorescence compared to
the solvent control (DMSO) fixed at 100%.

Anti-Quorum Sensing Assay for
Staphylococcus aureus
The assay was performed according to the protocol proposed by
Nielsen et al. (2010). In a 96-well plate, the reporter strain rnaIII-
lacZ (Nielsen et al., 2010) was grown at a starting OD600 of 0.05 in
MH, supplied with erythromycin 5 μg/ml and each sample at
128 μg/ml. Staphylococcus caprae auto-inducing peptide (AIP)
(Paharik et al., 2017) at a concentration of 1 µM was used as
the positive control. After 6 h at 37°C and 160 rpm, incubation was
stopped and theOD600 value was read. Then, 10 µl of freshlymade
4-methylumbelliferyl-β-D-galactopyranoside (MUG) (10 mg/ml)
was added to each well and left to incubate for 1 h at room
temperature. The reaction was stopped by the addition of 100 µl
of Na2CO3 (0.4M), and fluorescence was read using a microplate
reader (SynergyHTBioTek) at 360/460 nm. Results are represented
in percentage of fluorescence compared to the solvent control
(DMSO) fixed at 100%.
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Quantitative qRT-PCR
Cultures were grown in triplicate for 4 h in the presence of the
compound of interest at 128 μg/ml. Then, 1 ml of bacteria was
treated with RNA protect Bacteria Reagent (Qiagen) before
centrifugation and storage at −20°C. Pellets were resuspended
in 100 μl TE (pH 8) and 2.5 µl of lysostaphin (10 mg/ml) for S.
aureus PR01 and incubated for 10 min at 37°C, or 100 μl TE (pH
8) and lysozyme (1 mg/ml) and incubated for 5 min at RT for P.
aeruginosa PAO1. RNA was extracted using an RNeasy kit
(Qiagen) according to the manufacturer’s protocol. RNA was
eluted in 40 µl of RNAse-free water, quantified using a Qubit 2.0
fluorometer (Invitrogen), and DNase treated with RQ1 RNase-
free DNase (Promega) according to the manufacturer’s
instructions. Then, 500 ng of RNA were reverse-transcribed
into cDNA using random primers (Promega) and Improm-II
reverse transcriptase (Promega) according to the manufacturer.
qPCR was performed using SYBR select master mix (Thermo
Fisher). Primers for the amplification of target genes are listed in
Supplementary Table S4. HU and oprF genes were used for
normalization for S. aureus and P. aeruginosa, respectively.
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