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Understanding the interaction of plant growth with environmental conditions is crucial
to increase the resilience of current cropping systems to a changing climate. Here,
we investigate PhenoCams as a high-throughput approach for field phenotyping
experiments to assess growth dynamics of many different genotypes simultaneously
in high temporal (daily) resolution. First, we develop a method that extracts a daily
phenological signal that is normalized for the different viewing geometries of the pixels
within the images. Second, we investigate the extraction of the in season traits of
early vigor, leaf area index (LAI), and senescence dynamic from images of a soybean
(Glycine max) field phenotyping experiment and show that it is possible to rate early
vigor, senescence dynamics, and track the LAI development between LAI 1 and 4.5.
Third, we identify the start of green up, green peak, senescence peak, and end of
senescence in the phenological signal. Fourth, we extract the timing of these points
and show how this information can be used to assess the impact of phenology on
harvest traits (yield, thousand kernel weight, and oil content). The results demonstrate
that PhenoCams can track growth dynamics and fill the gap of high temporal monitoring
in field phenotyping experiments.

Keywords: high-resolution remote sensing, crop phenology, leaf area index, early vigor, seasonal crop
development, dynamic traits, soybean, agriculture

INTRODUCTION

Understanding the interaction of growth dynamics and phenology with environmental conditions
is crucial to improve the resilience of our cropping systems to a changing climate (Pretty et al.,
2010; Asseng et al., 2013, 2015; Siebert and Ewert, 2014). One approach to this is to characterize the
growth of many different genotypes in different environments. Phenomics or phenotyping aims to
describe the appearance of plants as a function of the interaction of its genetic background with
environmental conditions and is currently one of the most rapidly developing disciplines in crop
science (Fiorani and Schurr, 2013; Walter et al., 2015). New platforms and imaging techniques
(Li et al., 2014; Cendrero-Mateo et al., 2017; Hund et al., 2019) aim to facilitate high-throughput
analyses of plant traits. For field phenotyping applications, where plants need to be monitored
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in outdoor environments, the development of standardized
methods for plant trait mapping is crucially needed (White et al.,
2012; Busemeyer et al., 2013; Deery et al., 2014; Kirchgessner
et al., 2017; Virlet et al., 2017). This setting, referred to as field
phenotyping, has been identified as one of the largest challenges
in plant phenotyping (Pieruschka, 2016; Araus et al., 2018).

Today, the most common technique to assess the growth of
many different varieties under field conditions is still the visual
rating by trained experts. In recent years, large infrastructures
have been put into practice that can screen crop traits in a (semi-)
automatic fashion (Kirchgessner et al., 2017; Virlet et al., 2017).
Also unmanned aerial systems (Bendig et al., 2015; Liebisch et al.,
2015; Zaman-Allah et al., 2015; Gómez-Candón et al., 2016;
Haghighattalab et al., 2016; Kefauver et al., 2017; Madec et al.,
2017; Yang et al., 2017; Aasen and Bolten, 2018; Aasen et al.,
2018; Hu et al., 2018; Roth et al., 2018) and manual and (semi-)
automated ground-based approaches (Gnyp et al., 2013; Tilly
et al., 2015; Madec et al., 2017; Jimenez-Berni et al., 2018) are
now used for this purpose. All of these approaches can deliver
very high spatial resolution data. However, dynamic processes
such as phenology might only differ by a couple of days between
different genotypes of the same crop species or under different
environmental conditions (e.g., Anderegg et al., 2020). Thus,
methods that can deliver data at very high temporal resolution
(at a daily rate) of many experimental plots at the same time are
needed in the context of plant breeding and variety testing.

In the field of ecology, the technique of digital repeat
photography—also called PhenoCams—that continuously
capture images of a given area with an RGB or near-infrared-
enabled cameras has been used for more than a decade to
estimate phenology (Richardson et al., 2007, 2009, 2018a;
Ahrends et al., 2009; Penuelas et al., 2009; Graham et al., 2010;
Ide and Oguma, 2010; Kurc and Benton, 2010; Migliavacca
et al., 2011; Keenan and Richardson, 2015; Hufkens et al., 2016).
Usually, the cameras are mounted on towers or lookouts and
view the canopy horizontally or obliquely to record the objects
within their field of view several times a day. Within these
images, the brightness information of the RGB channels can
then be used to track changes in phenology. Based on the digital
numbers (DN) of the RGB channels, different color indices
(CIs) such as the green or red chromatic coordinates or the
excess green index were evaluated for that purpose. These CIs
normalize the scene illumination or have an improved capability
to distinguish vegetation (Sonnentag et al., 2012). Based on
CIs derived with Phenocams, many studies have investigated
the timing of phenological events [also called phenological
transition dates (Richardson, 2019)], such as budburst and
leaf-out (Klosterman et al., 2014) or the start and end of the
season, as well as the peak of redness and end of redness
during senescence (Xie et al., 2018). Different software packages
have been published to process PhenoCam data. PHENOR in
combination with the PHENOCAM and DAMETR R package
allows extraction and modeling of phenological information
from images. Hufkens et al. (2018a) showed how this data could
be used to evaluate phenology models. The Phenopix R package
automates different fitting techniques as well as the extraction
of phenological events (Filippa et al., 2016). Since different
terminologies are used throughout the literature, we will use the

term “PhenoTimePoint” as a point in time that refers to an event
within the phenological signal and the term “PhenoPhase” as a
temporal period during the phenological development.

Most studies have been carried out on natural or semi-natural
vegetation and rarely on intensively managed agricultural fields
and never to distinguish crop genotypes or varieties. Anderson
et al. (2016) and Andresen et al. (2018) investigated the growth
of vegetation in high arctic regions and Snyder et al. (2016) the
PhenoPhases in a cold desert. Several studies have investigated
grassland (Migliavacca et al., 2011; Julitta et al., 2014; Hufkens
et al., 2016; Browning et al., 2017; Liu et al., 2017; Fan et al., 2018;
Filippa et al., 2018) and forest phenology (Richardson et al., 2007,
2013, 2018b; Hufkens et al., 2012; Sonnentag et al., 2012; Keenan
et al., 2014; Klosterman et al., 2014; Reid et al., 2016; Donnelly
et al., 2017; Liu et al., 2017, 2018; Filippa et al., 2018; Toda and
Richardson, 2018). Throughout the last years, large datasets of
PhenoCam imagery that cover several different vegetation types
have been established (Brown et al., 2016; Hufkens et al., 2018b;
Nagai et al., 2018; Richardson et al., 2018a).

Still, not too many studies have been published for agricultural
crops. Sakamoto et al. (2012) used two compact digital cameras
to capture visible and near-infrared images to observe seasonal
changes in crop growth of maize and soybean (Glycine max)
during one year. They found that the camera-derived CIs were
closely related to VIs calculated using a multispectral sensor
(SKYE) and MODIS satellite reflectance. Additionally, they found
that CIs were related to the change of green LAI, total LAI, and
above-ground dry biomass of stalks and leaves during the season.
Zhu et al. (2016) used a tower-based system to detect the wheat
heading stage based on ear feature detection within the images
and Brocks and Bareth (2018) used stereo images from a tower
based system to estimate biomass in barley.

To the authors’ knowledge, the PhenoCam approach has not
yet been used (i) in the typical field phenotyping setting, where
the growth of multiple genotypes needs to be characterized
simultaneously, and (ii) to investigate the impact of the timing
and duration of PhenoPhases on harvest parameters. The aim
of this paper is to investigate the PhenoCam approach within a
field phenotyping setting, in which the performance of several
genotypes is compared. First, we will introduce a data processing
workflow that takes into account the special needs of crop
monitoring in the context of field phenotyping. Then, we will
follow the phenological signal throughout a season and evaluate
the data for a soybean variety testing trial. We show how the
phenological signal can be used to estimate in season traits
such as early vigor, dynamic traits such as LAI development
and senescence dynamics, which are very important traits in the
context of plant breeding (Hund et al., 2019). Additionally, we
demonstrate how information on phenological timing can be
used to assess the impact of phenology on harvest traits such as
thousand kernel weight (TKW), yield, and oil content.

METHODOLOGY

In the following, the dataset and methodology to extract in season
and harvest traits from the phenological signal are introduced.
Figure 1 gives an overview of the workflow.
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FIGURE 1 | Schematics for the methodology of using PhenoCams for field phenotyping. Arrows point in the direction of data flow. Dotted connections represent
data correlation. Both the in-season and harvest traits are also spatially corrected for in-field heterogeneity.

Camera System and Dataset Description
We use images of a LUPUSNET HD – LE971 camera1, which
provides a resolution of 1,920× 1,080 pixels. It was mounted on a
pole of the ETHZ field phenotyping platform (Kirchgessner et al.,
2017) at 24.5 m height above the corner of our research field at
the ETH Research Station for Plant Sciences Lindau-Eschikon,
Switzerland (47.449 N, 8.682 E; 556 m above sea level). Viewing
direction was toward north, north-west. In 2015, we used 44,000
images recorded with a frequency of 4 to 60 images per hour.
Figure 2 shows an example image of the soybean field from 2015.

The soil of the experimental field was slightly acidic (pH = 6.2)
cambisol with sandy loam soil structure and low humus content.
The soil analysis indicated sufficient availability for phosphate,
potassium, and magnesium. 10 soybean cultivars (Glycine max
[L.] Merrill) differing in the time needed for seed maturation
and in nutritional food composition of the beans were selected
(Table 1). All of the cultivars were commercially available in
Switzerland, and eight of them were on the national list of
Swiss soybean varieties (Schwärzel and Hiltbrunner, 2015). 88
experimental plots of 1.5 m by 6.5 m containing seven rows
of a particular soybean cultivar were sown on April 10, 2015.
Each cultivar was planted in eight replications in a randomized
complete block design, whereas four were used for ground
validation measurements. During the season between the sowing
date (10.04.2015) and the harvest (10.09.2015), crop cultivation
measures were done according to best management practices
for breeding trials. The genotype “Amphor” was excluded from
analysis due to low viability resulting from old seed age (plots

1https://www.lupus-electronics.de

with bad growth in Figure 2A). The details on the set of genotypes
are given in Table 1 (see Supplementary Table S2 for details of
field management).

Phenological Signal Generation
Extraction of Plot Values
To extract a representative value for each plot, we created a plot
mask with a margin sufficient to keep the mask inside the plot’s
extent during the complete growing period. This is important,
since the plot’s position in the image slightly changes during the
growing period due to the interaction of viewing angle and crop
height. These masks are used to extract the RGB values of the
plots. Depending on the position in the image, the masks of each
plot contain between 1,000 and 9,400 pixels. The green chromatic
coordinate (gcc; Gillespie et al., 1987) allows estimating the
“greenness” of objects (Hufkens et al., 2012; Sonnentag et al.,
2012; Brown et al., 2016; Richardson, 2019). It divides the green
pixel value by the sum of the pixel values of the green, red,
and blue channels (Eq. 1). Previous studies showed that gcc
compensates changing illumination conditions and can be used
with non-calibrated cameras (e.g., Sonnentag et al., 2012). To
exclude the influences of obstacles such as cables of the field
phenotyping platform, we averaged all gcc values within the 25th
to 75th percentiles of the pixels in each mask. We apply this
methodology to all day images of the dataset. As a result, we
get gcc values for each plot with a temporal resolution of the
capturing frequency of the image.

gcc = green/(green + red + blue) (1)
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FIGURE 2 | (A) Image captured by the FIP-PhenoCam system on the June 19, 2015. The red rectangle denotes the relevant plots of the soybean experiment. The
experiment is surrounded by one row of border plots. At the top-left of the image, the wheat experiment is visible. In the foreground, two cables of the field
phenotyping platform are visible. (B) Average zenith viewing angle for each plot.

Extraction of Daily Signal
Different methods have been proposed to get a representative
signal for each day. Often, the 90th percentile of all values per
day, along with a 3-day moving average is used to minimize day-
to-day variation mainly caused by changing weather conditions
influencing the illumination (Hufkens et al., 2012; Sonnentag
et al., 2012). Other studies used a sigmoid function or logistic
functions to normalize for these effects (Klosterman et al., 2014).
After trying the median, mean, and different percentiles, we
use the median per day to get a representative value per day,
since we found that it is robust toward illumination changes (c.f.
Figure 3). Nevertheless, the data is not fully free of day-to-day
noise, which complicates the following analysis steps. Thus, we
applied a Savitzky-Golay filter (Savitzky and Golay, 1964) with a
3rd order polynomial and frame length of 7, which is used widely
to investigate time series data (Chen et al., 2004; Jönsson and
Eklundh, 2004; Cao et al., 2018). The result is a daily phenological
signal for each plot.

PhenoTimePoint and PhenoPhase
Extraction
To extract the PhenoTimePoints, we scaled the uncorrected
phenological signal for each plot from 0 to 1. Then, we
extracted significant points from the phenological signal by
identifying minima and maxima and slope-based features. At
the beginning of the green up phase, we defined the start
of green up point (SOG) as the point in time at which
the difference between two consecutive days increased above
0.015, which corresponds to a slope of 0.015, since the values
were scaled between 0 and 1. The first maximum of the
signal after the green-up was defined as green peak (GP).
The last peak was defined as senescence peak (SP). The first
minimum after the SP was defined as end of senescence/season
(EOS). Table 2 summarizes the extracted features. For each
plot, we extracted the days after sowing (DAS) for the
identified PhenoTimePoint and corrected them for spatial
effects (c.f. section “Spatial Correction”). Then, we calculated

TABLE 1 | Evaluation of oil and protein contents as well as the yield of the
investigated soybean cultivars and the classification into the different maturity
groups: +++, very good; ++, good; +, intermediate to good; Ø, intermediate; –,
weak to intermediate; NA, not available [according to (Schwärzel and Hiltbrunner,
2015)].

Cultivar Maturity group Difference in
growth days1

Oil
content

Protein
content

Yield3

Aveline Medium early −4 – ++ +

Falballa Medium late NA –2 +++2 –(Ø)2

Gallec Early −6 – + ++

Lissabon Medium early −2 – + ++

Merlin Early −8 + + ++

Obelix Early −5 +2 Ø2 +++

Opaline Medium late 1 + + ++

Proteix Medium late 1 + ++(+) ++

Tiguan Very early NA +2 Ø2 ++2

Turmaline Medium late NA +2 +2 +++2

The cultivars “Falbala” and “Tiguan” were not recommended according to
the Swiss cultivars catalog (Schwärzel and Hiltbrunner, 2015). 1Reference
cultivar Maple Arrow (0 days), 2www.dsp-delley.ch, 05.03.2020, 3Within
the maturity group.

the duration of the PhenoPhases as the difference in DAS
between two PhenoTimePoints. Figure 4 shows the concept for
data of one plot.

Spatial Correction
Within breeding trials, it is common to correct for field
heterogeneity resulting from differences in the soil or from
slight differences in the management. Multiple approaches exist
to correct for spatial effects (Gilmour et al., 1997; Piepho and
Williams, 2010). Velazco et al. (2017) compared different mixed
model approaches to correct for spatial trends. They found
that the ‘Spatial Analysis of field Trials with Splines’ (SpATS)
approach (Rodríguez-Álvarez et al., 2018), which uses two-
dimensional P-splines, performed comparably to more elaborate
and trial-specific spatial models, with the advantage of being
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FIGURE 3 | (A) Evolution of the phenological signal of plot 4 denoted by the green chromatic coordinate (gcc) during the season. The colored dots represent the
individual data points extracted from the images, while their color corresponds to the measurement time (around DAS 80 the measurement frequency of the camera
was increased for a short period). The black dots and triangles are the daily averages derived from the median and the 90th percentile, respectively. The solid line
represents the Savitzky-Golay smoothed median values. On the right axis and denoted with the gray ribbon is the corresponding heritability of the signal across the
genotypes measured by means of heritability (H2) across the season. (B) Images taken by the digital repeat photography device at six different days, denoted in days
after sowing (DAS), during the growing season of soybean.

flexible and user-friendly. It calculates the field heterogeneity into
the following model:

Y = f (r, c)+ Zgcg + Zrcr + ε (2)

where Y is the measured phenotypic value and f (r, c) is a
smoothed bivariate surface defined over row (r) and range
(c) positions across the field. The vector cg is the random
coefficient of the genotypes associated with the design matrix
Zg of the experiment, cr is the random coefficient of the rows
associated with design matrix Zr, and ε is the random error vector
(Rodríguez-Álvarez et al., 2018).

Besides the field heterogeneity, our data is additionally
influenced by the different viewing geometries within the image

TABLE 2 | PhenoTimePoints with their abbreviation and description.

Abbreviation Name of feature Description

SOG Start of green up Rapid increase in greenness begins,
slope >0.015 before green peak

GP Green peak Maximal gcc during green up

SP Senescence peak Maximum gcc during senescence

EOS End of senescence
(/Season)

First day with slope >−0.01 after SP

(c.f. Figure 2). Since the viewing geometry changes continuously
across the image and consequently across the field, we consider
it as a continuous component of spatial heterogeneity that adds

Frontiers in Plant Science | www.frontiersin.org 5 June 2020 | Volume 11 | Article 593

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-11-00593 June 16, 2020 Time: 18:49 # 6

Aasen et al. PhenoCams for Field Phenotyping

FIGURE 4 | Overview of the phenological signal of plot 5 with different
PhenoTimePoints: start of green up (SOG), green peak (GP), senescence
peak (SP), and end of season (EOS). The light green and orange bars
symbolize the PhenoPhases SOG to GP and SP to EOS, respectively. The red
and green points correspond to the visual senescence rating and LAI
development (multiplied by 10 for visualization purposes), respectively. The
dotted lines are printed for visual reference.

to the spatial effects resulting from field heterogeneity and thus
becomes part of the f (r, c) term.

With SpATS, we calculated the Best Linear Unbiased
Estimator (BLUE) for each genotype; Best, meaning they
have the lowest variance, Linear, meaning they are linear
functions of the data, and Unbiased, means the expected
value of a mean estimate for an individual equals its true
value (Molenaar et al., 2018). While best linear unbiased
predictions (BLUPs) have some advances compared to BLUEs
in many cases (Piepho et al., 2008; Molenaar et al., 2018),
in our case the limited number of genotypes and the
lack of information on relationships to a base population
did not allow to accurately estimate the genetic variance
components. Thus, we set genotype effects as fixed and used
BLUEs to normalize the field heterogeneity and compare
between genotypes.

Heritability measures the proportion of the overall observed
phenotypic variance that can be explained by the genetic
variance. Heritability of the spatially corrected traits was
calculated according to (Rodríguez-Álvarez et al., 2018) based
on the genetically effective dimensions provided by SpATS with
genotypes set as random effect:

H2
s =

EDg

mg − 1
(3)

where EDg is the effective dimension for the genotypes and mg
is the total number of genotypes evaluated. The denominator
(mg – 1) reflects the upper bound for the effective dimension (see
Rodríguez-Álvarez et al., 2018 for further details).

We calculated genotypic BLUEs and heritability for the
phenotypic gcc values of every measurement date, the
PhenoTimePoints before calculating the PhenoPhases and

the field measured crop traits. Throughout the manuscript,
the spatial corrected genotypic BLUEs are referred to as
genotypic values, whereas the observed values are referred to as
phenotypic values.

In-Season Trait Estimation
To evaluate and validate the feasibility and relevance of the
extracted PhenoTimePoints and PhenoPhases in relation to crop
growth and development in a breeding trial context, we selected
early vigor, leaf area index (LAI) and senescence. All these traits
are known to be an important selection criteria for soybean
breeding in Switzerland and similar environments.

Early vigor was rated as an indicator for plant health
and growth development at 40 DAS. The plots were rated
by two persons, independently of the germination rate, and
the values were averaged. The used scale ranged from one
to eight. One means that the plant is small and depicts
a low vitality, whereas eight stays for very vigorous plants
showing a large and vital plant habitus. The rating mainly
integrates size and color information (Peter et al., 2009). The
LAI was measured in regular intervals during homogeneous
weather conditions such as cloud-free sky or constant cloud
cover with an LAI-2200 Plant Canopy Analyzer (LI- COR,
Inc., Lincoln, NE, United States). The LAI measurement
combined a first measure above the canopy, followed by ten
representative measurements diagonally spread through the plot
canopy followed by a second above canopy measurement. With
a 270◦ view-restricting cap, the potential negative influence
by the measuring person was reduced. The senescence was
estimated as the percentage of yellow and brownish colored
leaves as well as fallen leaves according to (Munger et al.,
1997). The senescence rating was done six times for each
plot at 109, 117, 124, 132, 137, and 150 DAS, respectively.
For each trait, we calculated the genotypic BLUEs and
correlated both the (spatially not corrected) phenotypic and
genotypic BLUEs with the uncorrected and spatially corrected
phenological signal.

Harvest Trait Estimation
To evaluate the relevance of the extracted PhenoTimePoints
and PhenoPhases for overall crop performance, we investigated
their relationship to the harvest traits yield, thousand-kernel
weight (TKW), and seed oil content. Yield in t ha−1 was
estimated using the seeds of all hand-harvested pods of 1 m of
plants dried for 3 days at 40◦C. Due to the experimental setup,
machine harvest was only possible at the time of maturity of
the latest ripening genotypes, when early genotypes were already
affected by pod and kernel fall. The TKW (g) was calculated
by counting and weighing the seeds of 10 randomly selected
pods. Oil content (percentage of dry kernel weight) was measured
in dry grains with a near-infrared spectrometer (NIRS, Infratec
1241 grain analyzer, Foss GmbH, Rellingen, Germany) using
the company provided soybean program. Also, for the harvest
traits, we calculated the genotypic BLUEs and correlated these
with the BLUEs of the PhenoTimePoints and the duration of
the PhenoPhases.
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RESULTS

Phenological Signal
Figure 3 shows the evolution of the gcc-based phenological
signal of plot 4. After sowing, the phenological signal did
not change much until around DAS 50. During this time,
the vegetation growth was very limited due to the low
temperatures. The fluctuations were mainly due to changes
in soil moisture due to rain, although at DAS 23, the
growth also started. At DAS 48, the gcc steeply started
to increase. This increase was followed by a shoulder of
high greenness around DAS 76, after which the greenness
decreased before it rose again to a second peak around 125
DAS. After this second peak, the greenness steeply decreased
until around DAS 144.

The black triangles and dots in Figure 3 represent two
different approaches to extract a daily signal, namely the
90th percentile often found in literature and the median,
respectively (c.f. subsection “Extraction of Daily Signal”). In
direct comparison, the median values appeared less noisy than
the 90th percentile, in particular when the environmental
conditions differed, such as between DAS 50 and 60. Thus, we
continued with the daily median to generate the phenological
signal. Still, the median was also affected by changing
illumination conditions, but the Savitzky-Golay filter was able
to reduce these day-to-day fluctuations. The heritability of the
phenological signal varied. Between DAS 15 and DAS 20, it
increased to 0.95. At DAS 55, it slightly decreased to 0.925
at DAS 60, 0.85 at DAS 70, and 0.33 at DAS 80. Toward
DAS 90, it increased again over 90 before it decreased again
after DAS 140.

Spatial Correction
Figure 5 shows the phenotypic and genotypic values of the
different plots of the phenological signal at different DAS
and for different PhenoTimePoints in relation to the viewing
geometry. The influence of the viewing geometry on the
phenological signal changed throughout the season. During the
early development (DAS 40 and 50), the signal was positively
related to viewing geometry. During the green up (DAS 61),
only a weak trend was found. Around the GP (DAS 80) and
SP (DAS 120), the relationship was negative. At the end of the
season, only a weak positive trend was observed. Overall, the
viewing geometry had only a weak relationship with the signal
(R2 < 0.08; Supplementary Table S3). For DAS 80 and 120,
the viewing geometry had an R2 of 0.55 and 0.26 with the gcc
(Supplementary Table S3). In all cases, the spatial correction
could mitigate the viewing geometry effect. In all cases, the timing
of the PhenoTimePoints had a weak positive trend with the
viewing geometry (R2 < 0.09; Supplementary Table S3). Also
here, the spatial correction could reduce this trend. The exact
quantitative description of the relationships can be found in
Supplementary Table S3.

The gray bars in Figure 6 show the heritability of the
PhenoTimePoints and PhenoPhases. After spatial correction,
all PhenoTimePoints showed a high heritability (H2) above

0.76. Besides of the PhenoPhase EOS_GP (H2 of 0.46), all
PhenoPhases also showed high to very high heritability (0.68–
0.97). For exact timings with their variability and heritability, see
Supplementary Table S1.

In Season Trait Estimation of Leaf Area
Index, Early Vigor, and Senescence
The gcc represents an integrated signal of canopy greenness.
Until 70 DAS, the LAI increased to 6. Toward higher values, the
scatterplots (Figure 7) show that the gcc signal saturated at an
LAI of about 4.5. At low LAI (<1), the scatterplots indicate that
there was no clear relationship between the LAI meter and gcc
estimated LAI values. The LAI values of DAS 61 ranged from
0.35 to 2.93. In this span, the gcc corresponded well with the LAI
on the phenotypic (R2 of 0.8) and genotypic level (R2 of 0.84).
At DAS 40, a good relationship was found for plant vigor on the
phenotypic level (R2 of 0.64) and the genotypic level (R2 of 0.78).

Visual senescence rating and gcc were not linearly related over
time (Figure 8). While the visual rating constantly decreased over
time, gcc showed a clear bimodal trend with a steady increase
followed by a sharp decrease. Until a senescence rating of about
65%, there was a positive linear trend of gcc with the rating. After
65%, there was a strong negative trend (R2 of 0.78 and 0.69 on
the phenotypic and genotypic level, respectively) of gcc and the
rating. This also showed that the SP approximately corresponds
to a senescence rating of 65%.

PhenoTimePoints and PhenoPhases
Figure 4 shows the relation of the phenological signal to the
manual rating of senescence and LAI of one plot: The LAI rapidly
increased after SOG toward the GP. Around the GP, the LAI
increase slowed. The senescence steeply increased toward the SP
and reached 100% at EOS. The SP approximately corresponded
to a senescence rating of 65%.

Figure 6 shows boxplots of the timings of the PhenoPhases
and PhenoTimePoints. The timings of the PhenoTimePoint
SOG only showed a small variability of 3 days. The GP, SP,
and EOS showed greater variability (more than 7 days). The
PhenoPhase SP_SOG showed a high range of durations (more
than 14 days) being in the same order of magnitude as the
maturation difference known for the selected genotypes (between
1 and 3 weeks). SP_SOG showed a high range of 14 days,
while the difference in duration of the other PhenoPhases was
between 6 and 7 days.

Interaction Between Phenological
Timing and Harvest Traits
With the information on the timing and duration of the
PhenoTimePoints and PhenoPhases, it is possible to correlate
these with harvest traits. In the following, we show the
potential of the approach by discussing (a) how the early vigor
corresponded to the timing of the PhenoTimePoints of the
different genotypes and (b) how the timing of PhenoPhases
corresponded to the harvest traits dry thousand kernel weight,
oil content and pod yield.
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FIGURE 5 | Comparison of the relationship between the zenith angle and the phenotypic (blue) and spatially corrected genotypic (red) values of the (A–F)
phenological signal (gcc) at different days after sowing (DAS) and for different PhenoTimePoints (G–J). For the DAS, information of all available plots (80) was used
while for the PhenoTimePoints, only plots (40) where ground validation data was available were considered. For coefficient of determination and p-value please refer
to Supplementary Table S3.

Figure 9A shows a scatterplot of the vigor rating at DAS 40
to the timing of the GP of the different genotypes. A high rating
of vigor strongly corresponded (R2 of 0.87) to an earlier GP.
For the other PhenoTimePoints the relationship was moderate
(Figure 9B). All relationships were negative, which indicated
that a high early vigor generally led to earlier development. The
PhenoPhases had a moderate to low (R2 < 0.4) relationship
to the early vigor rating and were negative. Only the duration
between SP and EOS had a moderate (R2 of 0.36) positive

correlation to early vigor, which indicated that a better early
growth prolongs senescence. Early vigor had no significant (p
of 0.01) correlation to the total duration of growth after the GP
peak was reached.

Figure 10 shows the correlation of the harvest traits yield,
TKW, and oil content with the timings of the PhenoTimePoints
and PhenoPhases. It revealed that varieties that had an earlier
start of the green up phase and reached the GP earlier had a
higher TKW. Varieties that reached the GP later had a higher
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FIGURE 6 | Heritability (H2; gray bars and number at the front of the bar), timings in days after sowing (DAS; boxplots) and duration in days of the PhenoTimePoints
(A) and of the PhenoPhases (B), respectively.

oil content. Varieties that had a shorter green period (SP_GP)
and an earlier SP had a higher yield, while varieties with a longer
senescence period (EOS_SP) had a higher yield. Similarly, the oil
content was higher when the duration between the GP and SP
or EOS was longer. It has to be noted that these results might be
specific for this experiment reflecting the genotype selection.

DISCUSSION

Generation of the Phenological Signal
PhenoCam data are generally produced by uncalibrated cameras
and are influenced by many factors. In this study, we identified
(i) changing measurement geometry during the day, other
(ii) changes in illumination conditions due to varying cloud
cover, and (iii) the viewing geometry within an image as
the main influences on the phenological signal. The gcc is
known to suppress the effects of changes in scene illumination
(Sonnentag et al., 2012). During initial tests, we could confirm
that the gcc was more stable than other color indices (data
not shown). To account for short term fluctuations of the
signal (i, ii) we calculated the daily median to normalize
for the diurnal differences and used the Savitzky-Golay filter
to buffer day-to-day variations resulting from short term
differences due to changing weather conditions. The approach
showed to be more successful than other approaches (e.g.,
90th percentile) to derive a smooth signal across the season.
Still, two uncertainties remain: With low crop cover, the soil
background affects the signal. Wet periods of several days
reduce the gcc value as seen around DAS 25. Also, plant
canopies appear differently in direct and diffuse illumination
due to the varied shading within the canopy (Aasen and
Bolten, 2018), which is still an open problem in remote sensing
and field phenotyping (e.g., Yu et al., 2017) and hard to
address in a general manner without actual information on
canopy structure. Nevertheless, the daily mean in combination
with the Savitzky-Golay filter seemed to normalize fluctuating
illumination conditions quite well. The different pixel count

per plot, which results from different distances to the camera,
can be assumed to have negligible effect on the signal, since
pixels covering a larger area represent the average signal of
this area. Still, a sufficient resolution is required for cameras to
ensure that pixels potentially contaminated from border effects
can be excluded.

The systematic bias resulting from viewing geometry (iii)
could be mitigated by the spatial correction approach along
with potential in-field heterogeneity. The gcc at most DAS and
most timings of the PhenoTimePoints were influenced by the
oblique viewing geometry (Figure 5), as has also been reported
for LAI in forest environments (Keenan et al., 2014). The main
reason for this is that the zenith angle interacts with canopy
structure, which results in occlusion effects (Aasen and Bolten,
2018; Roth et al., 2018). Considering the pattern caused by the
viewing geometry (Figure 2B) as observational bias during the
spatial correction could remove the trend (Figure 5) and most
of the remaining variance could be attributed to the differences
between the genotypes as demonstrated by the high heritability
(Figure 6). The drawback of this approach is that it relies
on an experimental design that is suited for spatial correction
procedures, such as those implemented in SpATS or similar
approaches. Still, the viewing geometries mainly influenced
the absolute values of the gcc. In comparison, the timing of
the PhenoTimePoints was barely influenced (Figure 5 and
Supplementary Table S3). Thus, two cases can be distinguished:
(a) when the gcc should be used as a proxy for a trait (e.g., LAI
and vigor), a spatial correction seems to be necessary; and (b)
when the gcc dynamics are used to estimate PhenoTimePoints
it does not seem to be absolutely necessary to apply a spatial
correction. Regarding the absolute values, it also has to be noted
that these results will mainly depend on the differences between
the viewing geometries of each plot. When a camera is mounted
further away from the experiment, the viewing geometries for
each plot will be more similar and, consequently, will have
less impact on the results. Additionally, the absolute influence
of the viewing geometry will always depend on the canopy
structure and thus differ between crops. Besides, further studies
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FIGURE 7 | Top: Plots of gcc and leaf area index (LAI) at days after sowing (DAS) 40, 61, and 70. Middle: Plot of the relationship of LAI and gcc at DAS 61. The solid
line is a smoothed line though all data points while the dotted lines are regression lines for each DAS. Bottom: Plots of gcc and vigor rating. On the left, the
phenotypic values are shown. On the right, the genotypic values are shown.

could advance the spatial correction approach by separating
the effects resulting from the viewing geometry from field-
heterogeneity effects.

Extraction of Traits, PhenoTimePoints,
and PhenoPhases
The analysis showed that the gcc could be used to estimate
LAI between approximately 1 and 4.5. Higher LAI values were

not detectable due to saturation of the gcc resulting from the
mentioned occlusion effects in combination with almost full
canopy cover. The inaccuracies of lower LAI values likely result
from the inaccuracies from our reference method. It is known
that the Plant Canopy Analyzer (LAI-2200) cannot capture low
LAI (<1) values reliably in row crops (c.f. Roth et al., 2018).
Since crop growth is most rapid for LAI 1 to 4.5 (e.g., Figure 4),
capturing the development in this phase is already a benefit for
many applications in breeding and variety testing. It is likely that
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FIGURE 8 | Relationship of senescence ratio to gcc on the phenotypic (A) and genotypic level (B) in days after sowing (DAS). The color corresponds to the
senescence rating. The coefficient of determination (R2) is given for the relationship of gcc and senescence for a rating above 65%.

FIGURE 9 | (A) Scatterplot of the early vigor rating at days after sowing (DAS) 40 with the timing of the green peak (GP) in DAS for the different genotypes.
(B) Coefficient of determination (R2) of early vigor, PhenoTimePoints, and PhenoPhases. Bars below the dashed line correspond to negative correlations and vice
versa. Results for the start of season are not shown due to the low range of the values.

the exact relationships between gcc and LAI are crop and site
specific (e.g., in brighter soils also lower LAI values will be visible)
and will be influenced by the sowing density and row orientation.
Nevertheless, the general concept is broadly applicable. Future
studies should investigate the relationships for other crops and
sowing patterns.

We could identify four points within the phenological signal
that could be attributed to phenological events, namely the
start of green up (SOG), green peak (GP), senescence peak
(SP), and end of senescence/end of season (EOS). Different
terminologies have been used in the ecological literature, and
we tried to align with the existing terminology. In the case
of SOG, we refrain from calling it start of season, since the
plants did already grow before, but our model could not reliably
resolve it (see below). The GP and SP are uncommon in
the ecological literature. But, the analysis showed that these
PhenoTimePoints can be attributed to quantitative ratings for
LAI and senescence of soybean. Figure 7 shows that the

maximum value of the gcc is around an LAI of 4.5, and
consequently, the peak during green up (GP) can be attributed
to this value. Figure 8 shows that the gcc reaches a maximum
during senescence at a rating of 65%, and consequently, the
peak of gcc during the senescence phase (SP) can be attributed
to this value. As previously mentioned, it has to be noted
that it is likely that these values are species specific because
they are influenced by canopy structure. Also, it has to be
mentioned that senescence in field crops often starts at leaf levels
close to the ground. This is a shortcoming of the presented
method since oblique images only capture the top of canopy.
This also needs to be taken into account when setting up a
camera, since in crops where the canopy is not 100% closed
at the time of senescence—such as cereals—viewing geometries
close to nadir will allow seeing into the canopy and thus,
possibly capture processes earlier than in parts of an image
with oblique viewing geometries. Thus, ideally, a camera should
be placed in some distance to the experiment such that the
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FIGURE 10 | Relationship of phenological timing of PhenoTimePoints (A) and PhenoPhases (B) with harvest traits by means of coefficient of determination (R2).
Bars below the dashed line correspond to negative correlations and vice versa. For readability, only PhenoPhases with an R2 of more than 0.25 are shown (all have a
p-value of <0.01).

viewing geometry differences are small. Finally, the method to
extract the PhenoTimePoints relies on significant changes in
the slope of the gcc. This turned out to be a shortcoming
in extracting the point for start of senescence, which did not
work reliably for all genotypes. We ascribe that to the fact that
some plots already started a very slow yellowing process around
DAS 99, which did not produce a pronounced slope change
(Supplementary Figure S1).

Investigating Interactions of Growth,
Harvest Traits and Phenology With
PhenoCams
While there is a conceptual understanding on how phenology
may be influenced by climate conditions, it is challenging
to provide quantitative estimates of the magnitude of
these shifts (Richardson et al., 2013; Herrera et al., 2018).
Field phenotyping with PhenoCams is a low cost, fully
automated approach to gather very high temporal resolution
data of an area sufficient for experimental trials. We

TABLE 3 | Comparison of different approaches to measure basic phenological
parameters.

Close range
mobile

systems

UAVs Field
PhenoCam

Close range
PhenoCams

Cost −− 0 ++ −

Set up effort −− − + −

Operational effort −− − ++ ++

Spatial resolution ++ + −− ++

Realistic temporal
resolution

0 + ++ ++

+ and ++, advantages; − and −−, disadvantages.

could show that such an approach is particularly useful
to monitor (i) rapid growth dynamics that might only
differ by or last a few days, (ii) investigate differences in
phenology across genotypes, and (iii) analyze the interactions
between crop development (e.g., early vigor, LAI, and
green up dynamics), phenology (e.g., senescence dynamics)
and harvest traits.

With the highly temporal-resolved data, we could investigate
the influence of early vigor on subsequent PhenoTimePoints and
duration of PhenoPhases. While the focus of this manuscript
is on the methodology, the obtained results are plausible. Early
vigor is positively correlated with GP showing the faster canopy
closure of more vigorous genotypes. Similar observations were
reported using canopy cover measures instead of GP (Kipp
et al., 2014; Kirchgessner et al., 2017). Besides, we found that
yield and yield-quality traits such as oil content and TKW are
related to a longer green period, late and short senescence,
which has previously been reported to correspond to higher yield
performance under normal or stress situations (Kropff et al.,
1993; Thomas and Smart, 1993; De Souza et al., 1997; Rebetzke
et al., 2016). While these interactions are not new knowledge
per se, so far it was very hard to quantify these relationships
for multiple genotypes in the field. Because these insights are
connected to differences between genotypes, analyzing datasets
of multiple years would also allow assessing, e.g., the impact of
climate-induced phenological shifts.

Comparison to Other Approaches
PhenoCam data allows monitoring multiple areas of interest at
the same time (e.g., Julitta et al., 2014; Browning et al., 2017;
this study) in very high temporal resolution. As shown, they
can monitor various types of traits across the whole season with
minimal effort. Still, the approach is limited to some basic traits
that are observable with the spatial ground sampling distance of
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the cameras. Besides, the approach is not suitable to estimate
biochemical traits due to the missing radiometric calibration
and spectral characterization. While encouraging approaches
exist, e.g., using very high-resolution gray card calibrated
nadir images along with plant segmentation to estimate
leaf nitrogen concentration levels (Wang et al., 2014), the
bandwidth of usual RGB cameras are typically too wide
to fit the absorption features of e.g., pigments. Continuous
spectral measurement systems may be superior for that
purpose (e.g., D’Odorico et al., 2015; Paul-Limoges et al.,
2018; Wieneke et al., 2018). However, temporally continuous
spectral measurements are mostly limited to point measurements
(Aasen et al., 2019).

For a field phenotyping scenario compared to the one of
this study, where a couple of hundred plots (depending on
the plot size) on an area of approximately 2 ha are to be
screened for basic phenological parameters, the PhenoCam
approach has lower operational and setup cost, higher temporal
resolution but lower precision compared to (more or less)
mobile platforms that monitor the canopy from close range
(e.g., Cendrero-Mateo et al., 2017; Kirchgessner et al., 2017;
Hund et al., 2019). Flying mobile platforms (UAV) that monitor
the canopy from a distance of a couple of decameters with
RGB sensors are quite flexible, can be used to monitor
phenology (Burkart et al., 2018) and can even be used to
track the green up based on plant segmentation (e.g., Roth
et al., 2018). But while RGB flights are almost always possible
with a high temporal resolution (Aasen and Bareth, 2018;
Roth et al., 2018), each flight campaign is connected with
some effort, because fully autonomous systems are currently
prohibited by legislation in most countries. Generally, mobile
platforms can cover a larger area. Close-range PhenoCams
that are mounted right above the canopy could combine the
benefits of both approaches but would be very costly to set
up. Table 3 summarizes these considerations. Looking forward,
one could imagine a network of multiple PhenoCams that
cover larger trials, even across different environments and for
multiple years. In the end, many traits need to be captured
by field phenotyping approaches to complement each other
in order to get the full picture. PhenoCams can become an
important tool providing high temporal resolution information
on phenological processes.
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