

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra Federal Department of Economic Affairs, Education & Research EAER

Agroscope

Use of alternative products for the control of late and early blight on potatoes

T. Musa, H.R. Forrer, S.Vogelgsang, K. Sullam Agroscope, Ecological Plant Protection in Arable Crops

EuroBlight Workshop, 12.-15. May 2019, York

- Sources of possible alternative products and modes of action
- Examples of products
- Conclusion and Outlook

- For more than 20 years, investigators have been looking for alternative products to control late and early blight on potatoes
- At first, focus mainly on replacement of copper products in organic farming due to its negative environmental impact
- Importance of early blight increased during the last decade (resistance to fungicides (Qols/SHDI's), climate change)
- Societal pressure to reduce pesticides in general came to the fore - not only for organic production

Copper

Pros:

- Trace element and an essential micronutrient
- Broad efficacy (fungicide, bactericide, foliar fertilizer)
- Hardly any documented resistance against fungi, oomycetes

Cons:

- Accumulation in the soil → detrimental effects on the environment and non-target organisms
- Resistance against some bacteria (e.g. *Pseudomonas syringae* pv. *tomato*)

4

- Since 2006, EU has set limits for the use of copper (6 kg/ha*year)
- In several EU countries, use of copper already forbidden or more restricted amount allowed to use
- Intention to ban copper, but registration prolonged until 2025 (max. 28 kg CU/ha in 7 years, Ø 4 kg CU/ha*year)
 - Within the registration: particular attention should be paid to the application rate and kept as low as possible
 - → Challenge for potato production, especially organic potato production

Funded EU-projects

- Blight MOP: Development of a systems approach for the management of late blight in EU organic potato production, 2001-2005
- Co-Free: Innovative strategies for copper-free low input and organic farming systems (2012-2016), registration processes completed earliest 2022
- RELACS: Replacement of Contentious Inputs in Organic Farming Systems', aims to develop new products and strategies to minimise use of copper in organic plant production, focus on grapes, 2018-2022
- OrganicPlus: means minimising, and eventually phasing out contentious inputs from certified organic agriculture, 2018-2022
- In addition several national projects

Many products tested:

Appl Microbiol Biotechnol (2012) 96:37–48						88 plants amoung 44 botanical families	Wang et al. (2001)
ane i Boological control of P. infestans by different microorganisms Activity spectrum A		Antifungal compounds/mode of action	Reference		Innula viscosa	Wang et al. (2004)	
Penicillium aurantiogriseum Xenorhabdus boienii A2 Serratia sp. Trichoderma sp.		In vitro and in situ (potato) In vitro In vitro	Antagonistic effects Indoles Antagonistic effects	Jindal et al. (1988) Li et al. (1995) Garita et al. (1998)		Rheum rhabarbarum Solidago canadiensis	Stephan et al. (2005)
Fusarium sp. Penicillium sp. Nigrospora sphaerica Pseudozyma flocculosa		In vitro and in situ (tomato) In vitro	Phomalactone cis-9-Heptadecenoic Acid	Kim et al. (2001) Avis and Belanger (2001)		Artemisia vulgaris Impatiens parviflora Urtica dioica	
3acillus pumilus SE34 Pseudomonas fluorescens 89B61 Bacillus subtilis (B1, B2, B3, J1) B. pumilus (B2, M1, W1 and Y1)		In situ (tomato) In vitro and in situ (potato)	Growth-promoting rhizobacteria Antibiosis, and (or) indirectly (induction of plant defence system)	Yan et al. (2002) Daayf et al. (2003)		Rheum palmatum	
B. amyloliquefacia Pseudomonas fluc (DF35, DF37 ar P. viridilivida DF2 P. putida (P1 and	ens C1 prescens nd DF40) 3 P2)		Lis	ts are n	ot exhai	ustive!	Krebs et al. (2006)
Rahnella aquatilis Servatia plymuthi	s W2					Galla crimensis	
P. fluorescens SSI Bacillus cereus Streptomyces sp. A Pseudomonas put Micrococcus luter	101 AMG-P1 <i>tida</i> (TRL2-3) us (TRK2-2)	In vitro In situ (tomato) In vitro and in situ (tomato) In situ (potato)	Massetolide A Induction of systemic resistance Paromomycin Induced resistance	de Souza et al. (2003) Silva et al. (2004) Lee et al. (2005) Kim and Jeun (2006)		Rheum rhabarbarunn Potentilla erecta	
Flexibacteraceae bacterium (MRL412) Burkholderia spp. Streptomyces spp. Pseudomonas spp.		In situ (potato)	Inhibitory effect	Lozoya-Saldana et al. (2006)		Salvia omcinalis Salix spp. Solidago canadiensis Malva silverstris	Dorn et al. (2007)
Candida sp. 44		In vitro and in situ (tomato)	Antagonistic effects	Lourenco et al. (2006) Appl Microbiol	Biotechnol (2012) 96:37-48	Spohora flavescens Artemisia annua	
Cryptococcu Fusarium ox	Table 2 Comm	ercially available microbial-ba	sed anti-Phytophthora fungicides			Ocium balsilicum	
Pseudomona Commercial pro S22:T:04,P		oducts	Activity spectrum	Antifungal compounds/mode of action	Reference	Yucca extract	Bengtsson et al. (2009)
Fusarium gr Fusarium c	Plant Shield HC (<i>Trichoderma harzianum</i> T22) <i>arium gr</i> G41 (<i>Gliocladium virens</i> G41) <i>usarium</i> (Phonsody AS (<i>Racillus subsilie</i>)		?) In vitro and in situ (tomato)	Ineffective	Becktell et al. (2005)	garlic extract	
Pseudomona Arbuscular n (Glomus sţ Xenorhabdu: pekingensi:	dudomona Kingersi Korenade (Bacillus subrilis QST-713) ilomus Serenade (Bacillus subrilis QST-713) ilomus Serenade (Bacillus subrilis QST 713) exteria (LAB), yeasts, fungi		In vitro and in situ (potato) In situ (potato)	Cyclic lipopeptides Insufficient	Stephan et al. (2005) Olanya and Larkin (2006)	commercial ganic product (AMN BioVit) commercial knotweed product (Regalia) commercial citrus extract (ViCare)	Nechwatal and Zellner (2015)
Pseudomoni Lactobacillu IMAU100 Sonata 1 (Baci a Showed an EM 5 (mixture		lus subtilis QST 713) hus pumilus QST 2808) ichoderma harzianum var: T-3 of bacteria (LAB), yeasts, fung	In vitro and in situ (tomato), field (potato)))	Ineffective in field	Dorn et al. (2007)	Citrus spp. <i>Glycyrrhiza glabra</i> commercial conifer bark extract	
	olyversum (Pythium oligandrum) 'enorhabdus bovienii 4722 xero-Mos™ (Lactobacillus plantarum)					Macleaya cordata	Schuster and Schmitt (2015)
	Polyversum (P)	thium oligandrum)	In vitro and field (potato)	Inconclusive	Kurzawinska and Mazur (2009)	Thymus vulagris	Perina et al. (2015)
. Axel et al., 2012, Appl. Micro			Microbiol Biote	chnol, 96:37-4	48	Frangula alnus	Forrer et al. (2017)

selected examples of plant extracts

Sources of alternative products

- Plants:
 plants extracts and essential oils
- Biological control agents: saprophytic, epiphytic and endophytic organisms
- non-fungicidal chemical inducers
- Other products

directly:

A. solani /P. infestans

direct toxicity

Biological (and chemical) plant protection products

Indirectly by:

Induced resistance

A. solani /P. infestans

Biological plant protection product

Modes of action

- Indirectly by:
- Gene-induction of plant pathogenesis related proteins
- callose deposition

٠

- Increased activity of defence related enzymes
- Cell wall lignification

A. solani /P. infestans

Biological plant protection product

Promising field trials with a plant extract and non-fungicidal inducer

→ Bark of buckthorn (Frangula alnus) and Phosfik®

Field trial at Zürich Reckenholz and Tänikon 2012

F. alnus: mode of action on potatoes not yet confirmed

Phosphite residues in potato tubers in relation to the applied Phosfik[®] amount

Agroscope

With two applications of Phosfik[®], phosphite (PO₃³⁻) residues were below the limit of detection (5 mg/kg), (EFSA: minimal risk level 20mg/kg)

Forrer et al., 2017, Journal of fungi

New class of elicitor

- Combination of chitosan oligomers (COS) and pectin-derived oligogalacturonides (OGA): COS-OGA elicitor
- mimic plant interaction with fungi and inform plant cells on both cell wall degradation and pathogen presence
- induces the expression of defense-related genes
- FytoSol appears to be a promising elicitor that may block SA-related potato gene hijacking by *P. infestans* and triggers a still unknown defense pathway.

Figure 4 Cumulative effect of FytoSol applications. Area under the disease progression curve (AUDPC) calculated from leaf disease severity followed over 2 weeks after the inoculation of potato plants with *Phytophthora infestans*. Control plants were untreated and FytoSol-treated plants were preventively sprayed either once, twice or three times. Data presented are the means ± standard deviation on eight plants per experimental condition and values with different letters are significantly different (ANOVA and Tukey test, *P* < 0.05).

van Aubel et al., 2018, Plant Pathology

Experiments using the yeast strain H213

A. Weiss (LTZ Augustenberg, Germany) Bio-Protect Gesellschaft für Phytopathologie mbH

Aqua.support

amagrar GmbH

- Application of chlorine-containing water
- after drying NaCl on leaves

Dr. Marcel Thieron, amagrar GmbH

Aqua.support U

Direct inhibitory effect on sporangia and zoospores

- \rightarrow challenge: accurate point of treatment
- \rightarrow Development of a decision support system
- Combination of aqua.support and the *amagrar* DSS aqua.protect – Kupferreduktion Saison 2017
- \rightarrow up to 50% copper reduction

Use of alternative products to control late blight and early blight on potatoes, EuroBlight Workshop, May 2019 Tomke Musa et al.

Kupfertagung Berlin | aquaagrar GmbH | ARGUS monitoring | Dr. Marcel Thieror

Mehr als 50 % Reduktion durch Kombination mit aqua.protect

amagrar GmbH

ARGUS

aquaaqrar

Experiments with different *Trichoderma* strains against early blight

Greenhouse and field experiments

Field experiments: untreated control chemical reference (multisite fungicide) different biological treatments: *T. asperellum, T. atroviride, T.harzianum, T. hamatum,* TrichoStar[®], TrichoMix[®], Serenade[®] (*B. subtilis*) (spore solutions)

Figure 2. Mean efficacy of biological treatments and the fungicide in the field (%). For the biologicals, the averages of all efficacies for the two dates were calculated (n=9).

Information: H. Hausladen, TUM, PhD Nicole Metz

Conclusions

Lab trials

Pot and/or greenhouse experiments

Field trials

Transition to practice

Conclusions

- Full substitute for copper is unlikely so far
- system approach through combination of preventive, indirect and direct measures:
 - Choice of variety adapted to local conditions
 - Crop rotation
 - Mechanical methods
 - Enhance functional biodiversity
 - Plant protection products/ alternative products
 - Use of DSS and precision agriculture techniques
 - → Reduction of the amount of used copper and reduced dependency on copper achieved

Conclusions and Outlook

- Efforts needed:
- improving formulations of alternatives products

 reduction of survival structures (oospores/plant debris) to reduce primary infection

Foto: S. Jensen, Cornell University, Bugwood.org

Acknowlegement

Bio-Protect Armin Weiss

- Dr. Annegret Schmitt, JKI
 - amagrar GmbH Dr. Marcel Thieron
 - fytofend Promering Biological Atternatives
- Dr. Hans Hausladen, technische Uni München
- RG Ecolgcial Plant Protection
- Field group

Thank you for your attention!