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Abstract
Site-specific nitrogen (N) management in precision agriculture is used to improve nitrogen 
use efficiency (NUE) at the field scale. The objective of this study has been (i) to better 
understand the relationship between data derived from an unmanned aerial vehicle (UAV) 
platform and the crop temporal and spatial variability in small fields of about 2 ha, and (ii) 
to increase knowledge on how such data can support variable application of N fertilizer 
in winter wheat (Triticum aestivum). Multi-spectral images acquired with a commercially 
available UAV platform and soil available mineral N content (Nmin) sampled in the field 
were used to evaluate the in-field variability of the N-status of the crop. A plot-based field 
experiment was designed to compare uniform standard rate (ST) to variable rate (VR) N 
application. Non-fertilized (NF) and N-rich (NR) plots were placed as positive and nega-
tive N-status references and were used to calculate various indicators related to NUE. The 
crop was monitored throughout the season to support three split fertilizations. The data of 
two growing seasons (2017/2018 and 2018/2019) were used to validate the sensitivity of 
spectral vegetation indices (SVI) suitable for the sensor used in relation to biomass and 
N-status traits. Grain yield was mostly in the expected range and inconsistently higher in 
VR compared to ST. In contrast, N fertilizer application was reduced in the VR treatments 
between 5 and 40% depending on the field heterogeneity. The study showed that the meth-
ods used provided a good base to implement variable rate fertilizer application in small to 
medium scale agricultural systems. In the majority of the case studies, NUE was improved 
around 10% by redistributing and reducing the amount of N fertilizer applied. However, the 
prediction of the N-mineralisation in the soil and related N-uptake by the plants remains to 
be better understood to further optimize in-season N-fertilization.
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Abbreviations
AFR  Apparent fertilizer recovery
AFRg  Apparent fertilizer recovery of grain
AFRtot  Apparent fertilizer recovery of straw + grain
CHF  Swiss francs
DAS  Days after sowing
DM  Dry matter
FOAG  Federal office of agriculture
FSO  Federal statistical office
G  Green band
GCP  Ground control point
GSD  Ground sampling distance
N  Nitrogen
Napp  Nitrogen application rate
Nc  Nitrogen concentration
Nfert  Nitrogen fertilizer
Nup  Nitrogen uptake
NF  No fertilizer
NDRE  Normalized difference red-edge index
NDVI  Normalized difference vegetation index
NIR  Near-infrared band
NNI  Nitrogen nutrition index
NR  Nitrogen rich
NUE  Nitrogen use efficiency
MCARI  Modified chlorophyll absorption ratio index
MTVI2  Modified triangular vegetation index 2
PFP  Partial factor productivity
PRIF  Principles of fertilization of agricultural crops in Switzerland
R  Red band
R2  Coefficient of determination
RE  Red-edge band
RMSE  Root mean square error
SFF  Swiss future farm
ST  Standard
SVI  Spectral vegetation indices
TGW   Thousand-grain weight
UAV  Unmanned aerial vehicle
VR  Variable Rate
WRB  World reference base soil classification system

Introduction

In Swiss agriculture, farm size is considered medium to small scale averaging around 20 ha 
(Swiss Federal Statistical Office FSO 2019). The scale is comparable to other small scale 
farming systems in the EU-28 countries, in which 85% of the farms have a size between 0.1 
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and 20 ha (EUROSTAT 2016), and partly to village farm systems in the North China Plain 
(Chen et al. 2019; Zha et al. 2019) composed of family households managing 0.3–0.5 ha. 
At this scale, monitoring and management of in-field variability are confronted with addi-
tional obstacles compared to large-scale precision farming operations. Specifically, farmers 
have a lower level of specialization and smaller investment potential. In Switzerland, the 
fertilizer recommendation is usually based on the “Principles of fertilization of agricultural 
crops in Switzerland” (PRIF) (Sinaj and Richner 2017). The PRIF recommends a total N 
fertilizer amount given a certain yield expectation and other soil and agronomic factors 
and is based on a broad long-term dataset with replicates all over Switzerland. For winter 
wheat, the recommendation ideally includes an initial soil  Nmin test to account for available 
soil N and it recommends up to three split applications at key stages of crop development. 
Splitting the application has the advantage of reducing the risk of N loss by emission (Hunt 
et al. 2019) and providing better availability of N with a view to increased crop growth and 
grain quality. Nonetheless, N fertilizers are widely used and their improper application rep-
resents both an environmental risk and a cost factor (Jan et al. 2017; Spiess 2011). There-
fore, precise fertilization is a key challenge for producers who need to manage their crop 
production systems in order to minimize N losses to air or water, while achieving high crop 
yields of good quality (Zebarth et al. 2009). In fact, the inaccurate calculation of fertilizer 
requirements is often the main cause of environmental problems such as eutrophication or 
pollution of water bodies and emission of the potent greenhouse gas  N2O and thus for addi-
tional societal costs (Lassaletta et al. 2014). It is, therefore, of practical and political con-
cern to increase nitrogen use efficiency (NUE) and reduce high N input in the agricultural 
sector. In 2014, the efficiency of N used in Swiss agriculture was around 30% (FSO 2019), 
which is lower compared to the Danish agriculture, for instance, depicting a NUE of 41% 
in 2012 (Hansen et al. 2017).

Fertilizers are still typically distributed in a uniform way across fields without consider-
ing in-field variability in Switzerland. This is also true for the majority of wheat produc-
tion, which is the most abundant crop in Switzerland. However, the spatial and tempo-
ral distribution of available N for agricultural crops in the field varies greatly according 
to a multitude of factors including soil properties, climate and soil management (Kindred 
et al. 2015), which influence N supply, mineralization processes, plant response to N and 
subsequently growth, yield and quality (Samborski et  al. 2009). Minimized or site-spe-
cific application of fertilizers in precision agriculture systems has the potential to mitigate 
leaching problems as well as the emission of greenhouse gases (Walter et  al. 2017). In 
fact, it was shown that site-specific fertilization can increase the NUE at field scale (Basso 
et al. 2016; Cohan et al. 2018; Raun et al. 2002) which was recently confirmed for small 
to medium scale agriculture systems (Van Loon et al. 2018; Wang et al. 2019) similar to 
Swiss agriculture. Therefore, variable rate N fertilization has the potential to improve NUE 
in small to large-scale agricultural cropping systems (Diacono et al. 2013; Ebertseder et al. 
2003; Ravier et al. 2018). Yet, previous studies have mostly taken fields of large size into 
account; in practice, small-scale heterogeneities within fields smaller than one ha are typi-
cally neglected.

At present, remote, aerial and ground based sensing techniques emerge as a key element 
for observation of in-field variability. A combination of remote and proximal sensing tech-
niques will enable a better understanding of cropping systems, from mineralization dynam-
ics in soils to crop growth and nutrient uptake (Gabriel et al. 2017; Khan et al. 2018; Nawar 
et  al. 2017). The use of spectral information to detect changes in canopy structure and 
growth is a well-established technology for a multitude of platforms (Matese et al. 2015; 
Muñoz-Huerta et al. 2013; Walter et al. 2018). For N-status detection of plants, different 
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paths have been explored in basic research e.g. hyper- and multi-spectral image spectros-
copy, which delivers responses as spectral vegetation indices (SVI), and radiative transfer 
models (Féret et al. 2020). Recently, it has been suggested that the relation to proteins is 
more consistent than the previously assumed relation to chlorophyll (Berger et al. 2020). 
When applying this knowledge in practical field management, many studies have made use 
of SVI calculated from the near-infrared (NIR) region of the light spectrum (790–840 nm) 
and surrounding wavelengths, as for example the red-edge (RE) region located around 730 
nm. This region appears to have a consistent direct relationship with the biomass and N 
status of the crop—a relation shown to exist for many crops including wheat, maize and 
sugar beet (Cammarano et al. 2011; Li et al. 2014; Liebisch et al. 2014; Prey and Schmid-
halter 2019). However, it has been suggested that reflectance in the RE region, which is 
higher than that in the red region and which is relatively constant throughout the vegetative 
season, is not more sensitive to N per se (Bean et al. 2018). Instead, indices that make use 
of the RE band seem to enhance the importance of the NIR reflectance. Because such spec-
tral signals can be assessed with commercially available sensors and because SVI derived 
from them appear to capture the crop in-field variability in a consistent way, such SVI are 
typically used to display in-field variability maps for crop N-status.

Unmanned aerial vehicles (UAV) are platforms suitable for monitoring fields of small 
to medium size. Main advantages of these systems are their flexibility of use and their 
capability to deliver high spatial and temporal resolution of observations simultaneously. 
Main disadvantages are the initial financial and knowledge related investments and the 
time needed to acquire and process the remote sensing data (Hunt and Daughtry 2018). On 
the market, a broad selection of sensors and platforms is available (Aasen et al. 2018) and 
the quality of the obtainable data has reached levels which support precision fertilization 
methodologies. Still, the quantification of crop N-status and subsequent fertilization sup-
port based on remote sensing imagery is not fully standardized. Calibration with ground 
data usually improves the reliability of derived fertilizer application maps. However, it is 
still difficult to generalize the relationship of the sensed values to the crop N demand for 
seasons (temporal), regions (spatially) and different crop species or genotypes of the same 
species.

The objectives of this study were (i) to better understand the relationship between 
data derived from a UAV platform representing temporal and spatial variability of crops 
in small fields of about 2 ha, and (ii) to increase knowledge on how such data can sup-
port variable application of N fertilizer in winter wheat (Triticum aestivum). Four fields 
in total were treated as four case studies to show how the variability between and within 
fields influences the outcome of site-specific fertilization. The main hypothesis was that the 
implementation of site-specific N fertilization using VRA techniques would reduce average 
N application compared to the standard fertilization strategy without affecting yield and 
thus increasing NUE.

Materials and methods

Experimental fields and design

The experimental fields are located at the “Swiss Future Farm” in Tänikon, Switzerland 
(47.4790021° N, 8.9059287° E). The farm is a concept to test and show innovative agri-
cultural technologies, operated by the three partners AGCO (Duluth, USA), GVS Agrar 
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(Herblingen, Switzerland) and the cantonal education and extension service (Arenenberg, 
Switzerland). The climate in this region is characterized by 1170 mm annual rainfall and 
an average annual temperature of 8.6 °C (1970–2018) recorded by a local weather station 
from the federal office of meteorology (MeteoSwiss). In the growing season 2017/2018, 
the first experiment was carried out in field F1, while in the growing season 2018/2019 the 
fields F2, F3 and F4 were used (Fig. 1).

The soil types of the four investigated fields (F1–4) were classified during a soil survey 
in 1977, provided by the national soil-monitoring network (NABODAT 2019). According 
to the world reference base for soils (WRB, Food and Agriculture Organization FAO 2014), 
the soil of F1 is characterized as a Gleysol, with a more stagnating Gleysol zone richer in 
organic matter in the central part. F2 is characterized as a Cambisol, whereas F3 is mainly 
characterized as a Luvisol and in F4 two main soil types, a Gleysol (to the west) and an 
Alisol (to the east) are present. The heterogeneity of soil properties was high between and 
within the fields. Among fields, the clay content varied between 25 and 35% and the con-
tent of  Corg fraction calculated from organic matter content (OM) ranged between 1.5 and 
3.0% (Table 1). Within fields, the standard deviation of clay was between 7 and 9% in all 
four fields while F1 and F4 showed a higher standard deviation (0.6–0.9%) compared to F2 
and F3. The fields were sown with winter wheat (T. aestivum) of the same cultivar (Arnold, 
Saatzucht Donau, Austria) and covered an area of two ha on average (Table 1). Whereas 
wheat followed maize in the crop rotation in F1–3, sown on the 19th of October in 2017 
and 9th and 12th of October 2018, respectively, F4 followed 2 years of temporal grassland 
and was sown 1 month later on 5th of November 2018. For F1 a randomized block design 
with three N- fertilization treatments: standard (ST), variable rate (VR) and non-fertilized 
(NF), replicated in six blocks each (n = 6) was established. The dimension of a single plot 
was 15 ×  50 m, to match the operational range of the used pneumatic fertilizer spreader 
(Rauch Aero 2215, Sinsheim, Germany). The N-fertilization treatments are described in 
detail in the section below (Fertilization and Variable Rate method). For the second year, 
a non-randomized block design with two treatments ST and VR replicated in three fields 
F2, F3 and F4 (n = 7) plus two reference treatments NF and N-rich (NR) differing in num-
ber and distribution in the fields were established with regard to fit the different soil zones 

Fig. 1  Experimental fields F1 (2018), F2, F3 and F4 (2019) depicting crop variability (false-colour field 
maps by normalized difference red-edge index NDRE at the end of April, left) and soil type variability 
(right) with the sampling plot overlay (Color figure online)
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identified before the season. The dimension of a single plot was 15 × 90 m, which was cho-
sen to match the operational range of the disc spreader (Sulky X40 + ECONOV, Sulky-
Burel, Châteaubourg, France) that was mounted on the cultivation tractor (Massey Fergu-
son S 5713, AGCO, Duluth, USA). The tractor was equipped with a Valtra Smart Touch 
terminal (Valtra Inc., Suolahti, Finland), featured with “Vario Doc Pro” software (Applica-
tion Status: 2.2.2, BSP: nt03_171212_134701, Kernel: 3.0.35, Based on Revision: 26565, 
Built on Machine: nt0x-vm, AGCO, Duluth, USA).

The fields were managed without the use of chemical plant protection and growth regu-
lators. Mechanical weeding by means of a tined harrow (Treffler TS1520HM3) was carried 
out in early spring. Fertilizer was applied in the form of mineral ammonium nitrate (Agro-
line—Landor Fenaco, Muttenz, Switzerland, composition: 24% N, 5% Mg and 8.5% S). 
No additional P and K were fertilized. The fields were harvested using a combine harvester 
(Fendt 5275 C PLI, AGCO, Duluth, USA).

Remote sensing of the crop

The low-altitude remote sensing UAV platform was composed of a multispectral camera 
“Parrot Sequoia” (Parrot, Paris, France) mounted on a quadcopter “P4P” (DJI, Shenzhen, 
China) flown over the field on a weekly to bi-weekly basis. Spectral information of the crop 
was recorded in four bands of the light spectrum, namely green (G) centred at 550 ± 40 
nm, red (R) at 660 ± 40 nm, red-edge (RE) at 735 ± 10 nm and near-infrared (NIR) at 
790 ± 40 nm. The output of the camera consisted of one separate image for each band. The 
images were captured while the camera was flown over the field in a single grid automatic 
flight plan generated by the software Pix4D Capture (Pix4D, Lausanne, Switzerland) by 

Table 1  Soil and field properties for the four experimental fields F1 (2018) and F2–F4 (2019)

For average values reported: n = 6
a CO2 release reaction to hydrochloric acid (+) indicates the presence of carbonate
b Corg = OM/1.724 (Howard 1965)
c Plant available—P, K extraction with  CO2 saturated  H2O/Mg:  CaCl2 extraction (ÖLN 2018)
d World reference database for soils (FAO 2014)

Field properties F1 F2 F3 F4

Area (ha) 2.2 2.5 1.9 1.6
Previous crop Maize Maize Maize Temporal grassland
Sowing date 19.10.2017 9.10.2018 12.10.2018 5.11.2018
pH 7.7 ± 0.1 6.9 ± 0.4 6.9 ± 0.4 7.5 ± 0.2
Carbonate  testa + − ± +
Corg (%)b 3.2 ± 0.9 2.4 ± 0.1 1.5 ± 0.3 2.8 ± 0.6
P (mg  kg−1)c 1.9 ± 0.6 1.3 ± 0.5 2.7 ± 1.1 1.3 ± 0.46
K (mg  kg−1)c 38.5 ± 14 17.9 ± 5.8 32.6 ± 9.5 18.7 ± 6.4
Mg (mg  kg−1)c 381.7 ± 77.1 377.0 ± 43.1 172.5 ± 71.7 282.3 ± 123.4
Clay (%) 24.5 ± 4.1 34.6 ± 7.3 25.9 ± 9.1 35.0 ± 9.5
Silt (%) 37.5 ± 2.5 39.1 ± 1.5 38.4 ± 3.1 34.1 ± 2.4
Sand (%) 37.9 ± 5.1 26.3 ± 6.9 35.6 ± 8.9 30.9 ± 9.3
Soil Type (WRB)d Gleysol Cambisol Luvisol and Alisol Gleysol and Alisol
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the drone at 5 m  s− 1 speed and 1.9 s time interval between the single images at 50–80 
m height. The optimal flight parameters were calculated with the help of the PhenoFly 
Planning Tool (Roth et  al. 2018). The ground sampling distance (GSD) of the single-
band images was between 4.5 and 8.4 cm  pixel− 1 depending on flight altitude. The raw 
images were processed in the photogrammetry software Pix4D Mapper (Pix4D, Lausanne, 
Switzerland, version 4.5). First, a radiometric correction was applied by using an Airinov 
reflectance target (Parrot Airinov, Paris, France), then the images were transformed to an 
orthomosaic to create a reflectance map and finally, they were georeferenced using ground 
control points (GCP). GCPs were annually established within and around each field before 
generating final index maps of the field. The normalized difference red-edge index (NDRE 
= (NIR–RE)/(NIR + RE); Barnes et al. 2000) was selected as N-status indicator. This spec-
tral vegetation index has been chosen as it showed consistent relationship with N uptake 
of the plants (Argento et al. 2019; Basso et al. 2016; Li et al. 2018). Additionally, the nor-
malized difference vegetation index (NDVI = (NIR–R)/(NIR + R); Rouse et al. 1974) was 
calculated, because it correlates closely to canopy cover and biomass (Liebisch et al. 2017; 
Tucker 1979; Tucker et al. 1980) and is therefore often used to provide decision support for 
variable rate N fertilization (Tremblay et al. 2009; Walsh et al. 2013).

Other indices reported in the manuscript include the green NDVI [GNDVI = (NIR–G)/
(NIR + G], Buschmann and Nagel 1993), the modified triangular vegetation index 2 
(MTVI2 = 1.5*(2.5*(NIR − R) − 1.3*(NIR − G))/((2*NIR + 1)2− (6*NIR− 5*R0.5–0.5))0.5) 
and the modified chlorophyll absorption in reflectance index [MCARI = ((RE − R) − 
0.2*(RE − G))*(RE/R)); Haboudane et al. 2004]. The latter two are also used as a com-
bined index MCARI/MTVI2 (Eitel et al. 2007).

Soil and plant analysis

In both seasons, soil samples were collected in each field in early spring from six sampling 
locations based on the soil type mapping (approximately three sampling locations/ha). For 
each sampling location, six to eight soil cores were taken and mixed separately for the 
three depths 0–30 cm, 30–60 cm and 60–90 cm, respectively. Out of these samples  Nmin 
available in the soil (Table 2) was measured as  NH4 (ammonium test) and  NO3 (Alumin-
ium-sulphate extraction combined with a nitrate electrode) and converted in kg N  ha− 1 
using the reference method by the federal agriculture research centre (Agroscope 1995). 
For the depth of 0–20 cm, phosphorus (P), potassium (K) and magnesium (Mg) content, 
organic carbon  (Corg), texture, pH and carbonate content were measured additionally, fol-
lowing the guidelines for the mandatory soil samples that farmers perform to be eligible for 
direct payments (ÖLN, 2018).

Plant biomass samples were collected at various growth stages during the season and 
the respective growth stages were recorded using the BBCH decimal scale (Meier et  al. 
2009). In the first year, the samples were collected two times at BBCH 32 (second knot) 
and at BBCH 84 shortly before harvest in two subsamples per plot each covering an area of 
50 × 60 cm (four rows at 15 cm spacing) for a total of 36 samples. The BBCH 32 samples 
were dried at 60 °C for 48 h to quantify dry matter (DM) and afterwards N concentration 
 (Nc) was measured with a Flash EA 1112 Series elemental analyser (Thermo Italy, Rodano, 
Italy) coupled to a Finnigan MAT  DeltaplusXP isotope ratio mass spectrometer (Finnigan 
MAT, Bremen, Germany). The samples at harvest (BBCH 84) were collected in two sub-
samples per plot as described for BBCH 32 above. Plants were cut at 10 cm over the soil and 
air-dried for 2 weeks. The grains were mechanically separated from the straw to differentiate 
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between weights of grains and straw that together make up the plant dry weight. N concen-
tration was measured in both the milled grains and straw at 7% water content. In the second 
year, biomass samples were collected four times at BBCH 25 (end of tillering), BBCH 31 
(beginning of stem elongation), BBCH 39 (flag leaf) and BBCH 84 (pre-harvest, 15th July 
2019). From each plot, three subsamples were collected, each covering an area of 50 × 60 
cm (four rows at 15 cm spacing), for a total of 72 sampling locations across three fields. 
The samples were treated and analysed as described above for the previous season. From a 
subsample of the grains, one thousand grains were counted with a seed counter (Contador, 
Pfeuffer GmbH, Kitzingen, Germany) and weighed to determine the thousand-grain weight 
(TGW, g). Another subsample of the grains was used to determine the protein content (GVS 
Agrar AG, Herblingen, Switzerland). To investigate wheat N status, three plant traits i.e. N 
concentration  (Nc), total N in the aboveground biomass  (Nup, Eq. 1) and the nitrogen nutri-
tion index (NNI, Eq. 2) were chosen. These indicators are often used to assess or calibrate 
crop N fertilizer demand. The N uptake  (Nup, kg N  ha− 1) was calculated by multiplying the 
dry matter biomass (DM, kg  ha− 1) with the corresponding  Nc (%) of the plant sample:

The NNI is an index based on the principle that  Nc decreases with growing biomass. 
The experimental dilution curve reflecting the relationship between DM and  Nc values can 
be used to relate the measured  Nc to a critical  Ncrit i.e. the lowest  Nc necessary to obtain 
maximum biomass at a given growth stage (Justes et al. 1994; Prost and Jeuffroy 2007). 
NNI values < 1 indicate an N deficiency while NNI values > 1 indicate an N surplus.

(1)Nup = DM ∗ Nc

(2)NNI = Nc

/(

5.35 ∗ DM(−0.442)
)

Table 2  Available  Nmin (kg N 
 ha− 1) per sampling location 
with mean (n = 6) and standard 
deviation from three different 
depths (0–30, 30–60, 60–90 cm) 
for the four fields (F1–4)

Field Depth (cm) Nmin (kg N  ha−1)

1 2 3 4 5 6 Mean SD

F1 0–30 14 17 24 22 25 21 20 4
30–60 9 11 15 13 24 12 14 5
60–90 10 8 9 11 18 8 11 3

Total 0–90 33 37 48 46 66 41 45 11

F2 0–30 15 14 16 12 19 18 16 2
30–60 14 10 9 10 9 10 10 2
60–90 24 9 7 11 6 7 11 6

Total 0–90 53 33 31 32 34 35 36 8

F3 0–30 7 11 5 6 6 11 8 2
30–60 5 8 3 5 4 5 5 2
60–90 7 6 6 8 7 4 6 1

Total 0–90 19 25 14 19 17 20 19 3

F4 0–30 20 24 21 25 23 28 24 3
30–60 14 26 15 15 20 29 20 6
60–90 10 14 9 11 18 21 14 4

Total 0–90 44 64 45 51 61 78 57 12
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Fertilization and variable rate method

The selected fertilization strategy is based on the  Nmin method suggested in the PRIF (Sinaj 
and Richner 2017) as well as the standard application of the farm manager at the experimental 
site. Based on the recommendations, N-fertilization was divided in three split applications tar-
geting the growth stages: end of tillering, beginning of stem elongation and flag leaf, respec-
tively. On the field F1, the mean 0–90 cm  Nmin was used as a reference for the calculation of 
the first split application to be applied as shown in Table 3. For the ST treatment, an average 
field  Nmin value was used as farmers usually do. For the VR, the specific  Nmin of each plot was 
subtracted from the total. According to this procedure, e.g. plot 2 with  Nmin = 30 kg N  ha− 1 
received 80 − 30 = 50 kg N  ha− 1 fertilizer with the first split. For the second and third split, the 
values were qualitatively adjusted based on the NDRE index map produced few days before 
the fertilization. That means e.g. plot 10 with NDRE mean value of 0.25 (20% higher than the 
field average) received 20% less fertilizer i.e. 40 kg N  ha− 1 in the second split.

In the second year, a different approach was selected. The mean 0–30 cm  Nmin, considered 
more relevant for the initial phase of plant growth, was used as a reference for the calculation 
of the first split application for VR only, as shown in Table 3. The ST in this season was based 
on the farm managers’ standard application (hence without applying  Nmin correction). For the 
VR treatment, the  Nmin values from the six locations were interpolated to create an  Nmin map 
of the field. The fields were then divided in  Nmin management zones (Mattei et al. 2020) and 
for each VR plot, the corresponding  Nmin value was used to adjust the first split. For example 
plot 2 of field F2 was in between two zones with 18 and 24 kg N  ha− 1, respectively, therefore 
it received two variable applications of 80–18 = 62 kg N  ha− 1 and 80–24 = 56 kg N  ha− 1 in the 
first split. The second and third split applications were adjusted based on an application map 
produced by applying Eq. 3, experimentally derived from the first season, to an NDRE index 
map produced few days before fertilization. For the optimization of the second and third ferti-
lization split in the VR treatment, the NDRE values were used to adjust the standard amount 
of fertilization  (NST, kg N  ha− 1). Assuming that higher reflectance intensity corresponds to a 
better plant N status, N fertilizer  (Nfert,i, kg N  ha− 1) values for VR were calculated by applying 
Eq. 3 to each pixel.

(3)Nfert,i = NST − Ncorr,i

Table 3  Applied amount and distribution of N-fertilizer (kg N  ha− 1). For VR, the range of applied amounts 
per plot is shown

Field Treatment Split 1 Split 2 Split 3 Total

BBCH 23 BBCH 32 BBCH 45
F1 ST 80 −  Nmin = 36 60 20 116

VR 80 −  Nmin = 0 to 50 40 to 70 0 to 20 50 to 132
NF – – – 0

BBCH 25 BBCH 31 BBCH 39
F2–4 ST 70 60 25 155

VR 80 −  Nmin = 52 to 75 40 to 70 10 to 30 95 to 149
NF – – – 0
NR 100 60 – 160
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The correction factor at pixel i in the field  (Ncorr,i, kg N  ha− 1) was calculated as in Eq. 4 
by adjusting the  NST according to the relative difference of reflectance intensity at a point i 
 (xi) and the mean of the reflectance intensity over the whole field  (xm).

The fertilizer was spread in variable amounts over the field, according to the final pre-
scription map, which was created using the software (NEXT Farming AG Office, version 
1.8.1.14, Pfarrkirchen, Germany) and uploaded via the Vario Doc Server onto the tractor 
terminal.

Evaluation of N use efficiency

The NUE was evaluated by means of three different indicators: the apparent fertilizer 
recovery (AFR) (Kindred et al. 2015), also known as recovery efficiency, was used to quan-
tify the N fertilizer recovered by the crop (Eq. 5). Therefore,  Nup from the NF plot (as a 
measure of the soil N supply) was subtracted from the N uptake of a treatment plot (VR, 
ST, or NR) and divided for the N fertilizer applied. AFR was calculated for both the total 
 Nup (AFR tot) and for the  Nup in the grains (AFR grain).

The partial factor productivity (PFP) was calculated according to Wang et al. (2019) as 
a measure of the relationship between the grain yield in a fertilized plot  (Yfert, kg  ha− 1) and 
the N applied in that plot (kg N  ha− 1) in Eq. 6.

A simplified measure for the economic income, defined as the marginal return of N fer-
tilization (E, CHF  ha− 1) was calculated in Eq. 7 according to Wang et al. (2019).

where Y is the grain yield (kg  ha− 1),  PY is the grain price (CHF  kg− 1), N is the N fertilizer 
applied (kg N  ha− 1),  PN is the N fertilizer price (CHF  kg− 1). The prices of wheat grain and 
N fertilizer were 0.52 and 0.45 CHF  kg− 1, respectively, in Switzerland in 2019. Currency 
exchange values are set at 1 CHF = 1.05 USD = 0.93 EUR (UBS 2020).

Statistics

The spectral data were extracted from the orthomosaics and analysed in a pipeline, which 
combined the GIS software QGIS (QGIS Development Team 2019, version 2.18) and the 
software RStudio Desktop (RStudio Team 2016, version 1.0.143) with R version 3.4.1 
“Single Candle” (R Core Team 2017). The packages “sp”, “raster”, “gstat”, “rgdal” and 
“dplyr” were used in the pipeline. The statistical analysis including the one-way ANOVA 
and Fisher-LSD test (package “agricolae”) for the grain yield and efficiency parameters 
were also performed in Rstudio. In order to select the most sensitive vegetation index, 

(4)Ncorr,i = NST ∗
xi − xm

xm

(5)AFR(%) =
Nup − Nup(NF)

Napp

∗ 100

(6)PFP =
Yfert

Napp

(7)E = Y ∗ Py − Napp ∗ PN
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twenty-three vegetation indices from the literature were correlated to selected plant traits 
namely DM,  Nc,  Nup and NNI using quadratic linear regression (y = x2).  R2 and RMSE val-
ues were calculated and evaluated. The data preparation and quadratic linear regression for 
the sensitivity analysis between vegetation indices and selected plant traits were performed 
in Rstudio. The data preparation and graphics for yield and spectral data were done with 
the packages “dplyr”, “reshape2” and “ggplot2”.

Results

Grain yield

The grain yield in all fields showed no significant difference between the VR treatment 
and the ST treatment (Fig. 2). The fertilized treatments in fields F1, F2 and F3 were in the 
same range with no significant differences. The NF plots had significantly lower yield than 
the other treatments, except in field F4, where no significant differences were observed and 
yield was generally lower. Additionally, the NF treatment was not significantly different 
from the ST treatment in F2, where ST also tended to be lower than VR and NR. Average 
yields of fertilized plots were 6.9 t  ha− 1 for both F2 and F3 and 3.9 t  ha− 1 for F4. The non-
fertilized plots reached 5.7, 5.3 and 4.3 t  ha− 1 for F2, F3 and F4, respectively.

The thousand-grain weight (TGW) after harvest (Table 4) showed no significant differ-
ences between ST and VR (43.74 and 43.73 g) in F1 while both were above the NF weight 
(41.9 g). In 2019, the pattern was inverted; in fact, the grains in the NF plots were in all three 
fields about 10% heavier than the average of the fertilized plots. Protein content measured in 
2019 was on average 15% for the fertilized plots with no significant differences between VR, 
ST and NR treatments while in the NF plots was on average 13.7%. The protein content in 
F4, which yielded less grain in total, was higher compared to F2 and F3.

Fig. 2  Grain yield (t  ha− 1) of the four fields (F1, F2, F3 and F4) over two growing seasons per treatment. 
Error bars indicate the standard error. Letters denote significant differences between treatments according to 
Fisher-LSD test at p < .05. The values inside the columns represent the average N rate (kg N  ha− 1) applied 
in that treatment and field (Color figure online)



 Precision Agriculture

1 3

Efficiency assessment

The efficiency analysis showed a consistent trend whereby VR treatments performed better 
than ST treatments (Table 4). There were no differences in total  Nup between ST and VR in 
grains, straw and total crop biomass; however, both were significantly higher than the NF 
in three of the four cases (F1–3). The soil N supply estimated from the NF plots in 2018 
was 84 kg N  ha− 1, whereas it increased in the second year ranging from 127 to 143 kg N 
 ha− 1. The  Nc measured in the grain after harvest ranged from 1.9 to 3.1% of DM and from 
0.3 to 1.0% of DM in the straw. Generally, a decrease of  Nc from the beginning of the sea-
son (mean 4%) until harvest (mean 1.5%) could be observed over all four fields. The NNI 
values in the grain at harvest ranged from 0.6 (NF plots) to 1.2 (NR plots) with values of 
VR and ST plots around 0.9 on average in the four fields.

Compared to ST, the reduction of average applied N in the VR treatments resulted 
in a trend of higher AFR (Table  5). However, these differences were not significant 
neither for the total crop N nor for the grain N uptake  (Nup) only. The efficiency of 
grain production in relation to the N applied (PFP) showed a better performance of VR 
compared to ST in all four fields over 2 years. The marginal returns of VR also showed 
a trend of improved financial gain, when compared to the ST treatment. The differ-
ences ranged between 31 and 335 CHF  ha− 1 due to the reduction in applied fertilizer 
and, in two cases, the increase in grain yield. The NR had higher marginal returns in 
two out of three cases. However, these differences were statistically not significant.

Table 4  Yield and N- status parameters including N applied with the fertilizer and N uptake  (Nup) from the 
crop at harvest

Letters denote the level of significance according to Fisher-LSD test at p < .05

N rate Grain yield TGW Nup grain Nup straw Nup tot Protein content
(kg N  ha− 1) (t  ha− 1) (g) (kg N  ha− 1) (kg N  ha− 1) (kg N  ha− 1) (% of DM)

2018
 F1 NF 0b 3.81b 41.9b 68b 15b 84b n.a.

ST 116a 6.23a 43.74a 146a 32a 179a n.a.
VR 105a 6.34a 43.73a 144a 35a 179a n.a.

2019
 F2 NF 0d 5.48b 40.2a 113b 30b 143b 13.1b

NR 167a 7.17a 36.1b 178a 80a 258a 15.2a
ST 154b 6.38ab 34.5b 155a 66a 221a 14.9a
VR 142c 7.02a 36.4b 163a 67a 228a 14.3a

 F3 NF 0d 5.07b 42.9a 106b 21c 127b 13.1a
NR 160a 7.04a 39.2bc 136ab 30b 166ab 12.0a
ST 153b 6.25a 38.4c 138ab 47a 185a 13.9a
VR 148c 6.87a 39.6b 150a 42a 192a 13.5a

 F4 NF 0c 4.07a 34.4a 93a 45b 138a 14.9b
NR 160a 3.07a 30.9 b 86a 94a 182a 17.7a
ST 154a 3.69a 30.6b 97a 95a 191a 16.4a
VR 96b 3.70a 30.6b 92a 86a 183a 17.1a
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Sensitivity analysis

The sensitivity analysis between selected vegetation indices and plant traits (Table 6) 
performed on the joint dataset over the 2 years (n = 254) showed that by using a quad-
ratic regression, the SVI with the highest sensitivity to both dry matter yield and  Nup 
are those making use of the red-edge channel. The NDRE shows the best correlation 
and lowest error with DM  (R2 = 0.72),  Nup  (R2 = 0.80) and NNI  (R2 = 0.75). Very 
similar results are achieved with the simple ratio NIR/RE with DM  (R2 = 0.70),  Nup 
 (R2 = 0.80) and NNI  (R2 = 0.75). The  Nc, however, showed generally low correlations 
and the best (0.40) was achieved with the combined index MCARI/MTVI2.

As mentioned above, NDRE was the best SVI, showing a quadratic relationship to 
dry matter (DM), nitrogen uptake  (Nup), nitrogen nutrition index (NNI) (Fig. 3). The 
 Nc curve instead, showed a quadratic decrescent curve with higher index values cor-
responding to lower  Nc values. The best index representing this relationship was the 
combined index MCARI/MTVI2, which, however, results in a very low correlation. 
Data scattering is particularly enhanced in the second biomass sampling of 2019.

Table 5  Average apparent 
fertilizer recovery (AFR), yield 
response to N (PFP) and financial 
gain (marginal return)

Letters denote the level of significance according to Fisher-LSD test 
at p < .05
AFRtot straw + grains, AFRg AFR of grains

AFRtot AFRg PFP Marginal return
(%) (%) (kg grain kg  N− 1) (CHF  ha− 1)

2018
 F1 NF – – – 1944b

ST 83.1a 67.2a 32.9b 3161a
VR 93.8a 72.3a 60.4a 3218a

2019
 F2 NF – – – 2850b

NR 69.1a 38.9a 42.9b 3652a
ST 50.8a 27.1a 41.4b 3249ab
VR 60.4a 34.7a 49.3a 3584a

 F3 NF – – – 2635b
NR 24.2b 18.8a 44.0a 3590a
ST 37.2ab 21.1a 40.9b 3183a
VR 42.8a 29.6a 46.3a 3504a

 F4 NF – – – 2114a
NR 27.6a 3.2a 19.2b 1527a
ST 34.8a 2.4a 23.9b 1851a
VR 48.0a 5.2a 39.1a 1882a
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Table 6  Selected results of the quadratic linear regression model between selected vegetation indices and 
plant traits. Coefficient of determination  (R2) and root mean square error (RMSE) are reported for each cor-
relation

Bold numbers indicate the highest coefficients of correlation that were observed

Index DM NC Nup NNI

R2 RMSE R2 RMSE R2 RMSE R2 RMSE

Simple ratios

 NIR/G 0.71 1580 0.29 0.83 0.78 31 0.69 0.15
 NIR/RE 0.70 1601 0.19 0.89 0.80 30 0.75 0.13

Indices

 NDVI 0.55 1986 0.33 0.81 0.58 43 0.57 0.18
 GNDVI 0.69 1639 0.29 0.83 0.75 33 0.68 0.15
 MTVI2 0.65 1738 0.31 0.82 0.70 36 0.62 0.17
 NDRE 0.72 1573 0.19 0.89 0.80 29 0.75 0.13

Combined indices

 MCARI/MTVI2 0.30 2464 0.40 0.77 0.30 56 0.30 0.22

Fig. 3  Relationship of NDRE with DM,  Nup, NNI and MCARI/MTVI2 with  Nc. The data were derived 
from four biomass and spectral sampling campaigns (different colours) at different growth stages over the 
2 years (n = 254). F1 was sampled in 2018 at BBCH 32. F2-F4 in 2019 at BBCH 25 (I), BBCH 31 (II) and 
BBCH 39 (III) (Color figure online)
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Seasonal dynamic of NDRE compared to NDVI

The seasonal development of NDRE and NDVI of the studied fields showed different 
characteristics over time. The NDRE data extracted from each plot and averaged per 
treatment from field F1 to F2 showed a steady increase from the time of the first split 
fertilization (beginning of stem elongation), to its peak at the beginning of the spike 
emergence (Fig. 4, left). After flowering and during senescence the intensity of the sig-
nal decreased. The N input treatments were clearly separable during the assumed fertili-
zation period from stem elongation to spike appearance. In F1, the fertilized treatments 
VR and ST were significantly different from the NF treatment starting from DAS 200. 
In F2, NR was significantly higher than NF from DAS 195 on. AT DAS 203, there was a 
significant difference between treatments: NR > VR, ST > NF. The fertilized treatments 
were then in the same range and separable from NF until late senescence.

In contrast to NDRE, NDVI (Fig. 4, right) saturated at the beginning of the season 
shortly after stem elongation before decreasing rapidly during the senescence phase. 
The fertilizer treatments generally did not show distinct differences between each other. 
In F1, the differences between NF treatment and the fertilized treatments VR and ST 
were significant later in the season from DAS 214 on. In F2, there were no significant 
differences between treatments. In comparison, with NDRE the relative difference 

Fig. 4  Comparison of seasonal patterns of NDRE and NDVI for 2018 (F1) and 2019 (F2). Each measure-
ment point represents average values per treatment with standard error. Time is represented on the x-axis 
as days after sowing (DAS). The grey lines N1, N2 and N3 denote the first, second and third split fertilizer 
applications, respectively. For F1, N1 = BBCH 23, N2 = BBCH 32 and N3 = BBCH45. For F2, N1 = BBCH 
25, N2 = BBCH 31 and N3 = BBCH 39 (Color figure online)
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between fertilized and non-fertilized plots was clearly visible. The fields F3 and F4 
showed a similar behaviour (Supplementary Fig. 1).

Discussion

Yield analysis confirmed the hypothesis that site-specific fertilization is able to reduce total 
N application without a loss of yield in the small-to-medium-sized agricultural system 
investigated in Switzerland being in line with the findings of Stamatiadis et al. (2018) and 
Wang et al. (2019). In three out of four cases (F1, F2 and F3), grain yield (6.5–7.5 t  ha− 1) 
and protein content (14–15%) were in the range of the Swiss average for top quality wheat 
varieties (Levy and Brabant 2016; Sinaj and Richner 2017; Hofer 2019). In F4, the lower 
yield and lack of differences between all treatments could be explained by the combination 
of the late sowing date (1 month later than F2 and F3) and excessive damage provoked by 
the mechanical weeding with the tined harrow combined with the insufficient establish-
ment of the wheat plants in early spring. Consequently, the field showed very heterogene-
ous patches of crop development (data not shown).

Remote sensing as a base for variable rate application

A literature survey reflected that a broad range of spectral indices is used for the prediction of 
in-field N status of crops (Heege et al. 2008; Heege 2013; Li et al. 2014; Prey and Schmid-
halter 2019; Zhao et al. 2018). To confirm the applicability of the selected SVI for the given 
camera setting, a sensitivity analysis was conducted investigating twenty-three SVI from the 
literature survey applicable to the camera band combination. Most of them were shown to 
be sensitive to either canopy structure, biomass or N status (Basso et al. 2016; Bendig et al. 
2015; Chen 2015; Cilia et al. 2014; Schmidhalter et al. 2003). The study clearly showed that 
indices combining RE and NIR like NDRE and NIR/RE ratio indeed had the best correla-
tion with the N-status traits  Nup and NNI in this study. The correlation value  (R2 = 0.80 and 
 R2 = 0.75 for the  Nup and NNI, respectively) confirmed the assumption that NDRE can be 
used to monitor the N status of the wheat field. Bean et al. (2018) reported similar observa-
tions for corn N side dress also pointing to a superiority of RE-NIR based spectral indices 
over red-NIR based ones like NDVI. The seasonal monitoring patterns of NDVI and NDRE 
reflected climate and field management affecting the plants’ growth. The NDVI curves satu-
rate at the time of the second split fertilizer application, earlier than the NDRE. In Fig. 4, 
NDVI curves for F1 and F2 showed a high saturation already at 190 days after sowing corre-
sponding to BBCH 29–30, between canopy closure and beginning of stem elongation (Baret 
and Guyot 1991). At this stage, NDRE is still increasing with values around 0.3–0.4. Because 
of the early saturation, NDVI is less useful for the derivation of N fertilizer prescription maps 
for the second and third fertilizer application. However, NDVI seems to be a viable N status 
indicator for a first N application when the canopy is not yet closed. The NDRE development 
was linear until the stage of spike emergence, which takes place after the third and last ferti-
lizer application in winter wheat and therefore NDRE and NIR/RE are a better base for the 
creation of fertilizer prescription maps than NDVI or the other investigated SVIs.

Although NDRE allows quantifying  Nup, the relatively large variability suggests a quali-
tative assessment, linking NDRE to the general fertilization strategy. In this study, the N 
fertilizer prescription for VR was based on the NDRE index map combined with the Swiss 
standard fertilization recommendation indicating the average N demand subsequently 
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adjusted for higher or lower NDRE values. The choice to use the average value as reference 
was supported by the presence of non-fertilized and surplus-fertilized plots in the trial act-
ing as minimum and maximum reference values, respectively. However, other approaches 
to obtain fertilizer prescription maps were suggested. Holland and Schepers (2013) and 
Stamatiadis et al. (2018) used the 95th percentile of the histogram produced with spectral 
index values of the whole field. In other studies, the yield response to N-application in 
combination with spectral indices were used to predict the N-application rate (Bean et al. 
2018; Franzen et al. 2016; Holland and Schepers 2010; Raun et al. 2005). This study indi-
cates that the use of NDVI is less sensitive for in-season fertilization support, despite being 
a commonly used solution in other studies (Tremblay et al. 2009; Walsh et al. 2013; Wood 
et  al. 2003). Nevertheless, for early season fertilizer application NDVI seems to provide 
a reliable approximation of biomass. In-depth studies are needed to clarify the sensitivity 
change of spectral indices in relation to crop development features like canopy coverage to 
suggest the optimal sensing strategy to support in-season fertilizer application.

For the determination of the field variability by imaging, the use of a UAV system was 
superior to satellite data in this study (data not shown), because the plot size of the experi-
ments was relatively small and delineation of the plots with satellite pixels such as Sen-
tinel-2 was not robust, creating interference in the plot measurement precision. However, 
if considering the whole field level, the identification of N-status and extraction of ferti-
lization prescription maps would be feasible from such satellite data. In fact, the informa-
tion contained in the UAV images needed to be down-sampled to match the resolution of 
the application map for the tractor terminal of a minimum 7 × 7 m (derived by testing). In 
general, satellite images with a resolution of 10 × 10 m such as for Sentinel-2 are there-
fore a viable basis for creating prescription maps. Nonetheless, the drone-based approach 
allowed to study the vegetation development in more detail and to obtain information even 
on cloudy days, which can be an advantage in climates and regions in which the first and 
the second N fertilization split is usually performed during cloudy spring periods like in 
Switzerland. Therefore, the outlined approaches might lead to a more favourable use of 
small-scale equipment for the management of small-to-medium-sized agricultural systems 
in future. Based on such approaches, it might become possible to return to smaller sized 
tractors or even to use smaller machinery such as robots or small autonomous tractors 
equipped with pneumatic spreader systems, which can distribute fertilizer at a finer scale 
and thus may use prescription maps with higher resolution.

The characterization of the soil variability and crop growth variation is an important 
step to understand, whether variable rate application methodology is viable for a certain 
field or not (Griepentrog et al. 2007; Heege 2013). The four field case studies presented in 
this study showed various degrees of variability mainly due to underlying soil properties 
but also due to weather differences. Field F3 was relatively homogeneous and therefore the 
average saving of N fertilizer was only about 5%. Nonetheless, the redistribution of ferti-
lizer had a positive effect on yield and NUE. The influence of climate was crucial for F1, 
as 2018 was a very dry season (475 mm cumulative rainfall and mean T 10.5 °C in Janu-
ary–July 2018). However, for field F1 the combination of the dry season and a commonly 
water-stagnating soil was beneficial. In the central zone of the field, which had a higher 
level of organic matter and water holding capacity, likely supporting a higher N minerali-
sation, it was possible to reduce the fertilizer amount down to 30–35% in two VR plots, 
without loss in yield. The season 2019 instead was a wet season with generally beneficial 
weather (657 mm and T 9.5 °C January–July 2019) which was reflected in the higher soil 
N supply in the NF compared to the previous year. The favourable weather conditions com-
bined with the high N-mineralisation rate of the soil during the vegetation period likely led 
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to a good grain filling and higher TGW in the NF-plots. Ultimately, a deeper understanding 
of N mineralization potential, related to spatially and temporally varying environmental 
conditions, is necessary to define the most efficient fertilization strategy. The use of models 
or sensor-based information could help to better understand the dynamics of N throughout 
the season (Yin et al. 2020).

Environmental and economic efficiency

A general trend towards improved efficiency was observed in three of the four cases stud-
ies. The total wheat crop  Nup was similar between fertilized treatments, indicating that the 
impact of the reduction in applied N on  Nup from the VR treatments was compensated 
by the improved spatial distribution. The reduction of applied N over all plots and the 4 
years ranged from 5 to 40% of the standard N fertilization. PFP was the only efficiency 
indicator that resulted in significant differences between treatments. In this sense, the yield 
production in relation to the N applied was improved with VR application compared to 
ST. Whereas in 2018 a very high AFR of around 90% was obtained, in 2019 lower values 
around 24–69% were observed. The reason was that the soil in 2018 only supplied 84 kg 
N  ha− 1 (NF plots) due to the very dry climate. In 2019, the N replenishment from the soil 
was much higher (127–143 kg N  ha− 1). This might mean that the subsequent soil supply 
largely covered the N requirement of the plants and thus led to a very low N fertilizer utili-
zation. Although it is not possible to know which part of the applied N or soil N was taken 
up by the plants, this is a clear indication of lower fertilizer NUE and of an increased risk 
of N loss. In 2019, F2 had higher  Nmin (Table 2) and yield, therefore it is conceivable that 
the lower first application resulted in higher efficiency compared to F3 and F4. The use of 
image or sensor data is not sufficient to identify seasonal total N needs of the crop with 
high precision but arguably, the set of calculation applied to the data might have been a 
limitation.

In this study, it was not possible to directly estimate the emission of N via leaching and 
denitrification. However, the active N pool in the system can be estimated by summing the 
 Nup from the NF treatments, as measure for soil N supply during the winter wheat season, 
to the N applied in the fertilized treatments. Subtracting  Nup in the fertilized treatments 
from this active N pool reflects the approximate quantity of N left in the system after har-
vest prone to be lost or immobilized. In both years, the VR treatments showed a lower N 
loss risk. Whereas in 2018 the values were generally low and risk for N loss was 50% lower 
for VR than for ST (10 kg N  ha− 1 for VR and 21 kg N  ha− 1 for ST in F1), in 2019 the val-
ues were higher and VR was on average 30% lower than ST and NR (63 kg N  ha− 1 for VR 
and 90 kg N  ha− 1 for ST and NR in F2-F3) (Supplementary Table 2). Both VR application 
of fertilizers and considering soil N analysis for optimal N supply are viable methods to 
reduce the risk for N losses. The combination of both very likely creates a synergy in the 
reduction for field and farm management of N.

Marginal returns offer a simplified economic balance between the cost of fertilizer and 
the gain from the sale of the grain to the mill. The improved gain of VR when compared 
to the ST ranged from 1.6% corresponding to 31 CHF  ha− 1 to 9.3% corresponding to 335 
CHF  ha− 1. This evaluation does not take parameters such as the investment costs to obtain 
prescription maps or cost for the technology and machinery into account. Furthermore, in 
small-scale farming, a higher marginal return per ha might not be fully sufficient to sustain 
the required investments. Considering a scenario in which sufficient knowledge is avail-
able to the point that higher returns for a certain threshold of variability in the field can be 
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guaranteed, cantonal or governmental authorities could consider measures to support the 
transition to VR technology for farmers. Another strategy could be to encourage farm con-
tractors providing VR fertilization services.

Conclusions

The methods applied were suitable to characterize in-field variability and were able to 
increase the nitrogen use efficiency. Also under Swiss conditions, NDRE showed a better 
differentiation of the N-status of the plants, than NDVI. The potential for further improve-
ments lies primarily in the extent of the variability of N availability in the soil and resulting 
crop growth within the field, but also in a better understanding of mineralization processes. 
Easily collectable visual data that cover fields with a high spatial resolution can help to 
close this gap. Ultimately, better quantification of the variability in terms of N status and 
plant growth is necessary to set a threshold for deciding if variable rate application is worth 
being implemented in a designated field. However, VRA of N has the potential to reduce 
fertilizer inputs while keeping yields at current levels, in particular when combined with 
soil  Nmin information. Thus, it represents a viable tool among others to improve NUE in 
cropping systems and reduce N losses to the environment. The methodology may support 
increasing sustainability of small to medium scale agriculture by increasing financial return 
and decreasing the environmental footprint of arable cropping systems.
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