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1 Phytopathology, Research Station Agroscope Changins-Wädenswil (ACW), Wädenswil, Switzerland, 2 Plant Pathology, Swiss Federal Institute of Technology (ETH Zürich),
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Abstract

Xanthomonas arboricola pv. pruni is a quarantine bacterial pathogen that threatens peach production by causing necrotic
spots on leaves and fruits, thus with the potential of severely reducing yields. The current understanding of the host plant
defense responses to the pathogen is very limited. Using whole transcriptome sequencing, differential gene expression was
analyzed at two time points, 2 h and 12 h post inoculation (hpi), by comparing the inoculated samples to their respective
controls. On the total of 19,781 known peach genes that were expressed in all time points and conditions, 34 and 263 were
differentially expressed at 2 and 12 hpi, respectively. Of those, 82% and 40% were up-regulated, respectively; and 18% and
60% were down-regulated, respectively. The functional annotation based on gene ontology (GO) analysis highlighted that
genes involved in metabolic process and response to stress were particularly represented at 2 hpi whereas at 12 hpi cellular
and metabolic processes were the categories with the highest number of genes differentially expressed. Of particular
interest among the differentially expressed genes identified were several pathogen-associated molecular pattern (PAMP)
receptors, disease resistance genes including several RPM1-like and pathogenesis related thaumatin encoding genes. Other
genes involved in photosynthesis, in cell wall reorganization, in hormone signaling pathways or encoding cytochrome were
also differentially expressed. In addition, novel transcripts were identified, providing another basis for further
characterization of plant defense-related genes. Overall, this study gives a first insight of the peach defense mechanisms
during the very early stages of infection with a bacterial disease in the case of a compatible interaction.
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Introduction

Bacterial spot of stone fruits, caused by Xanthomonas arboricola pv.

pruni, is a severe disease that threaten the most economically

important Prunus crops, including peach, apricot, nectarine and

plum. Identified for the first time in 1903 in the USA [1], the

disease has spread worldwide and has been now reported from all

continents [2]. The pathogen uses wounds or stomata to access the

intercellular spaces where it degrades the cell wall components [3].

This causes necrotic lesions on both leaves and fruits, leading to

severe defoliations and yield losses. In some cases the pathogen can

be also responsible for cankers and death of the trees [4]. The

pathogenicity of X. arboricola pv. pruni relies on a large repertoire of

21 type III effectors (T3Es) which can be delivered directly into the

host cells via the type III secretion system [5]. T3Es are known to

promote bacterial growth in the host plant by suppressing plant

defenses [6].

Despite extensive efforts to characterize cultivars among several

Prunus species according to their level of resistance to Xanthomonas

arboricola pv. pruni [7], [8], [9], not much is known about the

genetics underlying host defense responses. Recently, one major

QTL for disease incidence in apricot has been identified on

linkage group 5 [10]. In peach, major QTLs for X. arboricola pv.

pruni resistance have also been recently identified, one on LG4 for

leaf resistance, one on LG5 for both fruit and leaf resistance, and

one on each LG1 and LG6 for fruit resistance [11]. In addition,

the differential expression of pathogen-related genes in peach

identified by qRT-PCR upon bacterial spot infection, as well as

after methyl jasmonate and ethephon treatments, showed that

jasmonic acid and ethylene pathways may play a role in disease

resistance [12].

X. arboricola pv. pruni is especially virulent on peach [Prunus persica

(L.) Batsch], which is one of the most economically important

species in the genus Prunus, in terms of tonnage and production

area [13]. Characterized by eight chromosomes (2n = 16) and

a small genome size (around 227 Mbp) in comparison to other

plant species [14], peach is considered as a model species in the

Rosaceae family [15], [16]. As a consequence, a great emphasis

has been placed on developing efficient marker-assisted selection
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strategies to fasten molecular breeding [17]. Several inter- and

intraspecific genetic linkage maps have been constructed; one of

those, ‘Texas’ (almond) 6 ‘Earlygold’ (peach) has been saturated

with markers and is considered as the reference map for Prunus

[18], [19]. From these maps, Quantitative Trait Loci (QTLs)

involved in fruit quality, adaptation, and disease resistance have

been identified [20]. Major recent advances have been the release

of the complete peach genome sequence by the IPGI (In-

ternational Peach Genome Initiative, [21], [22]) and the de-

velopment of an Illumina 9,000 SNP array by the IPSC

(International Peach SNP Consortium, [23]) which permit to

efficiently improve coverage and saturation of linkage maps [11],

[24].

Microarrays have been extensively used in the past years to

study the expression levels of transcripts in many plants including

Prunus species [25], [26], [27], [28], [29]. It notably permitted to

show in Arabidopsis thaliana that the same set of genes confers

resistance or susceptibility to diseases, and that the difference of

phenotype is due to the timing and magnitude of the expression of

those genes [30]. However, microarray technology presents

drawbacks including a limitation to known transcripts and

background signals leading to low sensitivities for low expressed

genes. These limitations have been overcome with recent advances

of next-generation sequencing technologies such as RNA-seq [31].

RNA-seq technology has become more affordable in the recent

years, especially in the case of the analysis of a limited number of

samples. This technology is very powerful for the analysis of

transcriptomes due to the precise measure of the expression level

of each gene in a sample by mapping short cDNA sequences

(reads) on a reference genome. Next-generation technologies,

especially after the development of the Illumina Genome

Analyzer, have been successfully used to investigate differential

gene expression in several pathosystems, like Xanthomonas axonopodis

pv. glycines in soybean [32], Sclerotinia homoeocarpa in creeping

bentgrass [33], or Pseudoperonospora cubensis in cucumber [34].

In this study, deep RNA sequencing technology was used to

analyze the transcriptome of leaves of a moderately susceptible

peach cultivar [9] after X. arboricola pv. pruni inoculation and after

mock-inoculation at two different time points (2 h and 12 h post

inoculation, hpi). Reads obtained were mapped on the peach

genome and their abundance was calculated in order to identify by

pair-wise comparison genes differentially expressed in early

infected leaves. We further identified and characterized novel

transcripts with differential abundance levels, which could also

play a role in the defense mechanisms of peach against the

pathogen.

Materials and Methods

Biological material and inoculation procedure
The strain of X. arboricola pv. pruni CFBP 5530 for which

genome was recently sequenced [35], and the moderately

susceptible peach rootstock ‘GF305’ [9] were used in this study.

Two-year-old peach trees (Pépinières de Saxon, Switzerland) in 5 l

pots containing a mixture of peat and loam were grown for one

month before inoculation under quarantine greenhouse condi-

tions. Plants were maintained at 23uC and 80% relative humidity

for 24 h before and during the inoculation process, with no

additional light throughout the experiment.

Preparation of the inoculum was performed as previously

described [9]. Twenty fully developed leaves per tree were

randomly inoculated with a needless syringe at eight different

points on the abaxial side of the leaf until a water-soaked spot was

clearly visible. Controls were inoculated using the same procedure

but with a sterile 0.8% KCl solution, the same solution used to

suspend the bacteria. Three trees (biological replicates) per time

point and per type of inoculum were used. Leaf area around

inoculation corresponding to the water-soak spots were collected at

2 and 12 hpi, flash frozen in liquid nitrogen and stored at 280uC
until RNA extraction.

RNA extraction and sequencing
Total RNA was isolated separately from approximately 150 mg

of leaf tissue from each tree using the protocol developed by

Schenk and colleagues [36] with the following modification:

grinded tissue was incubated for 10 min at 65uC instead of 90 s at

95uC in the BPEX extraction buffer. RNA samples were treated

with RNAse-free DNAse I (Fermentas, Switzerland) to remove

contaminating DNA. To ensure that all genomic DNA was

digested, samples were checked with a multiplex PCR using the 4

SSR markers UDAp-416, UDAp-487, AMPA105 and UDAp-424

using the protocol as described in [10]. Purity and concentration of

the samples were estimated with a NanoDrop ND-1000 spectro-

photometer (NanoDrop technologies Inc, USA) and the integrity

of the RNA was evaluated on an RNA 6000 Nano LabChip using

Agilent 2100 Bioanalyzer (Agilent Technologies, Germany). The

three biological repetitions per treatment were then diluted at

equal concentrations and equal amounts were pooled to obtain

a final quantity of 5 mg RNA per condition. Four indexed strand-

specific cDNA libraries were prepared and samples were

sequenced on an Illumina HiSeq 2000 with a 51-bp single-end

read length (GATC Biotech, Germany).

Reads mapping and annotations
Reads were mapped to the P. persica genome v.1.0 obtained

from the Genome Database for Rosaceae (GDR, http://www.

rosaceae.org/peach/genome) using TopHat v.2.0.3 [37], with

Bowtie v.0.12.8 [38].

Transcript abundance and differential gene expression were

calculated with the program Cufflinks v.2.0.1 [39]. Annotations of

differentially expressed genes including Pfam database [40] were

obtained from the reference annotation of the peach genome

available at the GDR website. Gene expression levels were

normalized using fragments per kilobase of exon per million

mapped reads (FPKM) report values. Genes were considered as

induced or repressed, only when their log2 fold change was .2 or

,22, respectively, and their P value was ,0.001.

For each differentially expressed peach gene, latest Gene

Ontology (GO) annotations were obtained using Blast2GO

v.2.3.5 [41] with the default parameters, and GOslim option

was set to reduce the number of functional classes. GOslim

annotations results were then used as queries against the AgBase

database [42] to perform their classification according to the three

main classes (molecular function, biological process and cellular

component), and to be further assigned to secondary categories.

Results and Discussion

Analysis of RNA-Seq datasets
Sequencing of cDNA samples yielded 49 to 54.7 million reads

corresponding to over 2.5 billion nucleotides of cDNA per sample

(Table 1). Good quality scores of the reads were obtained, with

Q20 percentages (sequencing error rate lower than 1%) which

were all over 97%, while N percentages were all around 0.01%

(Table 1). Between 73.8 and 76.9% of the reads could be mapped

on the peach genome whereas an insignificant number of reads

(less than 0.03% of the reads) were mapped to the X. arboricola pv.

pruni CFBP 5530 genome. However, since reads from the mock-

RNA-Seq Peach-Xanthomonas arboricola pv. pruni
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inoculated samples also mapped on X. arboricola pv. pruni genome

to the same extent, this observation could be due to short identical

sequences shared between the two genomes. This hypothesis is

further supported by the fact that reads obtained from X. arboricola

pv. pruni from in vitro culture mapped to the P. persica genome (our

unpublished data). Thus we can consider that mapped reads were

almost exclusively constituted of peach reads. Total number of

expressed genes was over 21,000 per sample (Table 1), and a total

number of 19,781 expressed genes were in common to all

experiment time points and conditions (data not shown).

Fragments per kilobase of exon per million mapped reads (FPKM)

values of the four sequenced samples ranged from 0 for all samples

to 23,273 for the 2 hpi inoculated sample (Table 1). Subsets of 5 to

40 million reads were randomly selected from the total pool of

reads of each sample at each time point in order to check the effect

of sampling depth on gene expression. The simulation obtained

revealed that the number of genes expressed started to reach

a plateau at 30 million reads, showing that the depth used in our

study was sufficient to cover the whole peach transcriptome (Fig.

S1).

To evaluate gene expression, ten housekeeping genes coding for

actin, tubulin, catalase or GAPDH motives (Table 2) were selected

based on the study from Cocker and Davies [43]. Based on pair-

wise comparisons of the inoculated samples and their respective

mock-inoculated samples at the two time points, none of these

reference genes was significantly differentially expressed, with log2

fold changes ranging from 21.05 for gene ppa005765 coding for

tubulin at 12 hpi to 0.41 for another tubulin encoding gene

(ppa005785) at 12 hpi. These results indicated that the sequences

obtained and the transcript expression levels met the requirements

for further transcriptome analysis.

Response to X. arboricola pv. pruni inoculation at 2 h and
12 h post inoculation

By performing a pair-wise comparison of the inoculated and the

mock-inoculated samples at 2 hpi, 34 genes were differentially

expressed due to inoculation with the bacteria; 18% of them were

down-regulated and 82% were up-regulated (Table S1). The pair-

wise comparison of the inoculated and mock-inoculated samples at

12 hpi resulted in the identification of a total of 263 genes

differentially expressed, 60% and 40% being down-regulated and

up-regulated, respectively (Table S2). The high number of down-

regulated genes at 12 hpi compared to 2 hpi may reflect the

release of type III effectors by the bacterial cells to suppress plant

defense pathways. Four genes were in common between the two

time points. One of them was up-regulated in both cases while the

expression of the three others changed between 2 and 12 hpi, with

two up-regulated genes at 2 hpi which were down-regulated at

12 hpi, and one gene the opposite (Table S3).

Identification of differentially expressed potential novel
genes

One advantage of the RNA-seq technology is that a part of the

reads obtained may be mapped in regions of the genome of the

organism under study which have not yet been annotated, thus

identifying new coding regions. Here, a total of 28 and 199 novel

transcripts with differential abundance levels (referred hereafter as

set of novel transcripts) were identified 2 and 12 hpi, respectively,

with seven being common to both time points (Table S4, Table

S5, Table S6). At 2 hpi, 32% of the novel transcripts were

significantly more abundant in the inoculated sample than in the

control, while at 12 hpi 81% were significantly more abundant in

the control sample. Using Blast2GO software, 21% and 43% of

these novel transcripts could be annotated at 2 hpi and 12 hpi,

respectively (Table S4, S5).

Gene ontology analysis
For a better understanding of the range of genes involved in the

response of peach to the inoculation of X. arboricola pv. pruni,

functional classes of differentially expressed genes were determined

using gene ontology (GO) analysis. Blast2GO software returned

functions for 43% and 59% of the differentially expressed genes

and novel transcripts at 2 and 12 hpi, respectively (Table 3).

Generally for both time points, more genes were assigned to the

biological process and molecular function categories than in the

cellular component category (Table 4, Table 5, Table 6). The

distribution of the GO functions revealed that metabolic process

(12.1%) and response to stress (12.1%) were the most represented

secondary categories of the biological processes at 2 hpi which

may reflect that the defense mechanisms of the peach plants were

activated by the pathogen already at 2 hpi (Fig. 1), while at 12 hpi

the most represented biological processes identified were the

metabolic (14.5%) and cellular (9.6%) processes (Fig. 1). In the

category of molecular functions, a higher proportion of genes for

which products were involved in binding, kinase activity,

hydrolases and transferases was identified at both 2 and 12 hpi

(Fig. 2). An important number of cellular component GO terms

was associated with plastids, membranes, thylakoids and cell

components at both 2 and 12 hpi (Fig. 3).

Furthermore, GO analysis categorized up-regulated genes in 45

and 54 different functions at 2 and 12 hpi, respectively, and in 9

Table 1. Statistics of the reads obtained and their mapping on the peach and X. arboricola pv. pruni genomes.

Total reads
Total
nucleotides

Mapped
reads1 % Pp2 % Xap3

GC
content
(%)

Q20
score
(%)4 % of N5

Expressed
genes

Min
FPKM
value

Max
FPKM
value

Control 2 h 50,048,941 2,552,495,991 38,434,186 76.97 0.01 44.7 97.51 0.01 21,096 0 19817

12 h 52,975,371 2,701,743,921 39,036,493 73.82 0.03 44.5 97.60 0.01 21,650 0 19971

Inoculated 2 h 49,049,564 2,501,527,764 37,223,827 76.02 0.03 44.6 97.61 0.01 21,260 0 23273

12 h 54,747,928 2,792,144,328 41,124,163 75.38 0.01 44.0 97.60 0.01 21,550 0 16028

1Total number of reads mapped on the P. persica genome.
2Percentage of reads mapped on the P. persica genome.
3Percentage of reads mapped on the X. arboricola pv. pruni CFBP 5530 genome.
4Percentage of reads with average Phred quality score equal or above 20 i.e. for which the percentage of bases for which the accuracy of base calling is 99% or higher.
5Percentage of nucleotides that could not be sequenced.
doi:10.1371/journal.pone.0054196.t001
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and 74 different functions at 2 and 12 hpi, respectively for the

down-regulated genes (Table 4, Table 5 and Table 6).

Transcriptional changes of defense-related genes using
Prunus persica annotations

After pair-wise comparisons of inoculated samples to their

respective mock-inoculated samples at 2 and 12 hpi, annotations

of differentially expressed genes were obtained from the peach

genome annotation. Almost all of them (97% at 2 hpi and 95% at

12 hpi) were identified with orthologs in A. thaliana (Table 3). Most

of the genes were annotated, with 76% at 2 hpi and 79% of the

genes at 12 hpi being assigned to a Pfam category (Table 3, Table

S1, and Table S2).

Genes involved in basal defense
Plants possess different sophisticated systems to defend them-

selves against pathogen attacks. In some cases their cells express

receptors with a broad range specificity and detect structures of the

pathogen called pathogen associated molecular patterns (PAMPs)

leading to a PAMP-triggered immunity [44]. One of the best-

characterized PAMP-triggered immunity genes is FLAGELLIN

SENSING 2 (FLS2), a transmembrane receptor kinase for

bacterial flagellin in A. thaliana which contains a leucin-rich

(LRR) repeat domain [45]. This gene belongs to a family of

receptor-like kinases including rice gene Xa21 (Xanthomonas re-

sistance protein 21, [46], [47]. In the transcriptome of soybean

inoculated with X. axonopodis pv. glycines, a close homologue of FLS2

was shown to be up-regulated at 0 hpi in a resistant line in

comparison to the susceptible one but was not differentially

expressed 6 and 12 hpi [32]. In our study, ppa1027223m similar

to FLS2 was up-regulated at 12 hpi in comparison to the controls

(Table S2); although the expression of this gene has not been

reported yet in Prunus, we can hypothesize that it may have

a similar function as in A. thaliana. Two other genes with

similarities to genes coding for germin proteins were identified,

one (ppa016616m) was significantly up-regulated and the other

(ppa011460m) down-regulated. Similar genes have been pre-

viously identified for being involved in basal plant defense against

several pathogens, by playing a role in the synthesis of active

oxygen [48] and were reported to be up-regulated in Italian

ryegrass (Lolium multiflorum Lam.) upon inoculation with X.

translucens pv. graminis [49].

After the perception of PAMPs, genes involved in the signaling

cascade (mitogen-activated protein kinases, MAPK) are activated

and followed by the activation of WRKY transcription factors

[50]. Gene ppa006485m, similar to a gene encoding a mitogen-

activated protein kinase kinase kinase (MAPKKK15) was identi-

fied in our study and was down-regulated while genes

ppa015973m which could belong to the MYB-family and

ppa018075m to the WRKY-family were both up-regulated at

12 hpi in our study (Table S2). Other homologs to genes encoding

DNA binding proteins, transcriptional regulation or transcription

factors were differentially expressed, such as one encoding

a transducin/WD40-repeat containing protein (ppa026854m)

and one belonging to the basic-helix loop helix DNA-binding

family (ppa017640m) at 2 hpi. At 12 hpi, two differentially

expressed genes (ppb012603m and ppa022385m) similar to genes

belonging to the basic-helix loop helix DNA-binding family and

four (ppa012687m, ppa012737m, ppa012242m, and

ppa011359m) to genes belonging to zinc finger families were

identified.
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Genes involved in cell wall reorganization
In this study, several putative genes involved in cell wall

formation and degradation were identified. Ppa003528m was one

of the most highly down-regulated genes in our study at 12 hpi

(log2 fold change =25.9, Table S2). Ppa003528m is similar to

genes belonging to the invertase/pectin methylesterase inhibitor

family, from which some genes are known to be involved in cell

wall modification, but have also been reported as playing an

important role in basal disease resistance, and can be induced by

X. campestris pv. vesicatoria in pepper [51]. Invertase/pectin

methylesterase inhibitors have also been shown to be down-

Figure 1. Distribution of the differentially expressed genes within the GO secondary categories of biological processes at 2 h (in
black) and 12 h (in grey) post inoculation (hpi).
doi:10.1371/journal.pone.0054196.g001

Figure 2. Distribution of the differentially expressed genes within the GO secondary categories of molecular functions at 2 h (in
black) and 12 h (in grey) post inoculation (hpi).
doi:10.1371/journal.pone.0054196.g002
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regulated in susceptible potato plants 0.5 hours after Potato virus Y

inoculation [52].

Seven differentially expressed genes similar to b-glucosidase

encoding genes were identified at 12 hpi, one of them

(ppa006110m) being the most up-regulated (log2 fold change = 5.9)

whereas all others were down-regulated (Table S2). In plants, b-

glucosidases are known to play an important role in cell wall

lignification [53], but also for their activation of phytohormones

[54] and chemical defense compounds [55]. Other genes which

could play a role in cell wall reorganization were identified and

were up-regulated, such as two xyloglucan endotransglycosylase/

hydrolase (ppa019741m and ppa009608m), and one xyloglucan:-

xyloglucosyl transferase (ppa009090m) which have a role in

primary cell wall restructuration [56]; as well as one peroxidase

(ppa027053m) which can be involved in cell wall lignification and

degradation of vascular tissues. Peroxidases are also known to play

a role in systemic resistance of tobacco to blue mold [57] and to

wounding in northern red oak [58]. Another differentially

expressed gene similar to a gene encoding a cell wall hydrolase

was found on scaffold 3 in the set of novel transcripts at 12 hpi and

was down-regulated (Table S5). The identification of differentially

expressed genes that could be involved in cell wall reorganization

indicates that major changes may be performed at an early stage,

either by degrading or lignifying cell walls to avoid the spread of

the disease into the vascular tissues.

Differential expression of photosynthesis genes
Five genes putatively involved in light harvesting complexes

(ppa009686m and ppa004865m), or related to chlorophyll A/B

binding protein (ppa010015m and ppa010034m) or to the

photosystem I (ppa013313m) were all down-regulated at 12 hpi.

Additionally, 14 differentially expressed genes in the set of novel

transcripts were similar to genes involved in photosynthesis

(photosystem I and II proteins, Table S5) and were all identified

as significantly down-regulated at 12 hpi. These results are in

accordance with previous observations, e.g. in the A. thaliana – P.

Figure 3. Distribution of the differentially expressed genes within the GO secondary categories of cellular components at 2 h (in
black) and 12 h (in grey) post inoculation (hpi).
doi:10.1371/journal.pone.0054196.g003

Table 3. BLASTP statistics of the differentially expressed
genes at 2 and 12 hpi according to GO and Pfam databases,
and similarities between peach and Arabidopsis thaliana
transcripts.

2 hpi 12 hpi

Num. % Num. %

Known GOa 27 43.55 274 59.31

Unknown GOa 35 56.45 188 40.69

Known Pfamb 26 76.47 209 79.47

Unknown Pfamb 8 23.53 54 20.53

At1 sequenceb 33 97.06 250 95.06

No At2 sequenceb 1 2.94 13 4.94

aAnnotation results were obtained from Blast2GO software and includes the
novel transcripts.
bAnnotation were obtained from the GDR annotations and does not include the
novel transcripts.
1Number and percentage of genes in peach with a corresponding transcript in
the Arabidopsis thaliana genome.
2Number and percentage of genes in peach without a corresponding transcript
in the A. thaliana genome.
doi:10.1371/journal.pone.0054196.t003
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syringae pathosystem [59], but also in kumquat leaves challenged by

X. citri subsp. citri [60]. It was hypothesized that the down-

regulation of genes involved in photosynthesis could induce

a hypersensitive response following the infection [60]. This could

also be due to a strategy of the plant to limit the availability of

sugars for the pathogen, to fitness costs for the plant which has to

reallocate for defense [61], or to protect the photosynthetic

apparatus against oxidative damage [62].

Table 4. GO functional categorization of differentially expressed peach genes with a biological process after X. arboricola pv. pruni
inoculation.

2 h 12 h

Up-
regulated

Down-
regulated

Up-
regulated Down-regulated

GO ID Biological process Num (%) Num (%) Num (%) Num (%)

GO:0008152 metabolic process 3 10.34 1 25.00 20 15.87 51 14.05

GO:0006810 transport 1 3.45 0 0.00 6 4.76 34 9.37

GO:0009987 cellular process 1 3.45 2 50.00 16 12.70 31 8.54

GO:0009058 biosynthetic process 2 6.90 0 0.00 5 3.97 27 7.44

GO:0006950 response to stress 3 10.34 1 25.00 8 6.35 21 5.79

GO:0016043 cellular component organization 0 0.00 0 0.00 5 3.97 16 4.41

GO:0009628 response to abiotic stimulus 0 0.00 0 0.00 3 2.38 16 4.41

GO:0006091 generation of precursor metabolites and energy 1 3.45 0 0.00 0 0.00 14 3.86

GO:0005975 carbohydrate metabolic process 1 3.45 0 0.00 7 5.56 14 3.86

GO:0009056 catabolic process 1 3.45 0 0.00 2 1.59 13 3.58

GO:0006464 cellular protein modification process 2 6.90 0 0.00 9 7.14 12 3.31

GO:0006139 nucleobase-containing compound metabolic process 1 3.45 0 0.00 5 3.97 12 3.31

GO:0006811 ion transport 1 3.45 0 0.00 0 0.00 11 3.03

GO:0009607 response to biotic stimulus 1 3.45 0 0.00 2 1.59 10 2.75

GO:0006629 lipid metabolic process 0 0.00 0 0.00 4 3.17 10 2.75

GO:0006519 cellular amino acid and derivative metabolic process 1 3.45 0 0.00 2 1.59 9 2.48

GO:0006412 translation 1 3.45 0 0.00 0 0.00 9 2.48

GO:0019538 protein metabolic process 1 3.45 0 0.00 1 0.79 7 1.93

GO:0019748 secondary metabolic process 1 3.45 0 0.00 3 2.38 7 1.93

GO:0007275 multicellular organismal development 0 0.00 0 0.00 1 0.79 7 1.93

GO:0015979 photosynthesis 0 0.00 0 0.00 0 0.00 5 1.38

GO:0009719 response to endogenous stimulus 1 3.45 0 0.00 3 2.38 4 1.10

GO:0009653 anatomical structure morphogenesis 0 0.00 0 0.00 1 0.79 4 1.10

GO:0030154 cell differentiation 0 0.00 0 0.00 0 0.00 4 1.10

GO:0007165 signal transduction 1 3.45 0 0.00 4 3.17 3 0.83

GO:0009791 post-embryonic development 0 0.00 0 0.00 2 1.59 3 0.83

GO:0016049 cell growth 0 0.00 0 0.00 2 1.59 2 0.55

GO:0008150 undefined biological process 1 3.45 0 0.00 6 4.76 1 0.28

GO:0009605 response to external stimulus 1 3.45 0 0.00 3 2.38 1 0.28

GO:0000003 reproduction 0 0.00 0 0.00 1 0.79 1 0.28

GO:0007049 cell cycle 0 0.00 0 0.00 0 0.00 1 0.28

GO:0007610 behavior 0 0.00 0 0.00 0 0.00 1 0.28

GO:0009908 flower development 0 0.00 0 0.00 0 0.00 1 0.28

GO:0040007 growth 0 0.00 0 0.00 0 0.00 1 0.28

GO:0007154 cell communication 1 3.45 0 0.00 1 0.79 0 0.00

GO:0008219 cell death 1 3.45 0 0.00 2 1.59 0 0.00

GO:0009991 response to extracellular stimulus 1 3.45 0 0.00 0 0.00 0 0.00

GO:0008037 cell recognition 0 0.00 0 0.00 1 0.79 0 0.00

GO:0006259 DNA metabolic process 0 0.00 0 0.00 1 0.79 0 0.00

Total 29 100 4 100 126 100 363 100

doi:10.1371/journal.pone.0054196.t004
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Genes involved in hormone signaling pathways
Hormones play an important role as signaling molecules in

response to biotic stresses, especially salicylic acid (SA), jasmonates

(JA) and ethylene (ET) (reviewed in [63]). Kim and colleagues [32]

did not observe any significant differentially expressed SA-related

gene in soybean after X. axonopodis pv. glycines inoculation, but

identified differentially expressed JA-signaling genes. Here, no

gene involved in SA-, JA- or ET-signaling pathways was

differentially expressed. However, ppa004865m which is similar

to LAX2 could be involved in auxin transport, and ppa013981m

similar to genes belonging to the SAUR-like auxin-responsive

protein family could play a role in auxin signaling pathway [64];

both were down-regulated in our study (Table S2). Blocking auxin

responses in A. thaliana was shown to increase plant resistance to

Pseudomonas syringae pv. maculicola [65]. Furthermore, the suppres-

sion of auxin signaling pathway promotes the SA- and JA-signaling

pathways, and inhibits the expansin expression in rice after X.

oryzae pv. oryzae inoculation [66]. Three expansin-like genes were

identified as down-regulated 12 hpi. Expansins are known as

regulators of cell wall extension during cell growth. On the other

side, one of the most down-regulated genes (ppa020764m, with

a log2 fold change of 26.0, Table S2) at 12 hpi could be involved

in the gibberellin-signaling pathway. Although they have been

much less studied than the other defense-related signaling

molecules SA, JA and ET, gibberellins could also actively play

a role in the plant defense response by activating or repressing

these signaling molecules [63].

An important down-regulation of cytochrome-like genes
Among the differentially expressed genes, a very high number of

down-regulated (ten down-regulated on a total of 11 differentially

expressed genes, Table S2) homologs to genes encoding

cytochrome P450s (CYP) were observed at 12 hpi. CYP play

diverse roles such as antioxidants, UV protectants, detoxification

of pollutants, biosynthesis of hormones, but are also known to be

involved in basal plant defense against a wide variety of pathogens,

including bacterial pathogens [67]. Another set of 13 cytochrome

related genes were all down-regulated among the set of novel

transcripts (Table S5). In our study, the down-regulation of CYP

genes is probably one of the most pronounced transcriptional

change following the infection by X. arboricola pv. pruni. This is an

indication of a possible strategy for the pathogen to delay the stress

signaling pathways of the plant.

Putative resistance genes
PAMP-triggered immunity can be inactivated by bacterial type

III effectors which are directly delivered into the host cells via the

type III secretion system. These effectors interfere with the host

Table 5. GO functional categorization of differentially expressed peach genes with a molecular function after X. arboricola pv.
pruni inoculation.

2 h 12 h

Up-
regulated

Down-
regulated

Up-
regulated Down-regulated

GO ID Molecular function Num (%) Num (%) Num (%) Num (%)

GO:0005488 binding 6 20.00 0 0.00 18 14.63 78 25.66

GO:0003824 catalytic activity 2 6.67 2 33.33 14 11.38 57 18.75

GO:0016787 hydrolase activity 5 16.67 1 16.67 14 11.38 35 11.51

GO:0016740 transferase activity 3 10.00 0 0.00 16 13.01 21 6.91

GO:0005215 transporter activity 2 6.67 0 0.00 3 2.44 19 6.25

GO:0009055 electron carrier activity 0 0.00 0 0.00 0 0.00 18 5.92

GO:0000166 nucleotide binding 5 16.67 1 16.67 15 12.20 17 5.59

GO:0005515 protein binding 1 3.33 0 0.00 5 4.07 14 4.61

GO:0003723 RNA binding 2 6.67 0 0.00 4 3.25 12 3.95

GO:0005198 structural molecule activity 1 3.33 0 0.00 0 0.00 10 3.29

GO:0016301 kinase activity 2 6.67 1 16.67 17 13.82 5 1.64

GO:0030234 enzyme regulator activity 0 0.00 0 0.00 0 0.00 3 0.99

GO:0030246 carbohydrate binding 0 0.00 0 0.00 1 0.81 3 0.99

GO:0003677 DNA binding 0 0.00 1 16.67 5 4.07 2 0.66

GO:0003700 sequence-specific DNA binding transcription factor activity 0 0.00 0 0.00 2 1.63 2 0.66

GO:0008289 lipid binding 0 0.00 0 0.00 0 0.00 2 0.66

GO:0019825 oxygen binding 0 0.00 0 0.00 0 0.00 2 0.66

GO:0003676 nucleic acid binding 0 0.00 0 0.00 4 3.25 1 0.33

GO:0004518 nuclease activity 1 3.33 0 0.00 0 0.00 1 0.33

GO:0004872 receptor activity 0 0.00 0 0.00 2 1.63 1 0.33

GO:0008135 translation factor activity, nucleic acid binding 0 0.00 0 0.00 0 0.00 1 0.33

GO:0004871 signal transducer activity 0 0.00 0 0.00 3 2.44 0 0.00

Total 30 100 6 100 123 100 304 100

doi:10.1371/journal.pone.0054196.t005
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cell function to induce disease [68]. They can be recognized in the

plant by resistance (R) genes: this is a gene-for-gene resistance

which leads to extracellular oxidative burst, induction of salicylic

acid signaling pathway, calcium and hydrogen influxes in the cell,

and cell death or hypersensitive response [69]. Although only a few

genes were differentially expressed at 2 hpi, several putative R

genes were identified, among them the two RPM1-like genes

containing NB-ARC domains (ppa019283m and ppa016517m)

and known for conferring resistance to P. syringae in A. thaliana [70]

were up-regulated. Two others, one putative leucine-rich repeat

(LRR) kinase (ppa025198m) and one coding for a putative disease

resistance protein containing TIR-NBS-LRR motives

(ppa024010m) were down-regulated. Among the 28 novel

transcripts identified at 2 hpi, one down-regulated gene coding

for a putative receptor-like kinase was detected on scaffold 2

(Table S4).

Twelve hours post inoculation, several putative R genes were

differentially expressed, among them four RPM1-like genes

(ppa000961m, ppa021560m, ppa024705m, ppa026627m), two

putative genes coding for LRR protein kinases (ppa018586m and

ppa017496m), one for cysteine proteinase (ppa008267m) that

could be involved in cell death, and seven belonged to disease

resistance protein families with LRR motives (ppa000999m,

ppb021252m, ppa021712m), CC-NBS-LRR motives

(ppa017163m, ppa001498m) or TIR-NBS-LRR motives

(ppa025848m, ppa026531m). All these genes were up-regulated

at 12 hpi, with log2 fold changes ranging from 2.0 to 3.3 (Table

S2).

Defense-related genes
Two pathogenesis related thaumatin genes (ppa010418m and

ppa010410m) identified in our study were down-regulated at

12 hpi. Similar genes were reported to be overexpressed during

the interaction of X. oryzae pv. oryzae with rice, and conferred

a moderate level of resistance [71]. Other putative defense-related

genes, such as one coding for a chitinase A (ppa026927m), five for

terpene synthases (ppa016292m, ppa020831m, ppa023341m,

ppa024025m, and ppa024760m) and five for glutathione S-

transferases (ppa014555m, ppa018201m, ppa019045m,

ppa023395m, and ppb009348m) were differentially expressed at

12 hpi. Two additional up-regulated putative genes coding for

a LRR receptor-like serine threonine-protein kinase and a receptor

protein kinase-like were identified among the set of novel

transcripts on scaffold 6 (Table S5).

Defense mechanisms in Prunus in response to X.
arboricola pv. pruni

Up to now not much was known about the mechanisms of

resistance against X. arboricola pv. pruni in Prunus species. In peach,

major QTLs were associated with bacterial spot resistance on

LG1, 4, 5, and 6 [11]; and in apricot, a QTL was previously

mapped on linkage group 5 of ‘Rouge de Mauves’ with data issued

from evaluations of two consecutive years [10]. Apricot and peach

genomes being highly syntenic [72], [73], the scaffold 5 of peach

corresponds to the linkage group 5 of apricot. Thus we searched

for differentially expressed genes located on this scaffold. Four and

17 differentially expressed genes on scaffold 5 were identified at

2 h and 12 hpi, respectively. However, only one (ppa011598m,

Table 6. GO functional categorization of differentially expressed peach genes involved in cellular components after X. arboricola
pv. pruni inoculation.

2 h 12 h

Up-regulated Down-regulated Up-regulated Down-regulated

GO ID Cellular component Num (%) Num (%) Num (%) Num (%)

GO:0009536 plastid 3 16.67 0 0.00 4 9.30 71 21.07

GO:0005623 cell 1 5.56 1 100.00 5 11.63 45 13.35

GO:0009579 thylakoid 1 5.56 0 0.00 0 0.00 45 13.35

GO:0016020 membrane 3 16.67 0 0.00 5 11.63 28 8.31

GO:0043234 protein complex 1 5.56 0.00 0 0.00 26 7.72

GO:0005737 cytoplasm 3 16.67 0 0.00 3 6.98 23 6.82

GO:0005739 mitochondrion 1 5.56 0 0.00 0 0.00 17 5.04

GO:0005576 extracellular region 1 5.56 0 0.00 7 16.28 15 4.45

GO:0005618 cell wall 1 5.56 0 0.00 4 9.30 15 4.45

GO:0005622 intracellular 1 5.56 0 0.00 3 6.98 14 4.15

GO:0005634 nucleus 0 0.00 0 0.00 4 9.30 9 2.67

GO:0005829 cytosol 0 0.00 0 0.00 1 2.33 9 2.67

GO:0005886 plasma membrane 2 11.11 0 0.00 7 16.28 7 2.08

GO:0005773 vacuole 0 0.00 0 0.00 0 0.00 5 1.48

GO:0005777 peroxisome 0 0.00 0 0.00 0 0.00 3 0.89

GO:0005783 endoplasmic reticulum 0 0.00 0 0.00 0 0.00 2 0.59

GO:0005730 nucleolus 0 0.00 0 0.00 0 0.00 1 0.30

GO:0005794 Golgi apparatus 0 0.00 0 0.00 0 0.00 1 0.30

GO:0005856 cytoskeleton 0 0.00 0 0.00 0 0.00 1 0.30

Total 18 100 1 100 43 100 337 100

doi:10.1371/journal.pone.0054196.t006
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Table S5) was in the confidence interval of the mapped QTL [10]

and was only identified in the dataset of differentially expressed

genes at 12 hpi. This gene is similar to WR3 in A. thaliana which is

a wound responsive gene coding for nitrate transmembrane

transporter. Three and 16 differentially expressed genes in the set

of novel transcripts were also identified on scaffold 5 at 2 and

12 hpi, respectively (Table S4 and Table S5). However, none of

those genes were in the confidence interval of the apricot QTL.

This very low number of differentially expressed genes identified

on scaffold 5 of peach in the confidence interval determined on

linkage group 5 of apricot may reflect the fact that we focused on

the identification of genes involved in early infection response in

the peach genome whereas the QTL identified in apricot was

based on disease severity data obtained 42 days post inoculation.

Sherif and colleagues [12] studied the level of expression of

seven pathogenesis-related (PR) genes at 1, 4, 8, 24 and 48 hpi in

the peach cultivar ‘Venture’ resistant to X. campestris (syn. arboricola)

pv. pruni and in the susceptible cultivar ‘BabyGold 59. In a second

study from Sherif and colleagues [74], differentially expressed

ethylene response factors (ERFs) after X. arboricola pv. pruni

inoculation were identified in the same cultivars and at the same

time points. To identify the transcripts corresponding to these

genes on the peach genome, an analysis was performed using these

accessions as BLASTN queries (GenBank, accessions nos.

HQ825094 to HQ825098, and JF694923 to JF694927). A total

of 23 genes potentially corresponding to the ERF and PR genes

were found. From the 17 potential PR genes, 11 were not

differentially expressed, five were not expressed at all and one was

up-regulated only at 2 hpi, with a log2 fold change of 1.2 (Table

S7). From the six potential ERF genes found, four were not

differentially expressed, one was not expressed and only one was

up-regulated at 2 hpi. These differences obtained between the

studies could be due to the difference of inoculation technique

used, explaining why diverse sets of genes may be involved in both

studies. Indeed, in Sherif and colleagues experiments, plants were

dipped into the inoculum, whereas here the inoculum was directly

injected into the leaves and measurements were done at slightly

different time points.

Conclusions
RNA-seq technology is a very valuable tool to enhance our

understanding of the genetics underlying the resistance mechan-

isms in pathosystems. This study is the first to give a global view of

the gene expression of a Prunus crop under pathogen attack. We

provide insights of the peach transcriptome once bacterial cells of

X. arboricola pv. pruni have passed physical barriers and are inside

the leaf. Because plants may recognize the bacterial effectors and

induce a hypersensitive response within 24 h [75], we performed

comparisons of inoculated samples with their respective controls at

the early stages of 2 and 12 hpi. Although the peach variety used

in our study is moderately susceptible, many genes with potential

defense-related functions were differentially expressed at 12 hpi.

Fewer genes were differentially expressed at 2 hpi, however the

GO annotations and classifications showed that genes belonging to

a wide range of functional categories were already involved in the

defense response to the pathogen at this early time point.

Furthermore, the RNA-seq technology not only permitted to

identify differentially expressed genes involved in basal or gene-

for-gene defense mechanisms, but also revealed novel differentially

expressed genes and transcripts of unknown functions. Thus, this

study provides an important basis for further characterization of

peach defense-related genes in response to X. arboricola pv. pruni

infection. The results obtained will be used to support further

research on the pathogen transcriptome and characterize the host-

pathogen molecular interactions.

Supporting Information

Figure S1 Number of genes expressed at different
sampling depths. Genes with FPKM values obtained by
Cufflinks v.2.0.1 higher than zero were considered as
expressed. Max is the total number of reads obtained in each

sample.

(TIFF)

Table S1 Complete list of differentially expressed
peach genes at 2 h post inoculation with X. arboricola
pv. pruni.

(XLSX)

Table S2 Complete list of differentially expressed
peach genes at 12 h post inoculation with X. arboricola
pv. pruni.

(XLSX)

Table S3 List of differentially expressed peach genes in
common at 2 h and 12 h post inoculation with X.
arboricola pv. pruni.

(XLSX)

Table S4 Complete list of peach novel transcripts that
are over or under represented at 2 h post inoculation
with X. arboricola pv. pruni.

(XLSX)

Table S5 Complete list of peach novel transcripts that
are over or under represented at 12 h post inoculation
with X. arboricola pv. pruni.

(XLSX)

Table S6 List of peach novel transcripts that are over or
under represented at both 2 h and 12 h post inoculation
with X. arboricola pv. pruni.

(XLSX)

Table S7 List of putative transcripts that could corre-
spond to the PR and ERF genes identified by Sherif and
colleagues [12] [74].

(XLSX)

Acknowledgments

We thank Verena Knorst for technical support and Jan Buchmann for

writing scripts.

Author Contributions

Conceived and designed the experiments: DS-J TK JFP DC CG BD AP.

Performed the experiments: DS-J. Analyzed the data: DS-J TK JFP. Wrote

the paper: DS-J TK JFP DC CG BD AP.

References

1. Smith EF (1903) Observation on a hitherto unreported bacterial disease, the

cause of which enters the plant through ordinary stomata. Science 17: 456–457.

2. Anonymous (2006) EPPO standards PM 7/64. Diagnostics Xanthomonas arboricola

pv. pruni. Bull EPPO 36: 129–133.

3. Aarrouf J, Garcin A, Lizzi Y, El Maâtaoui M (2008) Immunolocalization and
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