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Abstract: Species of the fungal genus Metarhizium are globally distributed pathogens of arthropods,
and a number of biological control products based on these fungi have been commercialized to
control a variety of pest arthropods. In this study, we investigate the abundance and population
structure of Metarhizium spp. in three land-use types—arable land, grassland, and forest—to provide
detailed information on habitat selection and the factors that drive the occurrence and abundance of
Metarhizium spp. in soil. At 10 sites of each land-use type, which are all part of the Swiss national
soil-monitoring network (NABO), Metarhizium spp. were present at 8, 10, and 4 sites, respectively.
On average, Metarhizium spp. were most abundant in grassland, followed by forest and then
arable land; 349 Metarhizium isolates were collected from the 30 sites, and sequence analyses of the
nuclear translation elongation factor 1α gene, as well as microsatellite-based genotyping, revealed
the presence of 13 Metarhizium brunneum, 6 Metarhizium robertsii, and 3 Metarhizium guizhouense
multilocus genotypes (MLGs). With 259 isolates, M. brunneum was the most abundant species, and
significant differences were detected in population structures between forested and unforested sites.
Among 15 environmental factors assessed, C:N ratio, basal respiration, total carbon, organic carbon,
and bulk density significantly explained the variation among the M. brunneum populations. The
information gained in this study will support the selection of best-adapted isolates as biological
control agents and will provide additional criteria for the adaptation or development of new pest
control strategies.

Keywords: M. brunneum; M. robertsii; M. guizhouense; microsatellite; SSR; EF-1alpha; abiotic factors;
arable land; grassland; forest; biological control

1. Introduction

The genus Metarhizium Sorokı̄n (Hypocreales: Clavicipitaceae) includes more than
30 described species (including both asexual and sexual states) that are pathogenic to
arthropods, particularly insects and some arachnids [1,2]. The wide host spectrum of
Metarhizium spp. includes many important crop pests such as Helicoverpa armigera (Hübner,
1805), Diabrotica virgifera virgifera (LeConte, 1868), Agriotes spp. (Eschscholtz, 1829), and
also termites, cockroaches, and even disease-transmitting insects such as tse-tse flies [2–7].
Based on the pathogenicity of this fungus, a number of biological control agents have been
developed as commercial mycoinsecticides and mycoacaricides to control pest arthropods
worldwide (see [8] and https://www.eppo.int; https://www.epa.gov).

Soil is considered the main habitat and reservoir of Metarhizium spp., and they have
been isolated from very different ecosystems, from tropical to temperate, semiarid, and
artic areas [5,9]. Besides being entomopathogenic, Metarhizium spp. exhibit a pronounced
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saprophytic lifestyle, and, for some isolates and/or species, symbiotic interactions with
plants as rhizosphere colonizers and/or endophytes have been reported [9,10]. Studies
have demonstrated, for instance, that isolates of M. robertsii J.F. Bisch., S.A. Rehner &
Humber, M. brunneum Petch, and M. guizhouense Q.T. Chen & H.L. Guo can provide insect-
derived nitrogen to plants [11,12], increase plant growth and productivity [13,14], as well
as protect plants from environmental stresses, for example, in saline environments [15,16].
The versatile roles Metarhizium spp. may have emphasize the beneficial potential and value
of its presence, particularly in agricultural habitats [17].

Arable land, grassland, and forests represent major anthropogenic land-use types
(LUTs) and cover about 40% of the global land area [18]. A number of studies have re-
ported possible effects of LUTs on the presence and abundance of Metarhizium spp. Factores
responsible includ crop types, farming practices management intensity, tillage, and the
application of pesticides or fertilizers [19–22]. For instance, it has been consistently reported
that Metarhizium spp. occur at higher abundances in unforested, sun-exposed LUTs or open
land areas such as arable- and grasslands compared to forests, where their abundances are
lower or sometimes not even detected [17,19,23–26]. The abundance of Metarhizium spp.
has been more prominent in unforested semi-natural habitats such as permanent grassland
and field margins compared to arable land in Switzerland [27,28]. Furthermore, there is
evidence from field studies in Norway indicating a higher abundance of entomopathogenic
fungi such as M. anisopliae, Beauveria bassiana (Bals.-Criv.) Vuill., or Tolypocladium cylindrospo-
rum W. Gams in soils of organically managed fields compared to conventionally managed
fields [29]. Several studies have suggested that the application of organic fertilizers may be
the main driving factor for the increased abundance of Metarhizium spp. [22,30].

While the overall abundance of Metarhizium spp. in different LUTs has been explored
in various studies, information on the species composition of Metarhizium communities
and within-species diversity in different LUTs is limited. In addition, many of these studies
have been performed prior to the establishment of the current Metarhizium species concept,
which has precluded a comparison of data from these different periods. Nevertheless,
the results reported by Cabrera-Mora et al. [31] have indicated that cropping systems can
affect species abundances, as M. brunneum was isolated predominantly from soil where
beans were grown and M. robertsii from soils where maize was grown. Similarly, Wyre-
bek et al. [32] reported that M. robertsii, M. brunneum, and M. guizhouense were closely
associated with soils from grassland, shrubs, or trees, respectively. In a study performed
in Ontario, Canada, two genetically distinct groups were found to be associated with
agricultural unforested field habitats and forested soils, respectively [23,33,34]. Isolates of
the two genetic groups were subsequently described as M. brunneum and M. robertsii [35].
Studies assessing within-species diversity have mostly focused on individual fields or
agricultural systems only, e.g., an agricultural field in Denmark [36] and a strawberry field
in Brazil [37]. A comparison of the within-species diversity of M. brunneum and M. robertii
between agricultural and adjacent natural habitats has been performed in different ecologi-
cal regions in northwestern North America [38]. While considerable genotype diversity
has been reported for both species in both habitats, no significant differences have been
detected between them. Information on the number of species, their population structures,
and distributions in different LUTs remains limited. This information, however, is impor-
tant to understand the interaction of ecological conditions and Metarhizium population
structures. In turn, it may allow the improvement of existing habitats or the development
of new habitats and/or LUT-adapted biological control approaches, including conservation
biological control [17].

Conditions in a particular soil or at a particular site are affected, on the one hand,
by anthropogenic activities and, on the other hand, by different environmental factors,
i.e., abiotic (physical and chemical), biotic (derived from organisms), as well as climatic
(humidity, temperature, and solar radiation) factors. All these factors may have direct
effects on the occurrence, abundance, propagation, persistence, and even virulence of
Metarhizium populations [24,39–42]. Soil physical, chemical, and biological factors, such
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as soil texture, pH, and organic matter content, belong to the most intensively studied
factors in this context. However, various reports have not been able to provide consistent
information, and, in many cases, they have been contradictory. For example, organic
matter, which represents an important source of organic carbon in soil, has been reported to
negatively correlate with the abundance of Metarhizium in agricultural land in Pennsylvania,
USA [20], whereas other studies have reported positive correlations to agricultural land,
grassland, and forests in Spain [24]. Similarly, the C:N ratio, a soil factor directly related to
the quality of organic matter, has been reported to positively correlate with the abundance
of entomopathogenic fungi in soil [43]. In that study, the C:N ratio was proposed as a
predictor of Metarhizium spp. abundance in vineyard soils; however, whether this concept
may generally be applicable to vineyards or even other habitats or LUTs such as grassland
and arable land or even forests is currently not clear. The effect of soil pH on microbial
populations is well documented; however, data on the specific effects of pH on Metarhizium
abundance are currently not conclusive. While some studies suggest that Metarhizium
prefer more alkaline environments, others have reported that Metarhizium are more adapted
to acidic conditions or are not even responsive to pH [24,44].

In the present study, we determine Metarhizium spp. abundance and population
structure at 30 different monitoring sites of the Swiss soil-monitoring network (NABO)
that equally represent arable land, grassland, and forest. The overall goal was to obtain
profound information on habitat selectivity and the factors that may drive population
structures and the abundance of this important entomopathogenic fungal genus. Our
specific goals were to: (1) determine Metarhizium spp. abundance as well as species
diversity and population structures at the 30 sites across Switzerland, (2) investigate
the differences among and within LUTs in detected Metarhizium populations, and (3)
assess the extent to which soil physical, chemical, and biological factors may explain the
differences observed.

2. Materials and Methods
2.1. Sampling Sites, Sampling Procedure

The Swiss soil-monitoring network (NABO, www.nabo.ch), established in 1984, mon-
itors 103 sites for physical, chemical, and biological parameters (biomass, soil respira-
tion) [45]. The sites represent three different LUTs, i.e., arable land, permanent grassland,
and forest, which dominate and characterize the landscape in the midlands and pre-alpine
areas in Switzerland. In 2012, the NABO was complemented with the NABObio initiative
to monitor soil microbial biodiversity at 30 NABO sites (10 sites of each of the three LUTs)
(Figure S1) [46].

Sampling was carried out in spring after snowmelt and before the first fertilization,
starting in Ticino (south of Switzerland) at the beginning of February 2016 and finishing in
Grindelwald (alpine area) at the end of June 2016. This sampling scheme was implemented
to harmonize time points in relation to the vegetation status of individual sites, i.e., the
beginning of vegetation growth. Three composite samples were collected at each of the
30 sites. Composite samples consisted of 25 bulked soil cores (2.5 cm diameter × 20 cm
depth) that were taken evenly distributed in a georeferenced 10 × 10 m plot, according to
the standardized sampling protocol of NABO sampling [47]. In total, 90 composite samples
were collected (Table S1) and transported to the laboratory immediately after sampling and
kept at 4 ◦C until use. Thirteen soil factors (physical, chemical, and biological), for example,
C:N ratio (organic carbon/total nitrogen), bulk density, and basal respiration, among others,
were measured from each sample, as described previously by Gubler et al. [45]. In addition,
mean annual temperature (MAT) and mean annual precipitation (MAP) were determined
based on yearly data from 1981 to 2015 from MeteoSwiss (http://www.meteoswiss.admin.
ch). In total, 15 environmental factors were evaluated in this study (Table S2).

www.nabo.ch
http://www.meteoswiss.admin.ch
http://www.meteoswiss.admin.ch


Microorganisms 2021, 9, 1380 4 of 19

2.2. Fungal Isolation and DNA Extraction

Metarhizium abundance was determined, and single colonies were isolated from each
of the three mixed soil samples of the 30 sites. The samples were sieved with a 2 mm
mesh, and soil water content was determined. Then, 5 g of each homogenized sample was
suspended in 25 mL of sterile distilled water + 0.1% Tween 80 in a 100 mL Erlenmeyer
flask. Flasks were stirred in a rotatory shaker at 120 rpm at room temperature for 3 h.
After 20 s of sedimentation, 100 µL aliquots of the suspension were spread on 90 mm
Petri dishes containing a semi-selective medium (SM) with dodine (Discovery, Leu Gygax
AG, Switzerland) as the selective compound [48]. Two replicates were plated per soil
sample. Cultures were grown for 15 d at 24 ± 1 ◦C in the dark and inspected every
2 days. The fungal isolates were classified to the genus level using taxonomic keys [49].
Metarhizium colony forming units (CFU) per g (dry weight) of soil were determined for
each plate and means calculated per site. Three sporulating colonies were randomly taken
per plate. Conidia of each colony were plated with a dilution smear in a new SM plate, and
a monosporic colony was isolated. In total, a maximum of 18 isolates was collected per site.
All the fungal isolates obtained were deposited in the culture collection of the Molecular
Ecology Group, Agroscope, Zürich, Switzerland.

Monosporic cultures were plated onto sterile filter paper placed on potato dextrose
agar (PDA) plates to produce mycelium for DNA extraction. After 4 days of incubation
at 24 ± 1 ◦C, mycelium was scraped off the filter paper with a sterile scalpel, placed in
an Eppendorf tube, and lyophilized for six hours at −4 ◦C using a CentriVap benchtop
centrifugal vacuum concentrator (LabConco, Kansas City, MO, USA). Genomic DNA of
each isolate was extracted using the NucleopSpin Plant II kit (Machery & Nagel, Düren,
Germany). DNA concentration was determined using a Cary Elipse fluorescence spec-
trophotometer (Varian, Palo Alto, CA, USA) with a Picogreen® fluorescent nucleic acid
stain (Invitrogen, Carlsbad, CA, USA). The DNA extracts were standardized to 5 ng µL−1.

2.3. Sequence Analysis

Metarhizium isolates were taxonomically identified to the species level by sequencing
the 5′ end of the nuclear translation elongation factor-1α (5′-TEF-1α) and subsequent
alignment with reference sequences. The 5′-TEF region was amplified using primers EF1T
5′-ATGGGTAAGGARGACAAGAC-3′ [50] and EFjmetaR 5′-TGCTCACGRGTCTGGCCAT
CCTT-3′ [51]. PCRs were performed in 20 µl reaction volumes consisting of 15 ng genomic
DNA and 1x Phusion HF buffer containing 7.5 mM MgCl2, 0.2 mM dNTPs, 0.2 µM of each
primer, 3% dimethyl sulfoxide (DMSO), and 0.2 U of Phusion Hot Start II High-Fidelity
DNA polymerase (Thermo Fisher Scientific, Waltham, MA, USA). PCR conditions were:
30 s denaturation at 98 ◦C, followed by 38 cycles of 5 s denaturation at 98 ◦C, 20 s annealing
at 58 ◦C, and a 1 min extension at 72 ◦C. Reactions were completed with a 10 min elongation
at 72 ◦C.

PCR products were cleaned up using the NucleoSpin® Gel and PCR Clean-up kit
(Machery & Nagel, Düren, Germany), following the manufacturer’s protocol. Sequencing
reactions were performed with primers EF1T and EFjmetaR using the BigDye™ Terminator
v3.1 Cycle Sequencing kit (Applied Biosystems, Foster City, CA, USA) and sequences deter-
mined using an ABI PRISM 3130xl genetic analyzer, as described above. Sequences were
assembled and corrected using the software DNABaser V.4 (Heracle Biosoft, Pites, ti, Roma-
nia). The obtained sequences were aligned with reference sequences of Metarhizium spp.
type isolates for species allocation, as described in Mayerhofer et al. [51]. The sequences
of one isolate per multilocus genotype (MLG) are deposited at GeneBank (accession num-
bers MZ297396 to MZ297417, Appendix A). Reference sequences were downloaded from
GenBank, and alignments were performed using the Clustal-W subsequence realignment
tool implemented in MEGA X [52]. The maximum likelihood method based on the Kimura
2-parameter model implemented in MEGA X was used to calculate (1000 iterations) and
construct a phylogenetic tree [53].
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2.4. Multilocus Microsatellite Genotyping

Fourteen microsatellite markers were used in five primer pair sets, as described
by Mayerhofer et al. [54], to assess the genotype of the collected Metarhizium isolates.
Multiplex PCRs were performed in 20 µL reaction volumes containing 5 ng of genomic
DNA, 1× GoTaq colorless Flexi Buffer, 0.2 mM of each primer (forward primer labeled
with FAM, HEX, or NED), 0.2 mM of dNTPs, 3 or 4 mM of MgCl2 (depending on the
multiplex set, [54]) and 0.25 U of GoTaq G2 Flexi DNA Polymerase (Promega, Madison, WI,
USA). Cycling conditions included an initial denaturing step of 2 min at 94 ◦C, followed
by 12 touchdown cycles of 30 s denaturation at 94 ◦C, 30 s annealing at Ta + 12 ◦C,
(with a 1 ◦C decrease per cycle), and 40 s of extension at 72 ◦C. This was followed by
another 22 or 30 cycles [54] of 30 s denaturation at 94 ◦C, 30 s at Ta [54], and a 40 s
extension at 72 ◦C. Reactions were completed with a 15 min elongation at 72 ◦C. PCR
product sizes (microsatellite allele size) were determined on an ABI 3500 Series genetic
analyzer (24 capillaries) using POP-7 polymer (Applied Biosystems, Foster City, CA, USA).
GenScan ROX400 (Applied Biosystems) was used as an internal size standard. Data were
analyzed using GenMarker V2.4.0 (SoftGenetics, State College, PA, USA) and allele sizes
corrected according to fragment sizes of reference strains M. brunneum ARSEF7524 and M.
robertsii ARSEF7532.

2.5. Data Analysis

Analysis of variance (ANOVA) was used to assess the effect of LUT, site, and soil
environmental factors on the abundance of Metarhizium (CFU g−1 of soil dry weight),
followed by the Tukey-HSD test to assess pairwise differences. Sites with zero Metarhizium
spp. abundance were not included in the calculations of differences among LUTs to provide
a clear representation of mean fungal abundance where Metarhizium was detected.

Microsatellite marker data analyses were performed with the R package Poppr [55].
Data were clone-corrected, and the number of MLGs calculated. The Shannon-Wiener
index (H), [56] and the evenness index (E.5) [57–59] were calculated for each Metarhizium
species and LUT based on the occurrence of each MLG.

Differences in the population structure of Metarhizium MLGs among LUTs and species
were assessed with overall and pairwise PERMANOVA based on Bray–Curtis (BC) dis-
similarity matrices [60] using the function “adonis” within the vegan R package, “pair-
wise.perm.manova” within the RVAideMemoire R package [61,62], and the Benjamini–
Hochberg p-value correction in R [63]. Effects of soil factors on Metarhizium populations
were assessed with overall PERMANOVA tests for each factor individually using the
“adonis” function. Principal coordinate analyses (PCoA) were performed based on BC
dissimilarity matrices using the “cmdscale” function included in the R core package [63,64].
The “envfit” function from the vegan R package was used to plot the correlations between
Metarhizium species population structures and the significant soil factors determined in a
PCoA ordination.

3. Results
3.1. Abundance of Metarhizium in Soil

Using a semi-selective medium, the genus Metarhizium was detected at eight of ten
arable land sites, at all ten permanent grassland sites, and at four of ten forest sites (Figure 1
and Table S3). LUT significantly (F2,19 = 4.30; p-value = 0.0287) affected the abundance
of Metarhizium, determined as CFU g−1 soil dry weight. Pairwise tests (Tukey-HSD
test, p-value < 0.05) revealed significant differences between the site means of grassland
(3501.2 ± 2254.2 CFU g−1 soil dry weight) and arable land (1199.0 ± 1278.5 CFU g−1 soil
dry weight) but not between the means of grassland and forest (1620.8± 938.2 CFU g−1 soil
dry weight) or arable land and forest. Significant differences (F29,58 = 11.63; p-value < 0.0001)
in Metarhizium abundances were also detected among sites (Figure 1 and Table S3), where
abundance ranged from 0 to 6362.5 ± 1467.2 CFU g−1 soil dry weight (mean ± SD).
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Figure 1. Metarhizium spp. abundance represented as dot plots of colony-forming units (CFU g−1 of soil dry weight) for
different sites (30 NABObio sites). Dots represent values of CFU g−1 of soil dry weight in each sample per site, and the
intersection represents the mean of CFU g−1 of soil dry weight per site. * Dashed line (4000 CFU g−1 of soil dry weight)
separates the high abundance group from the medium abundance group; ** Dashed line (150 CFU g−1 of soil dry weight)
separates the medium abundance group from the low abundance group) (Table S3). Site numbers where Metarhizium was
not detected are underlined.

Metarhizium abundances at the 30 sites were grouped into three distinct groups, i.e.,
sites with low abundance (mean abundance < 150 CFU g−1 soil dry weight), medium
abundance (mean abundance ranging between 150 and 4000 CFU g−1 soil dry weight), and
high abundance (sites with a mean abundance > 4000 CFU g−1 soil dry weight) (Figure
1 and Table S3). Medium Metarhizium abundance was detected at sites of all three LUTs
(14 sites), whereas high abundance was only detected in grassland (5 sites). The low
abundance group included sites where Metarhizium was detected with a low abundance (3
sites in arable land) as well as sites where Metarhizium was not detected (2 sites in arable
land, and 6 sites in forest). Arable land was the only LUT that included sites with low
abundance as well as sites where the fungus was not detected (5 sites). However, due to
missing statistical power, no discrimination of these sites was possible, and they were all
combined in the group of low abundance.

3.2. Effect of Environmental Factors on Metarhizium Abundance Groups

In total, 15 environmental factors were measured at the 30 sites and assessed for
differences among the sites categorized according to the three Metarhizium abundance
groups (Table 1 and Tables S4–S7). Two factors, the C:N ratio and mean annual precipitation
(MAP), differed significantly among the Metarhizium abundance groups independent of
the three LUTs between high and low as well as medium and low abundance groups but
not between high and medium abundance groups (Table 1 and Table S4). Within each LUT,
different factors were significant between the low, medium, and high abundance groups.
In arable land, the six soil factors—altitude, clay, sand, soil skeleton, total carbon, and
DNA (proxy for biomass)—differed significantly between the low and medium abundance
groups (Table 1 and Table S5). In grassland, only silt significantly differed between high
and medium abundance, whereas in forest, altitude, clay, sand, and C:N ratio significantly
differed between medium and low Metarhizium abundance (Table 1, Tables S6 and S7).
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Table 1. Summary of soil and environmental factors that differ significantly among Metarhizium spp. abundance groups (high, medium, and low) and between and within land-use types
(LUTs).

LUT Factor (1) High Medium Low ANOVA

Mean SD Minimum Maximum Mean SD Minimum Maximum Mean SD Minimum Maximum F-Value p-Value Pattern (2)

All LUT
C:N ratio 9.6 0.9 8.9 10.0 11.1 3.1 8.0 17.7 14.2 5.5 8.6 27.0 8.72 0.0004 H = M 6= L

MAP [mm] 1496.2 321.0 1090.0 1910.0 1342.4 363.2 962.0 2140.0 1116.7 368.5 528.0 1838.0 6.77 0.0019 H = M 6= L

Arable
land

Altitude [masl] - (3) - - - 549.4 167.9 336.0 830.0 449.6 55.6 379.0 545.0 4.78 0.0374 M 6= L
Clay [% sdw] - - - - 17.6 4.6 11.5 23.8 32.5 19.1 5.8 59.0 8.69 0.0064 M 6= L
Sand [% sdw] - - - - 42.2 9.8 31.0 54.0 22.4 11.4 11.0 36.1 26.15 <0.0001 M 6= L

Soil skeleton [%
sv] - - - - 4.0 0.8 3.1 4.9 0.7 0.8 0.0 2.0 135.85 <0.0001 M 6= L

Total Carbon [%
sdw] - - - - 2.0 0.7 1.1 3.2 2.8 0.9 1.8 4.3 8.55 0.0068 M 6= L

DNA [µg/mg
sdw] - - - - 25.5 9.1 14.0 45.0 17.9 3.8 13.0 26.0 8.85 0.006 M 6= L

Grassland Silt [% sdw] 42.3 8.4 34.3 55.0 35.6 7.9 27.0 49.9 - - - 5.10 0.0319 H 6= M

Forest

Altitude [masl] - - - - 745.3 269.9 525.00 1180.0 1115.8 408.7 505.0 1655.0 7.60 0.0101 M 6= L
Clay [% sdw] - - - - 31.1 9.1 18.8 42.0 17.8 8.3 7.0 30.5 17.30 0.0003 M 6= L
Sand [% sdw] - - - - 31.1 8.7 18.0 39.0 47.2 21.0 17.5 71.0 6.35 0.0177 M 6= L

C:N ratio - - - - 15.5 2.2 12.0 17.7 18.2 4.3 13.7 27.0 4.25 0.0488 M 6= L
(1) Environmental factors that revealed significant differences are shown. For the complete analysis of the 15 environmental factors evaluated, see Tables S4–S7. MAP: mean annual precipitation (1981 to 2015);
masl: meters above sea level; sdw: soil dry weight; sv: soil volume. (2) Significant differences in pairwise tests between the proportion of colony-forming units (CFU) (p < 0.05, Tukey-HSD test). (3) Metarhizium
was not detected at this abundance level.
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3.3. Metarhizium Species Occurrence and Genetic Diversity

In total, 349 isolates were collected from the 22 sites at which Metarhizium was detected
and, based on sequence analyses of the 5′ end of nuclear translation elongation factor-1α
(5′-TEF-1α), assigned to three Metarhizium species: M. brunneum (259 isolates), M. robertsii
(80 isolates), and M. guizhouense (10 isolates) (Table 2 and Table S1). M. brunneum was
present in all three LUTs (7 arable land sites, 10 grassland sites, 4 forest sites), whereas M.
robertsii and M. guizhouense were present in arable land (M. robertsii 6 sites, M. guizhouense
1 site) and grassland only (M. robertsii 4 sites, M. guizhouense 2 sites; Table 2 and Figure 2).
The proportion of M. brunneum and M. robertsii isolates was similar in the low (61% and
39%) and medium (56% and 40%) abundance groups in arable land and the high (57%
and 36%) abundance group in grassland (Figure 2). In contrast, in the medium abundance
group in grassland, the portion of M. brunneum isolates was higher, i.e., M. brunneum 94%
and M. robertsii 5% (Figure 2). M. guizhouense was detected in the medium abundance
group in arable land (4%) and grassland (1%) and the high abundance group in grassland
(7%) (Figure 2).

Table 2. Numbers of isolates, multilocus genotypes, and genotype diversity among the three Metarhizium species—M.
brunneum, M. robertsii, and M. guizhouense—for three different LUTs: arable land, grassland, and forest.

Metarhizium spp. M. brunneum M. robertsii M. guizhouense

Land-Use Type N MLG N MLG H E.5 N MLG H E.5 N MLG H E.5

Arable land 115 10 66 4 0.99 0.75 46 5 1.09 0.60 3 1 - -
Grassland 171 12 130 7 1.33 0.75 34 3 0.70 0.74 7 2 - -

Forest 63 4 63 4 0.96 0.80 - - - - - -
Total 349 22 259 13 1.84 0.72 80 6 1.17 0.74 10 3 - -

N: total number of isolates; MLG: number of unique multilocus genotypes; H: Shannon–Wiener index; E.5: evenness.
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Figure 2. Number of isolates recovered for the three species identified (M. brunneum, M. robertsii, and
M. guizhouense) in each of the three land-use types—arable land (AL), grassland (G), and forest (F)—
separated according to the three abundance groups, low (L), medium (M), and high (H) (see Figure 1).

Genotyping of the isolates based on microsatellite analyses revealed 22 different MLGs
among the 349 isolates: 13 MLGs for M. brunneum, 6 MLGs for M. robertsii, and 3 MLGs
for M. guizhouense, revealing that these microsatellite-based MLGs were species-specific
(Figure 3 and Table 2). Overall, the number of detected MLGs was similar in arable land
and grassland, while it was 2.5 to 3 times lower in forest. For M. brunneum, the number of
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MLGs was higher in grassland compared to arable land and forest, whereas for M robertsii,
the number of MLGs was higher in arable land. Shannon–Wiener genetic diversity (H)
for M. brunneum was highest in permanent grassland, followed by arable land and forest,
while for M. robertsii, diversity was higher in arable land and lower in grassland (Table 2).
In contrast, the evenness (E.5) of M. brunneum was higher in forest compared to grassland
and arable land, and the evenness of M. robertsii was higher in grassland compared to
arable land (Table 2). Due to the low number of M. guizhouense isolates identified, diversity
indices for this species were not calculated.
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Figure 3. Maximum likelihood phylogenetic tree based on the alignment of 5′-TEF-1α sequences representing each of the 22
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the fraction of clones isolated at sites where the MLG was detected.
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In total, 18 of the 22 MLGs were specific to one of the three LUTs. Six MLGs were
specific to arable land (two M. brunneum, three M. robertsii, one M. guizhouense), eight to
permanent grassland (five M. brunneum, one M. robertsii, two M. guizhouense), and four to
forest, which clustered separately within M. brunneum in the 5′-TEF-1α-based phylogenetic
tree (Figure 3). None of the MLGs were detected in all three LUTs, while the four most
abundant MLGs, i.e., two M. brunneum (15 and 19) and two M. robertsii MLGs (2 and 13),
were present in arable land and grassland and represented 63.61% of all Metarhizium isolates
collected (Figure 3). The four forest-specific MLGs represented 18.05% of all Metarhizium
spp. isolates investigated. The abundance of individual MLGs did not correlate with
affiliation to particular Metarhizium abundance groups, e.g., M. brunneum MLG15 and M.
robertsii MLG 13 were present in the low, medium, and high abundance groups in different
sites (data not shown). Eleven MLGs (five M. brunneum, three M. robertsii, and three M.
guizhouense) were isolated from single sites only (Figure 3). In contrast, MLG 15 comprised
isolates from 15 different sites. Two MLGs (MLG 4 and 5) of the four forest-specific MLGs
included isolates from all the four sites and two included isolates from two sites (MLG 6)
and one (MLG 10) site where M. brunneum was detected (Figure 3).

3.4. Land-Use Type Effect on Metarhizium Populations

Overall, PERMANOVAs indicated that the three LUTs significantly explained the vari-
ation in M. brunneum population structures (R2 = 0.37; pseudo-F = 5.36; p-value = 0.0001)
(Table 3). PCoA explained 47.00% of the observed variation among M. brunneum popula-
tions, i.e., 24.40% of the variation in the first axis, separating forest populations from arable
land and grassland populations and 22.60% of the variation in the second axis, differentiat-
ing between arable land and grassland populations (Figure 4A). Pairwise PERMANOVA
tests among the three LUTs revealed significant differences between M. brunneum pop-
ulations from forest and arable land (p-value = 0.003), between forest and grassland
(p-value = 0.003), but not between grassland and arable land (p-value = 0.05). Overall,
PERMANOVA indicated that the LUT (arable land, grassland) did not significantly explain
the variation among M. robertsii population structures (p-value = 0.466) (Table 3). PCoA
explained 70.40% of the observed variation among M. robertsii arable land and grassland
populations, i.e., 52.00% of the variation in the first axis and 28.40% of the variation in the
second axis (Figure 4B). Variations among M. guizhouense populations were not evaluated
further due to the low number of isolates (10) and genotypes (3 MLGs) detected.

Table 3. Overall permutational multivariate analysis of variance (PERMANOVA) for individual soil and environmental
factors, which significantly affect M. brunneum and M. robertsii population structures among and within each land-use type.
Analyses were based on Bray–Curtis distances.

M. brunneum M. robertsii

Among
3 LUTs

Grassland–
Arable
Land

Arable
Land Grassland Forest Between 2

LUTs
Arable
Land Grassland

Variable p-Value
(R2)

p-Value
(R2)

p-Value
(R2)

p-Value
(R2)

p-Value
(R2)

p-Value
(R2)

p-Value
(R2)

p-Value
(R2)

Land-use type 0.0001 (37%) 0.0513 - - - 0.4665 - -

C:N ratio 0.0001 (25%) 0.1149 0.9821 0.0074 (26%) 0.2083 0.5366 0.4599 0.8333
Basal respiration 0.0071 (13%) 0.0928 0.3016 0.7186 0.1667 0.1327 0.4595 0.6668
Organic Carbon 0.0039 (12%) 0.0861 0.5563 0.6421 0.2083 0.2562 0.6476 0.8333

Total Carbon 0.0055 (11%) 0.1657 0.5891 0.6488 0.2083 0.1403 0.3230 0.8333
Bulk density 0.0055 (13%) 0.2375 0.5190 0.0893 0.2500 0.1333 0.6103 0.1667
Soil skeleton 0.5821 0.4503 0.8032 0.5633 0.8333 0.0098 (33%) 0.3008 0.3333

R2 values are shown in parentheses when significant (in bold). For the complete analysis, see Tables S8–S15.
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Figure 4. Principal coordinate analysis (PCoA) based on a Bray–Curtis dissimilarity matrix showing differences between
(A) M. brunneum and (B) M. robertsii populations at the sites of three land-use types: arable land, grassland, and forest.
Circles (arable land), squares (grassland), and triangles (forest) represent M. brunneum or M. robertsii populations at the
different sites (site numbers indicated). Convex hulls enclose samples of the same land-use type. The percentage of variation
explained by the plotted principal coordinates is indicated on the axes. Vectors represent the best fitted and explained
environmental factors, and vector lengths represent the strength of correlation. C:N ratio: ratio of organic carbon and total
nitrogen; Ctot: total carbon; Corg: organic carbon; BR: basal respiration; BD: bulk density; SS: soil skeleton.
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3.5. Effect of Environmental Factors on Metarhizium Populations

PERMANOVA revealed that 5 of the 15 environmental factors significantly explained
the variation of M. brunneum population structures among the three LUTs (Table 3 and
Figure 4A). Most variation was explained by the factor C:N ratio (25%), whereas basal
respiration, total carbon, organic carbon, and bulk density explained the variation in the
same range of 11% to 13%. Soil skeleton was the only factor that significantly explained
the variation among M. robertsii populations from arable land and grassland (Table 3 and
Figure 4B). Except for the factor C:N ratio, which significantly explained the variation of M.
brunneum populations among grassland sites, no other environmental factor significantly
explained the variation of M. brunneum or M. robertsii populations within arable land,
grassland, or forest.

4. Discussion

Identification of the factors that drive population structure and development of insect
pathogenic fungi such as Metarhizium spp. is a fundamental requirement to exploit their
potential in biological control. The results presented in this study emphasize the effect
and influence of particular LUTs on Metarhizium abundance and population structures and
indicate the complexity of the factors involved. Populations at the 30 sites investigated
were composed of the three species M. brunneum, M. robertsii, and M. guizhouense, of which
M. brunneum (with 74% of isolates recovered) was the most abundant and genotypically
diverse species and M. guizhouense (with 3%) the least abundant of all isolates collected.
Distinct differences in Metarhizium population structures were detected between forest
and the two unforested LUTs, arable land and grassland, revealed by the finding that M.
robertsii and M. guizhouense were not detected in forest and M. brunneum was represented by
four forest-specific genotypes. Although population structures did not differ between the
two unforested LUTs, Metarhizium spp. abundance was significantly higher in grassland
compared to arable land.

4.1. M. brunneum Populations in Forested vs. Unforested LUTs

The forest sites of the NABO network provided characteristic soil environmental con-
ditions, with reduced exposure to sunlight, low soil bulk density, and high basal respiration,
as well as high carbon content and C:N ratio (Table S16). These physical, chemical, and
biological factors were correlated with M. brunneum population variation among the 10
forest sites and 20 arable land or grassland sites, indicating their importance to the structure
of Metarhizium populations. The difference between M. brunneum populations in forested
and unforested sites was explained particularly by the soil factor C:N ratio, which was also
the only factor that significantly explained M. brunneum population variation within one
LUT, i.e., among grassland sites. The C:N ratio also differed significantly between low and
medium Metarhizium abundance groups among all LUTs and among forest sites (Table
1). Our results suggest that Metarhizium abundance and species and genotype diversity
tend to be higher when the C:N ratio is medium–low (Tables 1–3). In contrast to our
results, Uzman et al. [43] reported enhanced Metarhizium spp. abundance with increasing
C:N ratios in vineyard soils, and Clifton et al. [22] showed a negative correlation between
Metarhizium spp. abundance and N concentration, a factor indirectly related to C:N ratios
in soils of conventional and organically farmed fields. The latter authors hypothesized
that this effect may be due to a stimulation of certain microorganisms that exploit elevated
N concentrations and, subsequently, may outcompete Metarhizium spp. In vitro studies
have demonstrated that the proportion of C and N in culture media considerably affects
the production of biomass, conidia, and insecticidal molecules as well as the virulence of
Metarhizium spp. [65–67]. These laboratory experiments were performed with a variety of
C and N sources in artificial media, and, therefore, it remains unresolved as to what extent
these findings may apply to soil.
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4.2. Metarhizium Populations in Arable Land vs. Grassland

Although M. brunneum and M. robertsii population structures in arable land and
grassland were not significantly different, we detected significant differences between
the two LUTs in overall abundance as well as the abundance group associations of the
sites. Mean CFU g−1 values in the grassland sites were approximately twice as high as
the values in arable land. In addition, in grassland, Metarhizium was present with high
or medium abundance at all the sites, whereas in arable land, Metarhizium was present
with medium and low abundances and not even detected at two sites. Interestingly,
at the forest sites, the fungus was detected at only 4 out of 10 sites, all belonging to
the medium abundance group. The mean abundance was similar to the one detected
in arable land when considering only sites where the fungus was detected. MAP is a
factor that characterizes the different sites in terms of precipitation. It has been shown to
correlate with soil humidity [68], which is well recognized as a critical factor for fungal
abundance and the colonization of soil (e.g., [69]). The fact that the MAP values in our
study were significantly higher at sites with medium abundance compared to sites with low
Metarhizium abundance indicates that the MAP in our system also affected soil humidity,
which, in turn, induced Metarhizium growth. However, we did not find any within the
LUT correlation of MAP with Metarhizium abundance. Other factors that were significantly
correlated with Metarhizium abundance groups within different LUTs, e.g., altitude, clay,
or sand, did not reveal significant differences among LUTs, which may indicate that these
factors characterize geographical differences among the sites rather than LUTs.

Direct comparisons of different studies are generally difficult to perform due to differ-
ences in isolation techniques, sampling schemes, habitat definitions, geographic and/or
climatic zones. Additional local factors such as climat, vegetation, and geographic his-
tory may increase the complexity of interacting factors. However, in accordance with
our results, Keller et al. [27] also reported a higher abundance of Metarhizium spp. (M.
anisopliae complex) in meadows (semi-managed unforested land) compared to agricul-
tural land in Switzerland. Furthermore, Schneider et al. [28] detected higher Metarhizium
clade1 (M. anisopliae species complex) ITS copy numbers using real-time PCR in permanent
grasslands and improved field margins compared to arable land. Such unforested land
types do not receive pesticide treatments and are not subject to soil disturbances such as
tillage. A number of studies have shown that soil receiving reduced or no soil manage-
ment, including organically farmed soils, will allow a higher abundance of Metarhizium or
entomopathogenic fungi in general [22,29,30,70,71]. Interestingly, it has been shown that,
in contrast, tillage may also increase Metarhizium spp. abundance [20,21]. The authors of
these studies have argued that tillage may disperse Metarhizium propagules, resulting in a
more homogenous distribution of the fungus in the soil and, thus, increasing its overall
abundance.

4.3. Association Metarhizium Species and Genotypes to LUTs

We observed different affinities of M. brunneum, M. robertsii, and M. guizhouense to the
three LUTs. While M. brunneum was detected in all LUTs (73.3% of the sites) and was the
dominant species at 16 out of 22 sites as well as in the three abundance groups, M. robertsii
and M. guizhouense were detected in arable land and grassland only (36.6% and 10.0% of
the sites). However, whereas M. robetsii was detected within low and medium abundance
groups in arable land and low and high abundance groups in grassland, M. guizhouense
was detected only in the medium abundance group in arable land and medium and high
abundance groups in grassland. The M. brunneum genotypes detected at the forest sites
were specific to forests and clustered separately from the genotypes detected at the arable
land or grassland sites. In addition, certain MLGs were particularly dominant and present
at multiple sites across the country (MLG2, MLG13, MLG 15, MLG 19). Species affinity to
particular sites, regions, or habitats and the dominance of particular genotypes have been
reported previously on a field level [21,36] as well as on a regional level [38,72,73]. Plant
species composition characteristically differs between habitats or LUTs such as agricultural
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land, grassland, and forest. Previous studies have provided evidence that Metarhizium
spp. can form stable associations with certain plant species [32,74], and that crop type
may affect Metarhizium spp. diversity and abundance [21,31]. For instance, Cabrera-
Mora et al. [31] predominantly isolated M. brunneum from bean-cultivated soil and M.
robertsii from maize-cultivated soil, and Kepler et al. [21] detected higher Metarhizium
abundance in soybean fields versus cornfields. Furthermore, it is well documented that
arthropod populations vary substantially among LUTs [75]. Species associated with forests,
for instance, bark beetles (Scolytus spp.), may not be present in unforested habitats, and
pest species like wireworm spp. or western corn rootworm are linked to certain crop
plants. The population structure of arthropod pathogenic fungi such as Metarhizium, which
includes species and genotypes with diverse host ranges (from narrow to broad), is likely
affected and shaped by arthropod populations (host selection). Furthermore, it has been
observed that small soil arthropods, such as collembolans and mites, may be involved in
the dispersal of fungal propagules in the soil, which may also have an effect on fungal
population development [76]. The data reported here and observations made by others
strongly indicate the importance of plant and arthropod populations in particular habitats
and LUTs as the driving force for shaping the population structure of entomopathogenic
fungi such as Metarhizium spp.

5. Conclusions

The 30 sites investigated in this study represent 3 well-defined and characterized
habitat types in Switzerland. Being part of the Swiss soil-monitoring network (NABO), the
sites have been cultivated, maintained, and monitored for the last three decades according
to the same procedures and protocols, and therefore, represent well-established habitats.
This long-term experimental system allowed us to unravel the significant impacts of the
different LUTs on Metarhizium abundance, species diversity, and their population structures
and indicated the complexity of environmental factors involved. With the detection of
LUT-specific MLGs of M. brunneum and the absence of M. robertsii and M. guizhouense at
forest sites, the study has emphasized the significant impact of forested versus unforested
LUTs on Metarhizium population structures. These results will provide an important
base to further explore other factors that may shape Metarhizium populations, which, for
instance, may include the effects of plant populations as well as the diversity of arthropod
populations present in the soil. Information compiled from such system approaches will
reinforce the criteria for the selection of LUT-adapted fungal strains for evaluation as
biological control agents. Future biological control strategies may not only include strains
that are most virulent to particular pest insects but also those adapted to specific habitats,
crops, or even sites. Such strategies may also include the manipulation of LUTs, for instance,
by the cultivation of plant species that interact with these beneficial fungal species and
support their growth, even in the occasional absence of a particular pest.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/microorganisms9071380/s1, Figure S1: Georeferenced sampling sites of the three land-use
types, comprising 10 arable land sites, 10 grassland site, and 10 forest sites, Table S1: Summary
information of samples, Table S2: Site metadata information: description of environmental factors of
each site, Table S3: Means and ANOVA of Metarhizium spp. colony-forming units (CFU) g−1 of soil
dry weight in each site. Affiliation of each site to one of the three abundance groups based on mean
CFU is indicated, Table S4: Summary of 15 soil and environmental factors affecting the abundance
groups observed among the 30 sites: high, medium, and low Metarhizium abundance (CFU g−1 of
soil dry weight), Table S5: Summary of 15 soil and environmental factors affecting two Metarhizium
abundance (CFU g−1 of soil dry weight) groups, medium and low, in arable land, Table S6: Summary
of 15 soil and environmental factors affecting two Metarhizium abundance (CFU g−1 of soil dry weight)
groups, high and medium, in grassland, Table S7: Summary of 15 soil and environmental factors
affecting two Metarhizium abundance (CFU g−s1 of soil dry weight) groups, medium and low, in forest,
Table S8: Overall permutational multivariate analysis of variance (PERMANOVA) for individual
soil and environmental factors that significantly affect M. brunneum population structures among
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three land-use types. Analyses were based on Bray–Curtis distances, Table S9: Overall permutational
multivariate analysis of variance (PERMANOVA) for individual soil and environmental factors
that significantly affect M. brunneum population structures in arable land and grassland. Analyses
were based on Bray-Curtis distances, Table S10: Overall permutational multivariate analysis of
variance (PERMANOVA) for individual soil and environmental factors that significantly affect M.
brunneum population structures within arable land. Analyses were based on Bray–Curtis distances,
Table S11: Overall permutational multivariate analysis of variance (PERMANOVA) for individual soil
and environmental factors that significantly affect M. brunneum population structures within grassland.
Analyses were based on Bray–Curtis distances, Table S12: Overall permutational multivariate analysis
of variance (PERMANOVA) for individual soil and environmental factors that significantly affect M.
brunneum population structures within forest sites. Analyses were based on Bray–Curtis distances,
Table S13: Overall permutational multivariate analysis of variance (PERMANOVA) for individual
soil and environmental factors that significantly affect M. robertsii population structures among three
land-use types. Analyses were based on Bray–Curtis distances, Table S14: Overall permutational
multivariate analysis of variance (PERMANOVA) for individual soil and environmental factors that
significantly affect M. robertsii population structures within arable land. Analyses were based on Bray–
Curtis distances, Table S15: Overall permutational multivariate analysis of variance (PERMANOVA)
for individual soil and environmental factors that significantly affect M. robertsii population structure
within grassland. Analyses were based on Bray–Curtis distances, Table S16: Summary of environmental
factors at the ten sites of each land-use type.
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Appendix A

Table A1. GenBank accession numbers of the EF1a sequences used to construct the phylogenetic tree
in Figure 3 of one representative isolate per MLG.

GeneBank
Accession Number Isolate MLG Species

MZ297396 95-III-2 MLG12 M. robertsii
MZ297397 87-III-4 MLG19 M. brunneum
MZ297398 77-III-5 MLG16 M. brunneum
MZ297399 77-I-1 MLG20 M. brunneum
MZ297400 70-III-1 MLG15 M. brunneum
MZ297401 70-II-1 MLG7 M. guizhouense
MZ297402 54-I-4 MLG1 M. robertsii
MZ297403 45-III-6 MLG4 M. brunneum
MZ297404 45-I-1 MLG6 M. brunneum
MZ297405 35-III-3 MLG8 M. brunneum
MZ297406 35-II-5 MLG9 M. brunneum
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Table A1. Cont.

GeneBank
Accession Number Isolate MLG Species

MZ297407 35-I-6 MLG17 M. brunneum
MZ297408 33-I-6 MLG2 M. robertsii
MZ297409 33-I-5 MLG3 M. robertsii
MZ297410 30-II-6 MLG21 M. guizhouense
MZ297411 30-I-3 MLG18 M. brunneum
MZ297412 28-II-2 MLG22 M. guizhouense
MZ297413 28-I-1 MLG11 M. robertsii
MZ297414 18-III-3 MLG5 M. brunneum
MZ297415 7-III-6 MLG10 M. brunneum
MZ297416 6-I-2 MLG14 M. brunneum
MZ297417 1-III-4 MLG13 M. robertsii
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