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Coprinopsis cinerea lectin 2 (CCL2) is a fucoside-binding lectin from the basidiomycete
C. cinerea that is toxic to the bacterivorous nematode Caenorhabditis elegans as well
as animal-parasitic and fungivorous nematodes. We expressed CCL2 in Arabidopsis
to assess its protective potential toward plant-parasitic nematodes. Our results
demonstrate that expression of CCL2 enhances host resistance against the cyst
nematode Heterodera schachtii. Surprisingly, CCL2-expressing plants were also more
resistant to fungal pathogens including Botrytis cinerea, and the phytopathogenic
bacterium Pseudomonas syringae. In addition, CCL2 expression positively affected
plant growth indicating that CCL2 has the potential to improve two important
agricultural parameters namely biomass production and general disease resistance. The
mechanism of the CCL2-mediated enhancement of plant disease resistance depended
on fucoside-binding by CCL2 as transgenic plants expressing a mutant version of
CCL2 (Y92A), compromised in fucoside-binding, exhibited wild type (WT) disease
susceptibility. The protective effect of CCL2 did not seem to be direct as the lectin
showed no growth-inhibition toward B. cinerea in in vitro assays. We detected, however,
a significantly enhanced transcriptional induction of plant defense genes in CCL2- but
not CCL2-Y92A-expressing lines in response to infection with B. cinerea compared
to WT plants. This study demonstrates a potential of fungal defense lectins in plant
protection beyond their use as toxins.
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INTRODUCTION

Plants are exposed to a wide range of biotic stress caused
by numerous pathogens and pests. As a consequence, plants
evolved a robust multi-layered innate immune system. The first
layer, pathogen-associated molecular pattern (PAMP)-triggered
immunity (PTI), is activated by the perception of PAMPs
such as chitin oligomers or bacterial flagellin via pattern
recognition receptors at the cell surface (Jones and Dangl,
2006; Schwessinger and Zipfel, 2008). Many pathogens have
evolved effectors (virulence factors) to suppress PTI (Macho
and Zipfel, 2015). The second layer of plant immunity, named
effector-triggered immunity (ETI), is activated via detection
of pathogen effectors by plant resistance proteins (Dangl
and Jones, 2001). Plant defense responses are coordinated
by hormonal signaling pathways with salicylic acid (SA) and
jasmonic acid (JA) playing major roles (Robert-Seilaniantz et al.,
2011). A special form of induced plant disease resistance is
known as systemic acquired resistance (SAR) which functions
as a form of plant immunization. A local inoculation with
a potential pathogen or treatment with specific chemical
compounds enhances disease resistance of the whole plant
against a wide range of pathogens. This is achieved by
the local activation of signal transduction pathways that
lead to the systemic induction of plant immune responses
(Pieterse et al., 2012).

Lectins are proteins that can reversibly bind to carbohydrate
epitopes on polysaccharides, glycoproteins, and glycolipids.
Most characterized lectins have been isolated from plants,
such as the well-known examples ricin and abrin (Sharon
and Lis, 2004; Vandenborre et al., 2011). Plant lectins are
involved in defense-related functions and their roles in
plant response to biotic and abiotic stresses have been
well established (Van Damme et al., 2004; Van Holle and
Van Damme, 2018). As an example, Nictaba is a lectin
from tobacco whose biosynthesis is induced in response
to insect herbivory or jasmonate-related compounds. It
binds to N-acetylglucosamine (GlcNAc) oligomers and is
toxic to phytophagous insects (Delporte et al., 2015). The
Nictaba homolog in Arabidopsis is an F-box-Nictaba lectin
which possesses a carbohydrate-binding activity toward Gal-
GlcNAc (Stefanowicz et al., 2012). Similar to the tobacco
homolog, the gene coding for F-box-Nictaba is stress-inducible
(Stefanowicz et al., 2016).

Fungi are a valuable source of lectins with novel carbohydrate
specificities. The majority of fungal lectins have been discovered
from fruiting bodies and sclerotia (82%) and few from
microfungi (15%) and yeasts (3%) (Varrot et al., 2013).
Fungal lectins have various applications in biomedicine,
for instance as diagnostic agents, mitogens, antimicrobial
and antiviral agents, immunomodulators, antitumor and
antiproliferative agents and other therapeutic applications
(Hassan et al., 2015; Singh et al., 2019). There are many reports
describing the antimicrobial activity of fungal lectins. For
example, Aleuria aurantia lectin showed antifungal activity
against Mucor racemosus by specifically binding to L-fucose-
containing polysaccharides at the surface of fungal cell walls

(Amano et al., 2012). Similarly, Gymnopilus spectabilis and
Schizophyllum commune lectins inhibit the growth of Aspergillus
niger (Chumkhunthod et al., 2006; Albores et al., 2014). A lectin
isolated from fruiting bodies of the mushroom Sparassis latifolia
showed antifungal and antibacterial activity (Chandrasekaran
et al., 2016). Many fungal lectins also show insecticidal and
nematicidal activity (Künzler, 2015; Sabotic et al., 2016). For
example, an actinoporin-like lectin from edible mushroom
Xerocomus chrysenteron is toxic to the fruit fly Drosophila
melanogaster and to aphids (Trigueros et al., 2003; Jaber et al.,
2008). Marasmius oreades agglutinin (MOA) has a β-trefoil
domain with an additional cysteine-protease domain at the
C-terminus. Interestingly, both the glycolipid-binding and
enzymatic activities of MOA are required for its toxicity
toward Caenorhabditis elegans (Wohlschlager et al., 2011).
Coprinopsis cinerea lectin 2 (CCL2) is a β-trefoil dimeric lectin,
that shows toxicity toward C. elegans and D. melanogaster
(Schubert et al., 2012; Bleuler-Martinez et al., 2017). CCL2
exerts its toxicity by binding to glycoproteins carrying an
α1,3-fucosylated N-glycan core at the surface of the C. elegans
intestinal epithelium (Schubert et al., 2012; Stutz et al., 2015).
Cytoplasmic expression of CCL2 in the fungus, Ashbya gossypii,
conferred resistance toward fungivorous nematodes (Tayyrov
et al., 2018). Purified CCL2 inhibited larval development
of the animal parasitic nematode Haemonchus contortus
(Heim et al., 2015).

There are many reports of the potential role of plant
lectins in plant immunity. The role of fungal lectins in the
regulation of immunity is, however, poorly understood (Künzler,
2018). Similarly, their biotechnological application for plant
protection and disease management is largely neglected. This
study demonstrates that expression of CCL2 in Arabidopsis
plants enhances disease resistance against the sugar beet cyst
nematode Heterodera schachtii, three fungal pathogens and the
phytopathogenic bacterium Pseudomonas syringae. Enhanced
disease resistance appears to be mediated by the carbohydrate-
binding ability of CCL2 as a binding-deficient mutant version of
the CCL2 protein showed no protective function.

MATERIALS AND METHODS

Plant Growth Conditions and
Quantification of Growth Phenotype
Wild type (WT) Arabidopsis thaliana ecotype Colombia-0 (Col-
0) was received from the Nottingham Arabidopsis Stock Centre
(Nottingham, United Kingdom). Seeds were sown into Jiffy
artificial soil (Jiffy International AS, Kristiansand, Norway). After
stratification at 4◦C for 3 days, plants were transferred to growth
chambers with the following condition: 22.5ı◦C day/19◦C night
temperature and 16 h of light (photon flux density100 µmol
m−2 s−1) with 60% relative humidity. For growth quantification
rosettes of 4-week-old plants were harvested and carefully
cleaned to remove non-plant particles. After recording the
fresh weight (FW), the rosettes were incubated at 80◦C for
12 h to determine the dry weight (DW). The experiment was
repeated three times.
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Construction of Plant Expression Vectors
Plasmids directing the expression of 3xFLAG tagged CCL2
or CCL2-Y92A under the control of the CaMV 35S promoter
were constructed using the Gateway Cloning Technology
(Thermo Fisher Scientific, San Jose, CA, United States). The
open reading frames of CCL2 and CCL2-Y92A were PCR-
amplified from respective Escherichia coli expression plasmids
using gene-specific primers. The PCR was performed using
Phusion High-Fidelity DNA Polymerase (New England Biolabs,
Ipswich, MA, United States). After agarose gel electrophoresis
the PCR products were extracted from the gel with the
QIAquick Gel Extraction Kit (Qiagen, Hilden, Germany)
and inserted into a pENTR vector (pENTRTM/D-TOPOTM

Cloning Kit, Thermo Fisher Scientific). The products were
transformed into chemically competent TOP10 E. coli cells.
Positive colonies were verified by colony PCR (Biometra,
Göttingen, Germany) and DNA sequencing (Eurofins Genomics,
Ebersberg, Germany). The entry plasmids were subsequently
recombined into the binary Gateway overexpression vector
pB2GW7 (Karimi et al., 2002), using LR reaction (GatewayTM

LR ClonaseTM II Enzyme mix, Thermo Fisher Scientific). The
resulting expression plasmids containing 35S:CCL2-3xFLAG
or 35S:CCL2-Y92A-3xFLAG constructs, respectively, were
verified by colony PCR and transformed into Agrobacterium
tumefaciens strain GV3101 by the freeze-thaw method
(Schütze et al., 2009).

Overexpression of CCL2 and CCL2-Y92A
in Arabidopsis
Agrobacterium–mediated transformation of Col-0 plants using
the floral dip method was performed as previously described
(Zhang et al., 2006). Transformed plants were selected by
spraying 15 µg mL−1 of Glufosinate-ammonium (Basta R©,
Bayer CropScience AG, Germany) twice within 2 weeks after
sowing. Standard immunoblotting procedures were performed
to measure the expression level of recombinant proteins in
transgenic lines. Leaf tissue of 4-week-old plants was harvested
and frozen in liquid nitrogen. The frozen tissue in 1.5 ml tubes
(Eppendorf, Hamburg, Germany) containing two 3 mm glass
beads was ground with a mixer mill (Retsch R©MM400, Retsch
Technology GmbH, Haan, Germany) adjusted at 30 Hz for 3 min.
For 30 mg of tissue 90 µL Laemmli buffer (375 mM Tris–
HCl, pH 6.8, 37% (v/v) glycerol, 0.06% (w/v) bromophenol blue
sodium salt, 12% (w/v) sodium dodecyl sulfate, and 5% (w/v) β-
mercaptoethanol) was added. Tubes were incubated for 10 min
at 95◦C with shaking (1400 rpm). After centrifugation 10 µL of
the supernatant was used for SDS-PAGE. The separated proteins
were transferred to nitrocellulose membranes (Sigma-Aldrich)
with a Mini Trans-Blot R© Cell (Bio-Rad Laboratories, Hercules,
CA, United States). As a loading control, the membranes
were stained with Ponceau S (1% acetic acid, 0.1% (w/v)
Ponceau S) for 5 min at room temperature, washed twice
with 5% acetic acid and once with water. For immunoblotting,
membranes were blocked with 3% milk in TBST buffer
(150 mM NaCl, 10 mM Tris, 0.1% (v/v) Triton X-100, pH 7.6).
Anti-FLAG primary antibodies (1:1000; monoclonal anti-FLAG

M2-Peroxidase (HRP) clone M2, Sigma-Aldrich) were applied
for 1 h to detect FLAG-tagged proteins. Pierce ECL Western
Blotting Substrate (Thermo Fisher Scientific) and horseradish
peroxidase (HRP) were used for blot development. Signals were
detected by ImageQuant Las 4000 (GE Healthcare Life Sciences,
Marlborough, MA, United States). From 60 transgenic plants
two independent lines expressing either CCL2 or CCL2-Y92A
at comparable levels in the T3 generation were selected for
further experiments.

Construction of Bacterial Expression
Vectors
For bacterial expression, cDNAs of CCL2 and CCL2-Y92A,
respectively, were inserted between the NdeI and XhoI sites of
the bacterial expression vector pET-24a containing a HIS-tag
(Novagen, Madison, WI, United States). The ligated products
were transformed into TOP10 E. coli competent cells. After
colony PCR and sequence verification, the purified plasmids
were transformed into E. coli BL21 (DE3) for protein production
(Novagen, Madison, WI, United States).

Heterologous Protein Expression and
Protein Purification
Bacterial cells were cultured in Luria Bertani (LB) broth at
37◦C to an optical density of OD600 = 0.8. Protein production
was induced by the addition of 0.5 mM isopropyl β-D-1-
thiogalactopyranoside (IPTG) (AppliChem GmbH, Germany).
Bacteria were further incubated at 16◦C for 18 h. Protein
extraction and purification were conducted as previously
described (Schubert et al., 2012). HIS-tagged proteins were
purified by metal-affinity chromatography using Ni-NTA resins
(Qiagen). Protein concentration was estimated by the Pierce BCA
Protein Assay Kit (Thermo Fisher Scientific) and the purity of
CCL2 and CCL2-Y92A was examined by SDS-PAGE.

In vitro Antifungal Assay
Antifungal activity of CCL2 proteins against Botrytis cinerea
strain BMM was tested in 96-well Costar cell culture plates
(Corning Incorporated, Corning, NY, United States) in a total
volume of 200 µL. Spores of B. cinerea were diluted in
25% PDB medium (Potato Dextrose Broth, Oxoid, Hampshire,
United Kingdom) and used at a final density of 1 × 103

spores mL−1. Purified CCL2 proteins in 20 mM Na phosphate
buffer pH 6 were added at final concentrations of 0–1000 µg
mL−1. After incubation on a shaking platform (80 rpm; 20◦C),
OD595 was measured using the cell imaging multi-mode plate
reader CytationTM 5 (BioTek, Winooski, VT, United States). The
absorbance reads were analyzed with Gen5 Image + Software
(Version 3.03.14, BioTek). Growth curves were generated by
GraphPad Prism version 8.0.2 (GraphPad Software, Inc., La Jolla,
CA, United States). Experiments were repeated 3-times.

Heterodera schachtii Infection Assay
Heterodera schachtii infection assays were performed according
to Bohlmann and Wieczorek (2015). Transgenic seeds were
surface-sterilized (Lindsey et al., 2017), and grown on selective
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Murashige and Skoog medium (MS, Sigma-Aldrich) containing
3% sucrose and 10 mg L−1 glufosinate-ammonium. Col-0
was grown on plates without glufosinate-ammonium. After
5 days, healthy seedlings were transferred to plates containing
a modified 0.2 concentrated Knop medium supplemented
with 2% sucrose (Sijmons et al., 1991). Six plates per line
with eight plants per plate were incubated in the growth
chamber for 7 days. Cysts of H. schachtii were collected
from in vitro stock cultures. Hatching of 2nd stage juveniles
(J2s) was stimulated by soaking cysts in 3 mM ZnCl2.
Prior to inoculation, the J2s were sterilized, and total root
length was estimated according to Jürgensen (2001). For
infection assays, plants were inoculated with 30 freshly
hatched J2s per plant, left in the dark overnight and then
transferred into a growth chamber. The nematode infection was
assessed 14 dpi (day post-inoculation). The total numbers of
females per root cm were calculated and the experiment was
repeated three times.

Disease Resistance Tests
Two-independent CCL2 or CCL2-Y92A overexpressing lines
and WT were grown under the described conditions. After
4 weeks, four leaves per plant were inoculated with 6 µL
droplets of a spore suspension (5 × 104 spores mL−1) of
B. cinerea. Plants were covered with a transparent plastic
dome to keep high humidity and incubated in the dark.
At 3 dpi, the lesion size was measured by Vernier caliper
(MarCal 16 ER, Mahr GmbH, Germany). Twenty plants per
line were tested, and three independent biological replicates
were performed. Fungal hyphae and dead plant tissues were
stained in a solution of ethanolic lactophenol Trypan Blue
(Hael-Conrad et al., 2015). The samples were analyzed using a
Leica DMR microscope with bright-field settings. Colletotrichum
higginsianum was grown on oatmeal agar (Condalab S.A.,
Madrid, Spain) for 7 days at 22◦C. Four leaves of 5-week-
old Arabidopsis plants were inoculated with 10 µL droplets
of 2 × 106 conidia mL−1 suspended in 25% PDB (Oxoid).
Droplets of 25% PDB were used as a mock treatment. Plants
were covered with a plastic dome to keep humidity and
incubated in the growth chamber. Lesions were measured 10 dpi
with a digital Vernier caliper (MarCal 16 ER). Ten plants
per line were tested and 3 independent biological replicates
were performed. Plectosphaerella cucumerina was grown on
CM0139 PDA (Potato Dextrose Agar, Oxoid) plates at 25◦C.
Four leaves of 4-week-old Arabidopsis plants were infected
with 10 µL droplets of 5 × 106 spores mL−1 suspended in
25% PDB. The conditions of inoculation were as described
for C. higginsianum. Lesion size was measured at 5 dpi. Ten
plants per line were tested and three independent biological
replicates were performed. P. syringae pv. tomato (Pst) DC3000
was cultured for 16 h at 28◦C with shaking (180 rpm) in liquid
LB medium (supplied with 50 mg L−1 rifampicin). Bacterial
cells were centrifuged at 3000 rpm for 10 min, and the pellet
was diluted in 10 mM MgCl2. For basal disease resistance assay,
the leaves of 4-week-old plants were syringe-infiltrated with
bacterial suspension of Pst DC3000 (105 CFU mL−1). Infiltrated
leaves were harvested at 72 hpi (hours post-inoculations) for

quantification by qPCR of the oprF gene (Genebank 878442) as
a marker of bacterial growth.

Quantification of Fungal and Bacterial
Biomass
The fungal biomass was quantified according to Gachon and
Saindrenan (2004) with minor modifications. Ten leaf discs were
harvested from inoculated leaves and immediately frozen in
liquid N2. For each line, three independent biological replicates
were performed. Total DNA was isolated using Plant DNA mini
Kit (Peqlab/VWR, Darmstadt, Germany). To quantify fungal or
bacterial DNA content, the qPCR mixtures were prepared with
12.5 µL of SYBR Green mix (Bioline, London, United Kingdom),
10 µL of DNA (final amount 100 ng), and 0.75 µL of forward
and reverse primers (10 µM; Supplementary Table 1). The final
volume was 25 µL. The qPCR was conducted with a MIC qPCR
machine (Bio Molecular Systems, Australia) using the following
conditions: 10 min at 95◦C initial denaturation and 40 cycles
(95◦C for 15 s, 60◦C for 1 min and 72◦C for 30 s). Specificity
of amplification was analyzed by melting point analysis. The
level of the fungal Cutinase A gene (Genebank Z69264) or the
bacterial oprF gene (Genebank 878442) were normalized against
the expG gene (AT4G26410) of Arabidopsis (Czechowski et al.,
2005). The 2(−1 1 Ct) method was used to analyze the results
(Rao et al., 2013).

Systemic Acquired Resistance (SAR)
Three leaves of 4-week-old Col-0 plants were infiltrated with
either 500 µg mL−1 of purified CCL2 or purified CCL2-Y92A
in 10 mM MgCl2. Infiltration with Pst DC3000 at 106 CFU
mL−1 in 10 mM MgCl2 served as positive control. Infiltration
with 10 mM MgCl2 served as negative control. After 48 h, three
distal leaves were inoculated with Pst DC3000 (105 CFU mL−1).
Ten leaf discs were harvested from the distal leaves 3 dpi with
a cork borer (discs from different plant leaves) and used for
DNA extraction. The level of the bacterial oprF gene (Genbank
878442) was analyzed by qPCR. For transcript levels of SAR
defense-related genes after the primary treatments, local leaves
were sampled 2 days post-treatment for RNA extraction, cDNA
synthesis and qPCR analyses.

Transcript Levels of Defense-Related
Genes
Transcript levels of defense-related genes in response to B. cinerea
or Pst were analyzed by qPCR. Leaves were ground in liquid
N2, and total RNA was extracted with the SpectrumTM Plant
Total RNA Kit (Sigma-Aldrich, Saint Louis, MO, United States).
The isolated RNA was treated with deoxyribonuclease I enzyme
(Sigma-Aldrich) to remove remaining DNA. Two micrograms
of purified RNA were used for reverse transcription reactions
with the Omniscript Reverse Transcription Kit (Qiagen). The
qPCR mixture contained 7.5 µL of SYBR Green (Bioline),
5 µL of cDNA (corresponding to 100 ng RNA), and 0.5 µL of
10 µM forward and reverse primers (Supplementary Table 1).
The final volume was completed with DEPC-treated Water
(0.1% diethylpyrocarbonate) to 15 µL. The qPCR was done as
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follows: 10 min at 95◦C initial denaturation and 40 cycles (95◦C
for 15 s, 60◦C for 1 min and 72◦C for 30 s). Runs were performed
on a MIC qPCR machine (Bio Molecular Systems). Transcript
levels were normalized against the expG gene (AT4G26410).
The analysis was accomplished based on cycle threshold method
(2(−1 1 Ct); Rao et al., 2013). Three biological replicates were
performed for each sample.

Statistical Analysis
Statistical analysis was carried out using GraphPad Prism
version 8.0.2 (GraphPad Software, Inc.). One/two-way ANOVA
analysis was conducted to identify significant differences among
treatments relative to the control. Tukey or Dunnett tests were
used for multiple comparisons between the transgenic lines
and control. Asterisks indicate statistically significant differences
(∗∗∗P≤ 0.001, ∗∗P≤ 0.01, ∗P≤ 0.05) whereas ns (not significant)
indicates P > 0.05. The letters a and b signify a between-group
difference at the P ≤ 0.05 level.

RESULTS

Expression of CCL2 in Arabidopsis
Boosts Plant Growth
FLAG-tagged CCL2 and a mutated FLAG-tagged CCL2-Y92A
version compromised in fucoside-binding were expressed in
Arabidopsis (accession Col-0) under the control of the CaMV-
35S promoter using the constructs 35S:CCL2-3xFLAG and
35S:CCL2-Y92A-3xFLAG, respectively. Transgenic plants were
analyzed by qPCR and immunoblotting to select lines with a
comparable expression level of CCL2 or CCL-Y92A, respectively
(Figures 1A,B). The transgenic lines grew bigger than WT plants
(Figure 1C). Quantification of rosettes of 4-week-old plants
indicated that FW and DW were significantly higher in transgenic
plants (Figures 1D,E). In CCL2 lines FW and DW of rosettes
were 100 and 95% higher than in WT plants, respectively. The
differences of FW and DW for CCL2-Y92A lines were not
statistically significant compared to the WT plants.

CCL2 Enhances Disease Resistance
Against the Plant-Parasitic Nematode
Heterodera schachtii
Based on the previous in vitro evidence for nematicidal activity,
CCL2 and CCL2-Y92A-expressing Arabidopsis lines were tested
with the agronomically important sugar beet cyst nematode
H. schachtii. Transgenic lines and WT plants were inoculated
with J2 juveniles and the progression of nematode infection
was evaluated in roots. The results indicated a protective effect
of CCL2. The number of H. schachtii females per cm of root
was significantly reduced by 35% in CCL2 lines compared to
WT plants (Figure 2). In contrast, CCL2-Y92A-expressing lines
showed similar susceptibility as WT plants. Our results indicate
that CCL2 expression partially protected Arabidopsis roots from
parasitism by H. schachtii and that the protective effect was
dependent on carbohydrate-binding activity of CCL2.

CCL2 Enhances Resistance of
Arabidopsis Against Fungal Pathogens
In order to test whether the protective effect of CCL2 was specific
for nematodes or more general, the transgenic CCL2 lines and
WT plants were inoculated with droplets of a suspension of
conidiospores of B. cinerea. The fungal pathogen, known as gray
mold, is a necrotrophic plant pathogen that can infect more than
200 plant species, causing losses of agricultural products both
pre-and post-harvest (Dean et al., 2012). The lesion size caused
by the fungal infection was analyzed at 3 dpi. The pathogen
successfully colonized WT and CCL2-Y92A-expressing plants as
indicated by the formation of large necrotic lesions spreading
from the inoculation site. In contrast, in the two CCL2-expressing
lines such lesions were significantly smaller and surrounded
by a lighter colored halo (Figure 3A). Trypan Blue staining
revealed the growth of fungal hyphae within the infected leaves.
In WT and CCL-Y92A-expressing plants, fungal hyphae spread
through the leaves whereas the colonization of leaves by the
fungus was impaired in CCL2-expressing plants (Figure 3B).
Quantitative analysis showed that the lesion size in the CCL2
plants, including the lighter colored halo, was reduced to 54%
compared to WT. No significant difference was detected between
CCL2-Y92A lines and WT plants (Figure 3C). Quantification
of fungal biomass based on qPCR analysis of fungal DNA
present in inoculated plants confirmed the results of the macro-
and microscopic analysis (Figure 3D). At 2 dpi, the B. cinerea
biomass was significantly higher in WT and CCL2-Y92A plants
compared to CCL2 plants. These results indicated that expression
of CCL2 inhibited colonization of the plant by the fungus in
a carbohydrate-binding-dependent manner. In order to test the
specificity of the antifungal effect of CCL2, the Arabidopsis
CCL2 lines, CCL2-Y92A lines and WT plants were challenged
with the fungal pathogens C. higginsianum or P. cucumerina.
C. higginsianum is a hemibiotrophic pathogen that globally
causes disease in many economically important crops (Yan et al.,
2018). Likewise, P. cucumerina is a necrotrophic pathogen that
causes diseases in crops worldwide (Sanchez-Vallet et al., 2010).
Plant leaves were inoculated with droplets of C. higginsianum
spore suspensions. CCL2 lines showed at 10 dpi a significant
reduction of lesion size of 60% (L1) and 59% (L2) compared to
WT plants (Figure 3E). Similarly, after inoculation with spores of
P. cucumerina, the lesions of the CCL2 lines after 5 dpi were 39%
(L1) and 36% (L2) smaller than in WT plants (Figure 3F). Plants
expressing CCL-Y92A showed WT-like disease resistance to both
fungi. Taken together, the results demonstrate that expression
of CCL2 partially protected plants against a variety of fungal
pathogens, including necrotrophs (B. cinerea and P. cucumerina)
and hemibiotrophs (C. higginsianum). The protective effect
depended on the ability of CCL2 to bind carbohydrates.

CCL2 Enhances Transcript Accumulation
of Plant Defense Genes Upon Pathogen
Inoculation
In order to assess whether the fungal growth inhibition by the
CCL2 lectin is direct, an in vitro assay for antifungal activity
toward B. cinerea was conducted. The purified His-tagged CCL2
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FIGURE 1 | Characterization of CCL2-expressing Arabidopsis lines. (A) qPCR analysis of relative CCL2 and CCL2-Y92A transcript levels in 4-week-old plants.
Transcript levels were normalized to expG gene (AT4G26410). Mean values ± SE of three independent experiments. (B) Immunoblot visualizing the expression level
of CCL2 and CCL2-Y92A proteins. FLAG-tagged proteins were detected with anti-FLAG antibodies. Ponceau-S stained Rubisco large subunit served as loading
control. Size bar = 1 cm (C) Growth phenotype of transgenic lines compared to WT. Two independent lines (L1 and L2) are shown for each construct. (D) Fresh
weight (FW) and (E) dry weight (DW) of shoots of 4-week-old plants (n = 12; three independent experiments). Boxplots represent median and 1.5 times the
interquartile range. Asterisks show significant differences between transgenic lines compared to the WT (∗∗∗P ≤ 0.001, ∗∗P ≤ 0.01) determined by one-way ANOVA
followed by post hoc analysis with Dunnett’s multiple-comparison test.

proteins (CCL2 and CCL2-Y92A; Supplementary Figure 1)
were applied to fungal spores in liquid medium and spore
germination and hyphal growth were assessed. No inhibition of

fungal growth was detected even at a concentration of 1 mg
mL−1 of purified protein (Supplementary Figure 2). Based on
these results, we reasoned that CCL2 might have an indirect
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FIGURE 2 | Partial resistance of CCL2-expressing plants toward the cyst
nematode H. schachtii. 12-day-old Arabidopsis seedlings (WT, CCL2, and
CCL2-Y92A lines) were inoculated with 30 freshly hatched juveniles per plant
and evaluated 14 dpi for number of female nematodes per root centimeter.
Boxplots represent median and 1.5 times the interquartile range (WT and
CCL2 lines n = 16; CCL2-Y92A n = 15; three independent experiments).
Asterisks above columns indicate statistically significant differences
(∗∗∗P ≤ 0.001, ns, not significant) between CCL2 lines and WT plants,
analyzed by one-way ANOVA and post hoc analysis with Dunnett’s
multiple-comparison test.

effect on plant protection via the activation of plant immune
responses. The transcript levels of Arabidopsis defense genes
in infected WT plants and transgenic lines were assessed by
qPCR (Figures 4A–C). Analyzed Arabidopsis defense genes
included methyl JA-inducible marker genes (OBP2, AT1G07640),
PLANT DEFENSIN (PDF1.2: AT5G44420) and SA-inducible
PATHOGENESIS-RELATED PROTEIN-1 (PR-1: AT2G14610).
No significant differences in transcript levels between WT and
transgenic lines were observed at 0 dpi indicating that CCL2
expression did not directly trigger defense gene expression.
However, transcript levels of all three genes were enhanced
at 1 dpi in CCL2 lines compared to WT and CCL2-Y92A
lines. Induction of OBP2 transcript levels was enhanced 3.5-
fold, PDF1.2 transcripts 12-fold and PR-1 transcripts 2.5-
fold compared to WT at 1 dpi indicating a priming effect
of CCL2 on pathogen-induced expression of these genes.
The respective transcript levels were not significantly different
between WT and CCL2-Y92A lines. These results suggested that
the protective effect of CCL2-expression in Arabidopsis toward
fungal pathogens might be achieved by boosting the immune
responses of the host plant upon pathogen inoculation.

Resistance Against Pseudomonas
syringae Is Enhanced in CCL2 Lines
Based on the increased resistance of the CCL2 lines against a
variety of fungal plant pathogens, we were interested in assessing

the resistance of plants against the bacterial plant pathogen
P. syringae pv. tomato (Pst), a hemibiotrophic pathogen that
can infect many plant species (Glazebrook, 2005). WT plants
and transgenic lines were inoculated with 105 CFU mL−1 of
a bacterial suspension. At 3 dpi plant tissues were analyzed by
qPCR to quantify bacterial DNA based on the bacterial oprF
gene (Ross and Somssich, 2016). The bacterial biomass based
on oprF content was significantly reduced by 73 and 57% in the
CCL2 lines 1 and 2, respectively, compared to WT (Figure 5).
The difference between the CCL2-Y92A lines and WT was not
significant. The results indicated that the expression of CCL2
enhanced the resistance toward P. syringae. Similar to the results
with fungal pathogens, the protective effect depended on the
carbohydrate-binding activity of CCL2 as the mutant version
CCL2-Y92A failed to protect plants against P. syringae.

Exogenous Application of Purified CCL2
Protein Confers Systemic Acquired
Resistance (SAR)
To further support the immune-activating properties of CCL2,
the potential of exogenously applied CCL2 for activation of
defense gene expression and induction of SAR was analyzed.
Purified CCL2 protein (500 µg mL−1) was locally infiltrated into
leaves of WT plants and disease resistance toward Pst DC3000
was analyzed in untreated distal leaves. Treatment of local leaves
with CCL2 led to an induction of SAR against Pst DC3000 in
challenge-inoculated systemic leaves comparable to inoculation
of local leaves with Pst (Figure 6A). In contrast, treatment with
CCL2-Y92A failed to induce SAR as no significant difference
compared to mock treatment was observed. The results suggested
that exogenously applied CCL2 protein induced SAR against
Pst in a carbohydrate-binding dependent manner. To test the
potential of CCL2 for direct activation of defense gene expression,
WT plants were infiltrated with purified CCL2 protein (500 µg
mL−1) and transcript levels of a number of defense-related genes
were analyzed 48 h after treatment: GLI1 (AT1G80460) encoding
a glycerol kinase, GLYCEROL-3-PHOSPHATE (G3P) SYNTHESIS
GENE GLY1 (AT2G40690), PR-1 (AT2G14610), RESPIRATORY
BURST OXIDASE HOMOLOGS D and F (RBOHD: AT5G47910
and RBOHDF: AT1G64060). Similar to treatment with the
positive SAR control Pst, treatment with purified CCL2 protein
resulted in significant increases compared to mock treatment in
transcript abundance of all tested genes (Figures 6B–F). CCL2-
treated local leaves of WT plants showed a 39-, 13-, 13-, 19-, and
8-fold increase in transcript levels of GLI1, GLY1, PR-1, RBOHD,
or RBOHF, respectively, compared to mock-inoculated plants.

DISCUSSION

The aim of our research was to test transgenic plants expressing
the nematicidal CCL2 lectin of C. cinerea for enhanced disease
resistance toward plant-parasitic nematodes. To this end, CCL2
or the carbohydrate binding-compromised mutated version
CCL2-Y92A were constitutively expressed in Arabidopsis plants.
Surprisingly, transgenic CCL2 lines showed multiple phenotypes.
They were not only more resistant than WT against the sugar
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FIGURE 3 | Resistance of CCL2-expressing plants toward fungal pathogens. (A) Necrotic lesions caused by B. cinerea infection on leaves of 4-week-old WT, CCL2-
and CCL2-Y92A lines inoculated with 6 µL droplets of a spore suspension (5 × 104 spores mL−1). Plants were photographed 3 dpi. Size bar = 1 cm. (B) Trypan
Blue-staining of Arabidopsis leaves 60 hpi. The right-side shows close-up images. Black or red size bares are 1 mm and 50 µm, respectively. (C) Quantification of
lesion size at 3 dpi. Boxplots represent median and 1.5 times the interquartile range (n = 80 from three independent experiments). (D) Quantification of fungal DNA
by qPCR at 0, 1, and 2 dpi. The fungal Cutinase A gene (Genebank: Z69264) was quantified relative to expG gene (AT4G26410) of Arabidopsis. Bars represent
mean values ± SE from three independent experiments. (E) Analysis of lesion size of 5-week-old WT and transgenic CCL2 lines droplet-inoculated with
C. higginsianum (10 µL of 2 × 106 spores mL−1 per leaf). Plants were analyzed 10 dpi. (F) Analysis of lesion size of 4-week-old WT and CCL2 lines,
droplet-inoculated with P. cucumerina (10 µL of 5 × 106 spores mL−1 per leaf). Plants were analyzed 5 dpi. Boxplots (E,F) represent median and 1.5 times the
interquartile range (n = 30 from three independent experiments). The data was analyzed by one-way ANOVA and post hoc analysis by Dunnett’s multiple-comparison
test. Asterisks show a statistically significant difference between the CCL2 expressing lines and WT plants (∗∗∗P ≤ 0.001, ∗∗P ≤ 0.01, ns, not significant). The letters
a and b signify a between-group difference at the P ≤ 0.05 level.
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FIGURE 4 | CCL2 enhances induction of Arabidopsis defense gene expression in response to B. cinerea. Four-week-old Arabidopsis plants (WT, CCL2, and
CCL2-Y92A lines) were spray-inoculated with B. cinerea (5 × 105 spores mL−1). Leaves were harvested at 0 and 1 dpi for RNA extraction. Transcript levels of OBP2
(A), PDF1.2 (B), and PR-1 (C) were determined by qPCR. Data were normalized with regard to the Arabidopsis reference gene expG. Data represent mean
values ± SE of three independent experiments. The letters a and b signify a between-group difference at the P ≤ 0.05 level. Two-way ANOVA and post hoc analysis
by Tukey’s multiple-comparison test were used to calculate significant differences between transgenic lines and WT plants.

FIGURE 5 | Increased resistance of CCL2-lines toward the bacterial pathogen
P. syringae. Growth of virulent Pst DC3000 in WT plants and CCL2 lines was
analyzed at 3 dpi. The bacterial oprF gene was quantified by qPCR using
DNA extracted from inoculated leaves. Ten leaf discs from six plants were
sampled per replicate. The plant expG gene served as reference. Data
represent mean values ± SE of three independent experiments (n = 18).
Asterisks indicate statistically significant differences (∗P ≤ 0.05, ∗∗P ≤ 0.01,
ns: not significant; one-way ANOVA and post hoc analysis with Dunnett’s
multiple-comparison test) between transgenic lines and wild type.

beet cyst nematode H. schachtii but also showed improved disease
resistance toward fungal and bacterial pathogens. In addition,
CCL2 expression had a positive effect on plant growth. The
multiple phenotypes of CCL2 plants depended on the previously
demonstrated carbohydrate-binding activity of CCL2 (Schubert
et al., 2012; Bleuler-Martinez et al., 2017) as expression of

CCL2-Y92A, a mutated version compromized in carbohydrate
binding, did not cause detectable differences compared to WT
plants. Unless CCL2 has additional, as of yet undiscovered
carbohydrate-binding activities, the observed disease resistance
related phenotypes must be the result of binding of CCL2 to
α1,3-fucosylated N-glycan cores.

Entomotoxic and nematotoxic activity of fungal lectins has
been widely studied (Bleuler-Martinez et al., 2011; Künzler, 2015;
Sabotic et al., 2016). Similarly, in vitro antibacterial and antifungal
activity of fungal lectins against pathogens have been described
(Amano et al., 2012; Albores et al., 2014; Singh et al., 2014;
Chandrasekaran et al., 2016; Breitenbach et al., 2018). Transgenic
plants expressing plant lectins showed enhanced resistance to
phytopathogens and pests (Burrows et al., 1998; Ripoll et al.,
2003; Stefanowicz et al., 2016; Van Holle et al., 2016). However,
to date no lectins of fungal origin have been expressed in plants
for disease protection. CCL2-overexpressing Arabidopsis plants
showed significantly reduced susceptibility to the cyst nematode
H. schachtii. The protective effect of CCL2 is most probably
mediated by its carbohydrate-binding activity as the CCL2-
Y92A lines do not show improved resistance against nematodes.
H. schachtii is an obligate biotroph taking up the nutrients only
after induction of feeding sites within the host root tissue. Hence,
it was not possible to directly test in vitro toxic effects of CCL2
on parasite development. It remains, therefore, an open question
whether the protective effect of CCL2 is direct via its nematicidal
activity and/or indirect via primed induction of plant defenses as
shown for other priming-active compounds known to enhance
resistance toward e.g., root-knot nematodes (Oka et al., 1999;
Cohen et al., 2016).

Coprinopsis cinerea lectin 2 lines were compared to WT and
CCL2-Y92A lines more resistant to three fungal pathogens. The
failure of CCL2-Y92A to protect plants from infection indicates
that the carbohydrate-binding activity of CCL2 is essential for
the observed protection. CCL2 did not have a toxic effect on
the in vitro growth of B. cinerea. Hence, CCL2 is unlikely to
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FIGURE 6 | Exogenous application of purified CCL2 induces defense gene expression and SAR toward P. syringae. Three leaves of 4-week-old wild type plants
were infiltrated with 10 mM MgCl2 (negative mock control), Pst DC3000 (106 CFU mL−1) as positive SAR control, or 500 µg mL−1 of purified CCL2 or CCL2-Y92A
protein, respectively. (A) Three distal leaves were challenge-inoculated with Pst DC3000 (105 CFU mL−1) at 48 h after treatment. Ten leaf discs per treatment were
sampled from distal leaves of Ten plants at 3 dpi to quantify by qPCR the abundance of the bacterial oprF gene as a proxy for bacterial biomass. (B–F) Transcript
levels relative to expG gene in local leaves 48 h after treatment (B) GLI1 (AT1G80460), (C) GLY1 (AT2G40690), (D) PR-1 (AT2G14610), (E) RBOHD (AT5G47910),
and (F) RBOHF (AT1G64060). Asterisks indicate statistically significant differences (∗P ≤ 0.05, ∗∗P ≤ 0.01, ns: not significant; one-way ANOVA and post hoc
analysis with Dunnett’s multiple-comparison test) between treatments and mock control. Data represent mean ± SD of three biological replicates.

protect plants via direct antifungal activity. As an alternative,
we tested whether CCL2 possibly protects plants indirectly via
activation of plant defense responses. Transgenically expressed
CCL2 had no direct effect on the constitutive expression of
defense genes. However, in response to B. cinerea CCL2 plants
showed a significantly enhanced accumulation of transcripts of
JA-regulated OBP2 and PDF1.2 as well as SA-regulated PR-
1 genes compared to WT and CCL2-Y92A lines. The CCL2
lines reacted more strongly in terms of defense gene expression
to inoculation with B. cinerea. Boosted activation of defense
gene expression in response to pathogens, also called priming,
has been demonstrated to enhance general disease resistance
(Conrath et al., 2006; Mauch-Mani et al., 2017). It is, therefore,
likely that the CCL2-mediated defense priming contributes to
the enhanced protection of CCL2-expressing lines against fungal

pathogens. Priming typically enhances disease resistance against
many different pathogens. In line with this, CCL2 lines were also
significantly more resistant to the bacterial pathogen Pst.

Local treatment with purified CCL2 enhanced the disease
resistance toward Pst in systemic leaves comparable to primary
inoculation with the known SAR inducer Pst. In contrast,
treatment with purified CCL2-Y92A had no effect on disease
resistance in systemic leaves. Hence, CCL2 activated SAR
signaling pathways dependent on its carbohydrate-binding
activity. Transcript levels of SAR-related genes were significantly
enhanced in local leaves of CCL2-infiltrated WT plants compared
to mock-treated plants indicating that CCL2 functions similarly
to other defense activating compounds (Tripathi et al., 2019).
Transgenically expressed CCL2 did not directly affect defense
gene expression as the transgenic CCL2 lines showed WT
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transcript levels in the absence of a pathogen. In contrast,
treatment of plants with purified CCL2 caused enhanced
transcript accumulation of defense genes. This contradiction is
likely the result of the different concentrations of CCL2 present
in the transgenic lines and in plants treated with purified CCL2.
Many priming active compounds are known to directly induce
immune responses depending on their concentration (Conrath
et al., 2006; Mauch-Mani et al., 2017). At lower concentrations
they still can protect plants from infection without directly
affecting defense gene expression by sensitizing the induction of
defense responses upon pathogen attack. The positive effect of
CCL2 expression on plant growth was an unexpected finding as
plants manipulated for enhanced disease resistance often suffer
from fitness costs (Bowling et al., 1994; Mauch et al., 2001).
However, priming effects at low concentrations are normally not
linked with a growth penalty (Conrath et al., 2006; Mauch-Mani
et al., 2017). The positive effect of CCL2 on plant growth also
depends on the carbohydrate-binding activity.

Similar to previous findings showing nematicidal activity
of CCL2 (Schubert et al., 2012; Bleuler-Martinez et al., 2017),
our results confirm the importance of the binding of CCL2 to
α1,3-fucosylated N-glycans for its immune-stimulating function
as the binding-deficient mutant CCL2-Y92A was not able to
protect plants against plant-parasitic nematodes and microbial
pathogens. We speculate that CCL2 enhances plant immunity via
binding to plant glycoproteins or other glycosylated compounds
that are involved in regulation of immunity. Interestingly, a
recent study indicated that α1,3-fucosylated N-glycans play
an essential role in plant immunity (Zhang et al., 2019).
Mutations in a gene involved in the biosynthesis of GDP-
L-fucose (SCORD6/MUR1) negatively affected PTI and ETI,
including glycosylation of immune receptors. In addition,
compromised defenses were also observed in mutants of several
fucosyltransferases with specific substrates (O-glycan, N-glycan
or DELLA transcriptional repressors; Zhang et al., 2019). These
results hinted to a so far unknown plant immunity-related role of
L-fucose biosynthesis and fucosylation. Biochemical approaches
will be needed to identify the plant targets of CCL2.

CONCLUSION

Overexpression of CCL2 in Arabidopsis improved plant growth
and general disease resistance toward the cyst nematode
H. schachtii and various plant pathogens. Protection against
H. schachtii is likely based on the direct nematotoxic effect
of CCL2. CCL2 did not show direct toxicity toward fungi
but primed the expression of JA/SA-related defense genes that
are important for plant immunity against microbial pathogens.
Thus, CCL2 is postulated to induce resistance against microbial
pathogens by binding to fucosylated compounds with a role in
plant immunity. In agreement with such a model, the mutant
version of CCL2 with abolished carbohydrate-binding lost its
protective function. Thus, the fungal lectin CCL2 does not only

function as a nematotoxin but has additional roles as a positive
regulator of plant immunity.
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