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The in silico prediction of the best-observable “proteotypic” peptides in mass spectrometry-
basedworkflows is a challenging problem. Being able to accurately predict such peptides would
enable the informed selection of proteotypic peptides for targeted quantification of previously
observed and non-observed proteins for any organism, with a significant impact for clinical
proteomics and systems biology studies. Current prediction algorithms rely on physicochemical
parameters in combination with positive and negative training sets to identify those peptide
properties that most profoundly affect their general detectability.
Here we present PeptideRank, an approach that uses learning to rank algorithm for peptide
detectability prediction from shotgun proteomics data, and that eliminates the need to
select a negative dataset for the training step. A large number of different peptide properties
are used to train ranking models in order to predict a ranking of the best-observable
peptides within a protein. Empirical evaluation with rank accuracy metrics showed that
PeptideRank complements existing prediction algorithms. Our results indicate that the best
performance is achieved when it is trained on organism-specific shotgun proteomics data,
and that PeptideRank is most accurate for short to medium-sized and abundant proteins,
without any loss in prediction accuracy for the important class of membrane proteins.

Biological significance
Targeted proteomics approaches have been gaining a lot of momentum and hold immense
potential for systems biology studies and clinical proteomics. However, since only very few
complete proteomes have been reported to date, for a considerable fraction of a proteome
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there is no experimental proteomics evidence that would allow to guide the selection of the
best-suited proteotypic peptides (PTPs), i.e. peptides that are specific to a given proteoform
and that are repeatedly observed in a mass spectrometer. We describe a novel, rank-based
approach for the prediction of the best-suited PTPs for targeted proteomics applications. By
building on methods developed in the field of information retrieval (e.g. web search engines
like Google's PageRank), we circumvent the delicate step of selecting positive and negative
training sets and at the same time also more closely reflect the experimentalist´s need for
selecting e.g. the 5 most promising peptides for targeting a protein of interest. This
approach allows to predict PTPs for not yet observed proteins or for organisms without prior
experimental proteomics data such as many non-model organisms.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Targeted quantitative proteomics approaches have been gaining
momentum mainly due to their ability to generate accurate,
reproducible, and complete quantitative data series [1–6], which
are particularly relevant for systems biology studies and for
clinical use. These approaches hold large potential for the
quantitative evaluation of potential protein biomarkers for
diagnostic and therapeutic uses e.g. from plasma samples [7,8].
Targeted quantitative proteomic approaches rely on selected
reaction monitoring (SRM) [9], also referred to as multiple
reaction monitoring (MRM) [10,11], which instructs a mass
spectrometer to selectively focus on a combination of a peptide
precursor ion mass and several fragment ion masses that are
unique and specific for a target protein of interest. These so
called transitions can be measured with about one hundred fold
higher sensitivity [12], and allow to overcome the issue of low
reproducibility in replicate measurements that is typical of
shotgun proteomics [13]. To quantify selected proteins of
interest, specific transitions of proteotypic peptides (PTPs), i.e.
signature peptides that unambiguously identify one protein and
which are repeatedly observed bymass spectrometry [1,14], have
to bemeasured. Sucha targeted SRMapproach led to aproteomic
map of the yeast proteome [15] and enabled the sensitive,
reproducible quantification of induced perturbations over time
within such a model system.

However, incomplete experimental proteomics data and
large differences in the detectability of peptides from the same
protein in a mass spectrometer complicate the selection of the
best-suited peptides for targeted proteomics.

The identification of completely expressed proteomes by
discovery shotgun proteomics has only recently been reported
for a few organisms [16–18]. For the vast majority of organisms,
however, public experimental protein data repositories like
PeptideAtlas [19], PRIDE [20] or MassIVE (UCSD, San Diego)
already contain a wealth of data, but the available datasets are
far from being complete.

Secondly,while a varyingpercentageof peptides canuniquely
identify one protein [21], only a subset thereof have additional –
and mostly unknown – features that cause such peptides to be
observed at very high frequency for a given protein. As a
consequence, spectral counts for different peptides from the
same protein can vary by orders of magnitude. Due to the
difficulty in accurately predicting the best observable peptides
purely in silico, most often the selection of target peptides is
based on previous shotgun experimental data when available
[2,3]. For so far unidentified proteins for a well-studied organism
or for organisms without any prior experimental proteomics
evidence, an accurate prediction of readily detectable and
best-suited PTPs is desirable to fill this void. Accurate prediction
of the best-suited PTPs is expected to significantly cut the
costs of – and the time involved in – assay development, in
particular for proteome-wide probes [5].

Since the first formulation of the peptide detectability
problem in 2006 [22], several algorithmic approaches have
been proposed to tackle this issue; these have used peptide
detectability as a correction factor for spectral counts when
estimating protein abundance [22,23], to improve protein
inference [24–26], or to predict the best-suited PTPs for
targeted quantitative proteomics either relying on MS/MS
workflows [14,27–29] or for accurate mass and elution time
(AMT) proteomics [30], which relies on high resolution MS
[31]. Although these approaches use different machine
learning concepts, they follow a generic schema in which
they (i) extract a positive and negative training set from
available experimental data; (ii) extract numerical features
that characterize the peptide properties; (iii) apply a machine
learning method on the training dataset to derive a model for
prediction; and finally (iv) predict the detectability of peptides in
different test sets.

The definition of a suitable training set is critical and
different approaches have been explored. PeptideSieve [14]
and CONSeQuence [29] focus on peptides that have been
observed in 50% of all identifications of the corresponding
protein in a set of experiments, while STEPP [30] relies on seen
or not seen candidate peptides from proteins identified with
at least one peptide in previous AMT studies [30]. Other tools
consider peptides to be “best observable” if they have high
signal peaks at the precursor ion (MS1) level (ESPPredictor
[28]), or if they are observed from those proteins that have the
highest total spectral counts (APEX [23]). Furthermore, the
tools vary greatly with respect to feature selection and
classification strategy. PeptideSieve [14] selects a few peptide
properties to discriminate observed from unobserved pep-
tides and uses a Gaussian mixture likelihood scoring function
for prediction, STEPP considers 35 peptide features using a
support vector machine (SVM) approach [30], while CONSe-
Quence [29] assesses more features including the predicted
secondary structure of peptides and uses a combination of
machine learning approaches. ESPPredictor [28] uses Random
Forests classification [32], while Tang et al. use neural networks
to classify peptides into detectable and undetectable based on
different peptide features and, uniquely, information from their
flanking regions [22].
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In this studywe consider the peptide detectability prediction
problem as a ranking problem, similar to ranking problems in
information retrieval and web searches. This approach has the
great advantage that we can circumvent the delicate task of
selecting a negative training set. In addition, the ranking
approach ideally fits the problem of considering the varying
frequency of peptide identifications within a given protein. The
proteomics workflow is treated as a special ranking machine
with a hidden (i.e. not fully understood) process that, for
shotgun proteomics data as input, creates for each protein a
list of peptides ranked according to their spectral counts
Fig. 1 – Overview of the PeptideRank approach to predict PTPs ba
machine learning can use the information collected from a broad
and to subsequently apply it to rank documents in the context of
proteomics workflow (schematically represented by the light grey
protein N) all of its peptides within the visible range (see Method
spectral counts (dark grey box; see also Fig. S1). By computing fea
list can be used to model the behavior for peptides in the shotgun
to create organism-specific models (schematically shown for Dro
predicted PTPs (orange box) can then be obtained for not yet exp
organisms without prior experimental proteomics data (schemat
(Fig. 1). We select a large training set to increase the number
of proteins for which roughly a similar number of peptides
were experimentally observed (i.e. around 50% of all theoret-
ically observable peptides). These should represent good
examples to optimally capture the difference in peptide
detectability. Based on the ranking results for the training
set, themost discriminative features among close to 600different
peptide features are identified and used to train a ranking
classifier that is specialized to predict the ranking of peptides
within a protein with respect to their detectability in LC–MS/MS
experiments.
sed on organism-specific data. Ranking algorithms for
range of queries to learn the behavior of the ranking process
a new, unrelated query. We apply this principle to a shotgun
box). For each experimentally observed protein (protein A to
s) get ranked according to the respective observed sum of
ture vectors, the information contained in the ranked peptide
proteomics workflowwith machine learning algorithms and
sophila, yeast, Leptospira and Bartonella). A ranked list of
erimentally identified proteins (light blue arrows), or for
ically shown by the green nematode).
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The in silico ranking approach represents one additional
solution for identifying and prioritizing the best suitable
peptides for targeted quantitative mass spectrometry experi-
ments, even in the absence of prior experimental shotgun
proteomics data. We evaluate our approach using cross-
validation on shotgun proteomics data from two Gram-
negative prokaryotes, as well as from yeast and the fruit fly as
examples of a simple and more complex eukaryote. Compari-
son of the PeptideRank results with those from existing
software tools indicates that the rank-based approach is a
very valuable addition: it complements the best existing
predictors, and can provide better predictions, in particular
when the training step can draw on previous experimental
shotgun proteomics data from the organism for which the
best-suited PTPs are to be predicted.
2. Methods

2.1. Datasets and data processing

To validate our methodology, we selected large shotgun prote-
omics datasets from twoprokaryoticmodel organisms (Leptospira
interrogans, Bartonella henselae), baker's yeast (Saccharomyces
cerevisiae) as simple eukaryotic and fruit fly (Drosophila
melanogaster) as a more complex eukaryotic model organism.
All datasets had been generated using extensive sample
fractionation, liquid chromatography (LC) and electrospray-
ionization based tandem mass spectrometry (ESI–MS/MS). The
Leptospira (Table S1) and fruit fly datasets (Table S3) were
downloaded from PeptideAtlas [19] or acquired for this study.
Data have been deposited to the ProteomeXchange Consortium
(http://www.proteomexchange.org) via the PRIDE partner re-
pository [20] with the dataset identifiers PXD000726 and
PXD000730. The yeast dataset was obtained from B. Balgley
[33] (Table S2) and the Bartonella dataset (Table S4) was
published recently [18]. Peptide-spectrum matches (PSMs)
were filtered for a PeptideProphet [34] probability of at least 0.9
(PeptideAtlas datasets), or for an estimated false-discovery rate
of 0.01% (Bartonella dataset). Only fully tryptic peptides (no
missed cleavage sites) longer than 6 amino acids but with a
mass below 6000 Da were considered. This restriction is typical
Table 1 – Data format for spectral ranking.

Peptide #

LEGANASAEEADEGTDITSESGVDVVLNHR 217
LVDDVIYEVYGK 33
SPDQVDIFK 21
LTECFAFGDK 18
EINGDSVPVLMFFK 10
ELQFFTGESMDCDGMVALVEYR 4
HGLEEEK 2
DIITGDEMFADTYK 1
QGDDIK 0
SYTLYLK 0

List of peptides for D. melanogaster protein CG4800-PA (translationally-con
counts, log-transformed relevance score (Rel., see Methods), and rank. F
spectral count differences can span more than three orders of magnitude
in bottom-up proteomics studies because shorter peptides have
a rather low probability of being unique while heavier tryptic
peptides are rare [35]. All peptides were classified with
PeptideClassifier [21] and shared or ambiguous peptides imply-
ing proteins encoded by different gene models or different
protein isoforms encoded by the same gene model were
excluded from the training step (Table S5). Ranking of identified
peptides for each protein was performed according to their
experimentally observed spectral counts. A relevance was
assigned to each rank position (see Table 1). To derive this
ranking relevance r(p) for a peptide p, we chose a logarithmic
transformation of its spectral counts cp:

r pð Þ ¼ log2 cp þ 1
� �

:

Unique tryptic peptides that were not experimentally identi-
fied were added with zero spectral counts and zero relevance.

2.2. Calculation of peptide features

574 different numerical peptide features were calculated for
each peptide (Table S7) and were evaluated for their influence
on peptide detectability. These features included the 20
relative frequencies of each amino acid, 10 general peptide
properties (length, mass, estimated isoelectric point, etc.), and
544 averaged physicochemical properties that were extracted
from AAindex1 [36,37]. Values for each amino acid were
downloaded from http://www.genome.ad.jp/aaindex and
were scaled to the interval [0,1]. Next, the respective values
were multiplied with the vector of amino acid frequencies for
each peptide and divided by its length, resulting in a scaled
physicochemical property average.

To analyze the redundancy among the 544 physicochem-
ical properties we computed the scaled properties for 128,642
yeast peptides in the detectable range, and generated amatrix
of pairwise correlations between the properties (Fig. S3A):
several clusters of highly correlated and hence very similar
physicochemical parameters are aligned along the main
diagonal. As the 544 physicochemical features are linear
combinations of the amino acid frequencies, the intrinsic
dimension of their space cannot be more than twenty. Based
on a hierarchical cluster andminimum spanning tree analysis
(Fig. S3), a subset of 12 parameters that are most relevant for
spectra Rel. Rank

7.8 1
5.1 2
4.5 3
4.2 4
3.5 5
2.3 6
1.6 7
1 8
0 9.5
0 9.5

trolled tumor protein homologue) along with their respective spectral
or proteins in large experimental repositories like PeptideAtlas, the
(Fig. S1).

http://www.proteomexchange.org
http://www.genome.ad.jp/aaindex
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rank-based prediction while containing as little redundancy
as possible were selected as follows: a relevance for each
physicochemical parameter was computed by ranking the
peptides using the respective parameter and computing the
average Discounted Cumulative Gain for the 5 top peptides
(DCG@5) for all proteins of the yeast Peptide Atlas dataset. For
each of the first 12 clusters, the parameter with the highest
average DCG@5 was selected as the representative parameter
for that cluster resulting in the 12 parameters that are most
discriminative for rank-based prediction while containing as
little redundancy as possible (Table S7B, Code Listing 1). These
Random MART RankBoost
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Fig. 2 – Comparison of different rank learning algorithms. We tes
library (v. 2.1) for their prediction accuracy of the top 5 peptides
random ranking (grey boxplot and dashed line in the cumulative
Overall, LambdaMART (orange boxplot and line) showed the bes
12 parameters together with the 20 amino acid frequencies
and the 10 general peptide properties yield a total of 42 peptide
features (shown in Table S7) that are used for learning and
predicting peptide-detectability rankings for each protein.

2.3. Learning to rank algorithms

Algorithms for learning and predicting rankings have been
developed only in the past decade [38,39], in particular
for application in the field of web search engines [40,41].
We tested several ranking algorithms for training and
Coordinate Ascent LambdaMART Random Forests
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ted all rank learning algorithms provided by the RankLib
(nDCG@5). Five algorithms were consistently better than a
distribution plot) on datasets from all four model organisms.
t performance.
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classification including SVMLight [40] (http://svmlight.
joachims.org) and learning to rank algorithms from the
RankLib library (v. 2.1) (http://sourceforge.net/p/lemur/wiki/
RankLib/). These included MART (Multiple Additive Regression
Trees, a.k.a. Gradient boosted regression tree) [42], RankNet
[43], RankBoost [44], AdaRank [45], Coordinate Ascent [46],
LambdaMART [47], ListNet, [48] and Random Forests [32].
The best rank-based algorithm (LambdaMART, see Fig. 2) was
chosen for the machine learning part of PeptideRank.

To train a classifier, the 500 proteins with the most spectral
counts were considered and the 42 features that resulted from
the feature selection process (see Results, Table S7) were
calculated for their peptides. The peptide feature vectors are
ranked by their relevance and input to the classifier,which learns
a ranking model. For testing the learned classifiers on a specific
organism, all proteins identified with at least 5 peptides were
used, excluding the 500 proteins that were used for training.

The performance of PeptideRank was compared to previ-
ously published PTP predictors with a focus onmodels for LC–
ESI–MS/MS. These included ESPPredictor [28], PeptideSieve
[14] with both the MUDPIT–ESI and the PAGE–ESI predictor,
and CONSeQuence, from which we chose the artificial neural
networkpredictor (ANN),whichhad shown thebest performance
[29]. For the datasets obtained from PeptideAtlas, we also
compare the results to the PeptideAtlas PSS, which provides a
consensus score based on several predictors (Fig. S5). As PSS is
only available for previouslydetectedproteins of organisms listed
in PeptideAtlas, this approach is not suitable as generic peptide
detectability predictor and therefore not further discussed here.

2.4. Comparison of predicted ranking results

For a comparison of the ranking results of different classifierswe
relied on the normalized Discounted Cumulative Gain (nDCG)
method, a derivative of DCG [49], ametric that is commonly used
in information retrieval to evaluate the performance of web
search engines. nDCG measures the performance of the rank
learning algorithm for the prediction of the top-k peptides; it is
ideally suited to compare the ranking approach as it considers
the relevance of different peptides observed within a protein
based on their spectral count, and as such is more informative
than e.g. Spearman rank correlation [50] or Kendall's τ rank
correlation [51], which do not weight the ranked objects. nDCG
weights more the prediction accuracy on the top results, and
converselypenalizes less for thewrongpredictions at thebottom
of the list. Themetric can be computed for the full list of peptides
or for the top-kpredictions, e.g. nDCG@5 for the top five peptides.
It is defined as

nDCG@k ¼
Xk
i¼1

2r qið Þ−1
log2 1þ ið Þ

,Xk
i¼1

2r pið Þ−1
log2 1þ ið Þ ;

where r is the relevance of a peptide as defined above, qi is the
i-th peptide in the predicted ranking, and pi is i-th peptide in the
empirical peptide ranking.

2.5. Comparison of aggregated results across model organisms

We investigated howmuch of a benefit could be achieved when
PeptideRank was trained and tested on shotgun proteomics
data originating from the same model organism. This is
relevant since all three major software solutions for PTP
prediction (PeptideSieve, ESPPredictor, CONSeQuence) have
been trained on yeast data. PeptideSieve (version 0.51, http://
tools.proteomecenter.org) was run using the “PAGE_ESI” and
“MUDPIT_ESI” model, without a score threshold. ESPPredictor
was run online at the GenePattern platform (http://genepattern.
broadinstitute.org). CONSeQuence was run online (http://king.
smith.man.ac.uk/CONSeQuence/) using the “ANN” model. For
comparison, only fully tryptic peptideswithoutmissed cleavage
sites longer than 6 amino acids but with a mass of less than
6000 Da were considered. PeptideSieve, ESPPredictor, and
CONSeQuence assign a global prediction score to peptides; for
the comparison to PetideRank we considered all peptide scores
not only those above the respective default threshold (e.g. 0.8 in
the case of PetideSieve). The peptides were then ranked
according to the original score of the respective prediction
algorithm, which allowed us to calculate their nDCG values.

2.6. Analysis of factors potentially affecting predicted rank
accuracy

Protein parameters (length, pI, grand average hydropathicity
(GRAVY), topology class of membrane proteins), protein
expression values (normalized spectral count abundance), as
well as transcript expression values (normalized RPKM values,
i.e. reads per kilobase per million mapped reads [52]) were
calculated as described in [18]. The average spectral count per
peptide for a protein is the mean spectral count for its peptides
within the visible range. For yeast proteins, the number of
sequence-modifying annotations in SwissProt/UniProtKB (ver-
sion 2013_11) was extracted and counted considering the
following annotations: glycosylation sites, transit-/signal-/
pro-peptides, sequence conflicts, PTMs, initiator methionines,
lipidation sites, cross-links, sequence variations, and splice
variants.

Tomake sure a high predicted rank accuracy is not caused by
obvious similarities (i.e. in amino acid composition) of the ranked
peptides to the training-set peptides, but rather by capturing the
underlying features of peptides that determine high detectability
for a particular organism and experimental-setup, we also
compared the distributions ofminimal distances in the sequence
space between testing and training peptides for the Bartonella
dataset (see Fig. S4).
3. Results

3.1. Formulation as a ranking problem

In this study, we assessed the potential of machine learning
algorithms to learn to rank peptides within a protein by using
techniques similar to those used in the ranking of web
documents in information retrieval. Proteins are treated like
query terms and the observed peptides, ranked according to
their spectral counts conceptually correspond to the ranked
list of web sites resulting from a web search (Fig. 1). An
organism-specific model is generated that can be used to
predict the best-suited PTPs for as yet unobserved proteins
(Fig. 1, orange boxes), and for proteins from organisms for

http://svmlight.joachims.org
http://svmlight.joachims.org
http://sourceforge.net/p/lemur/wiki/RankLib/
http://sourceforge.net/p/lemur/wiki/RankLib/
http://tools.proteomecenter.org
http://tools.proteomecenter.org
http://genepattern.broadinstitute.org
http://genepattern.broadinstitute.org
http://king.smith.man.ac.uk/CONSeQuence/
http://king.smith.man.ac.uk/CONSeQuence/
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which no prior experimental shotgun proteomics data exists,
i.e., when using the parameter set across species boundaries.

In contrast to most existing approaches for prediction of the
best-suited peptides for SRM [14,22,28,29], this approach does
consider the frequency of the respective peptide identifications,
instead of merely differentiating observed versus non-observed
peptideswithin a givenprotein. Since the differences in observed
spectral count for peptides originating from the sameprotein can
span orders of magnitude (Fig. S1), the ranking approach is
expected to benefit from utilizing this important type of
information. We focus on pairwise ranking methods [38,40]
which learn a scoring function for each object pair. These
methods however come with a significant constraint in terms
of computational cost—the number of pairs is quadratic with
respect to the number of objects to be ranked. To circumvent this
restriction, the objects are processed together in compatible
groups, i.e. queries in the case of web searches—and proteins in
our case. By grouping and comparing the peptides only within a
respective protein, we achieve two additional aims: we avoid the
need to correct for different protein abundances which can span
several orders of magnitude within a biological sample, and we
capture precisely those characteristics that make some peptides
within a protein better detectable than others, which serves our
purpose of selecting the best-suited peptides per protein for
LC–ESI–MS/MS based SRM experiments.

3.2. Selection of training set

The selection of the training set is a crucial step in machine
learning. For the binary peptide detectability prediction prob-
lem, both observed and non-observed peptides should be
represented in the training set to avoid biases and over-fitting
in the later learning process. Ideally, there should also be no
bias against specific protein classes such as transmembrane
proteins (see below).

Until recently [16–18] no complete proteome expressed under
specific conditions had been identified by discovery shotgun
proteomics. However, only such studies offer a more precise and
complete reference set allowing the extraction of the true labels,
observed and unobserved, both at the protein and more
importantly at the peptide level. Since proteomics data are
context dependent, i.e. only a subset of all proteins will be
expressed in a given tissue or under a specific condition, formost
datasets there is no known complete reference set. In addition,
the selection of the precursor ions for subsequent fragmentation
is a semi-stochastic process, and measuring an identical sample
several times will lead to new peptide identifications within a
given protein which may not have been observed in previous
runs [13,53,54]. Finally, the digestion and fractionation steps also
have an influence. Accordingly, the distinction between observed
and non-observed is not clear-cut and is expected to largely
influence the accuracy of a predictor. However, for a rank-based
classifier that evaluates the peptides within a protein, this is less
of an issue than for predictors that provide a global numerical
prediction value such as PeptideSieve [14], ESPPredictor [28] and
CONSeQuence [29].

To account for these issues, we selected shotgun proteomics
datasets from four model organisms where i) a significant
coverage of the predicted proteome (between 50 and 60%) had
been reported [33,55,56] and ii) repeat measurement of an
identical sample had been carried out along with extensive
fractionation at the peptide level, leading to a high number of
observed peptides per protein (see Supplemental Information).
Bothof theseare importantparameters for anaccurateprediction
of proteotypic peptides, which can be readily and repeatedly
observed in amass spectrometer. Such datasets should enable us
to assesswhether the organism-specific differences of the amino
acid frequencies that we observed both in in silico tryptic
digests of the respective proteomes and in the experimental
datasets (Fig. S2), would have an effect on the accuracy of a rank
predictor.

Finally, we explored the selection of proteins to be included
in the training set. In contrast to solutions like APEX [23] which
considers the 100 most abundant proteins, we selected the top
500 proteins based on spectral count. This selection increased
the percentage of proteins with predicted transmembrane (TM)
domains for all organisms. Importantly, the top 500 proteins
included more proteins in the medium abundance range, and
more proteins for which between 40 and 50% of the peptides
within the visible range were observed experimentally. Among
the top 100 proteins this average percentage of observed
peptides was about 15% higher (data not shown). The larger
training set thus supports our hypothesis that proteins for
which a certain number of peptides have been observed and at
the same time a similar number of peptides not observed (i.e.
around 50% of the theoretically observable peptides) likely
represent good examples to optimally capture the difference in
peptide detectability.

3.3. Feature selection for rank prediction

To build a robust model that can be computed within a
reasonable time frame, a subset of the numerical peptide
features was selected that are most relevant for rank-based
prediction while containing as little redundancy as possible.
While the amino acid frequencies (20) and the general peptide
features (10) constitute a space that exhibits only limited
redundancy (data not shown), this is not true for the physico-
chemical properties (544). The extension of a cluster analysis
(see Methods) to data from the other organisms indicated that
the grouping of these parameters was very similar (data not
shown). Based on the explorative visualization of their similar-
ities (see Methods, Fig. S3A), we decided to cluster the
physicochemical properties into twelve groups, which are
represented as a minimum spanning tree in Fig. S3B, similar
to [37]. Following procedures which have been used in feature
selection for ranking [57], we selected the parameter with the
highest nDCG@5 (see Methods, Table S7B) as representative
physicochemical parameter for each of these twelve clusters.
All subsequent analyses were carried out with the subset of 42
selected peptide features.

3.4. Shared peptides in rank prediction

The detectability of a peptide depends on its abundance in the
sample, as well as many other factors including, for example
the complexity of the sample, the efficiency of the tryptic
digest, the ionization efficiency in the mass spectrometer, etc.
shared peptides, i.e. identical peptides that can be derived
from several distinct proteins, complicate both protein
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inference [58,59] and protein quantitation [60]. The abundance
of shared peptides will be the joint contribution of all the
proteins from which they are derived. While shared peptides
can be used as alignment anchors to compare peptides across
proteins, as described by Dost and colleagues [60], in the
context of peptide predictability calculation, we excluded
shared peptides from the training step.

Shared peptides can be further differentiated depending on
whether the proteins they imply are encoded by one or more
distinct gene models [21,61]. We only considered unambiguous
peptides of evidence class 1a, which imply one specific protein
isoform [21] (Table S6). For all other classes of shared peptides,
we cannot unambiguously assign the respective spectral counts
to a particular protein isoform (classes 1b, 2a and 2b) or to a
particular gene model (classes 3a and 3b). This concept is
illustrated for a class 3b peptide in the Supplementary Informa-
tion. It is important to note however, that shared peptideswill be
ranked in the testing step and that a selectionof best-suited PTPs
ideally includes strategies to exclude certain types of shared
peptides from assay development (see Discussion).

3.5. Empirical results on four organisms

Weperformed a thorough empirical evaluation of the proposed
rank learning approach in order to compare its performance
with existing PTP predictors for LC–ESI–MS/MS data, including
PeptideSieve [14], ESPPredictor [28], and CONSeQuence [29].
Since we included the log-transformed spectral counts as their
relevance in the evaluation process (seeMethods), we could use
the nDCG as evaluation measure. It indicates how relevant e.g.
the top 5 peptides are with respect to the experimentally
observed spectral counts. An ideal nDCG@5 score of 1 would be
assigned if all 5 top peptides are ranked correctly according to
the observed spectral count. Conversely, an nDCG@5 value of
zero would imply that the top five predicted peptides were not
experimentally observed at all. This approach fits verywellwith
the aims of targeted proteomics, where a limited number of
peptides, often three to five, are interrogated for a given protein
in SRM/MRM assays.

As a first analysis, we compared the accuracy of the
predictions of all rank learning algorithms that were available
in a recent release of the RankLib library (version 2.1; see
Methods). Among the eight algorithms, five gave consistently
better results than a random ranking (Fig. 2). Among these, the
LambdaMART algorithm [47] proved to provide the best perfor-
mance. This result could be obtained irrespective of the
organism fromwhich the training and test datasetswere derived
(Fig. 2). The next-best performing rank learning algorithms were
RandomForests [32] and RankBoost [44]. The LambdaMart
algorithm was thus chosen for the machine learning part of
PeptideRank.

In a next step, we compared PeptideRank against the
previously released PTP predictors PeptideSieve, ESPPredictor
and CONSeQuence. Since all of these have been trained on
yeast, we trained our ranking approach on the top 500 proteins
of the yeast dataset (training set) and then predicted the peptide
rankings for the 566 remaining identified proteins (test set).
Again, the rank-based approach was able to outperform the
previously published PTPpredictors (Fig. 3): the orange boxplots
in Fig. 3A show that PeptideRank achieved a higher median
nDCG@5 score than the other predictors. This result was also
reflected by the orange cumulative distribution line in Fig. 3B,
where better performance (i.e. more accurate prediction) was
indicated by the line being closer to an nDCG@5 value of 1.

As a final step, we performed cross-organism evaluations by
using varying combinations of training set–testing set pairs.
This allowed us to evaluate whether organism-specific differ-
ences in the amino acid frequencies, which likely result in
differences in peptide properties, had an effect on the accuracy
of the rank predictor. Panels a–d of Fig. 4 show the results of
comparisons of the ranking approach using PeptideSieve
MUDPIT ESI, CONSeQuence ANN and PeptideRank, when
trainedwith data from different organisms. In this comparison,
CONSeQuence consistently outperformed PeptideSieve, as has
been described previously [29]. However, PeptideRank
performed roughly as well as CONSeQuence, but consistently
performs better when trained on suitable previous shotgun
proteomics data from that organism. While the extent of the
benefit varies, the orange straight line representing the
cumulative distribution when training and testing with
organism-specific data was always higher and thus provides
more accurate results in the case of Leptospira (Fig. 4, upper left
panel), yeast (upper right panel), Drosophila (lower left panel)
and Bartonella (lower right panel). Furthermore, it can be
appreciated that for yeast (upper right panel), the next-best
results were obtained when testing with data from the yeast
PeptideAtlas dataset (Yeast PA, dashed orange line), again
underlining the species-specific benefit. Of particular note is
the observation that the highest overall accuracy is achieved for
the complete proteome dataset of Bartonella (Fig. 4, lower right
panel), where 82.3% of the proteins exhibited an nDCG@5 value
of 0.5 ormore. This percentage ismuch lower for the other three
organisms with 64.1% (Leptospira), 53.2% (yeast) and 57.3% for
Drosophila.

Our results thus indicate that a significant increase in rank
prediction accuracy can be achieved when training PeptideRank
on suitable previous LC–ESI–MS/MS experiments from the
organism for which one wants to predict PTPs for SRM-based
targeted proteomics.

3.6. Peptide rank prediction accuracy for different protein classes

From the plots in Figs. 3 and 4 it became immediately
apparent that the PeptideRank prediction of the top 5 peptides
worked well for a large number of proteins, but that there
are also a significant number of proteins for which there
is a lower overlap with the predicted ranks. We assessed
physicochemical protein parameters, the number of peptides
within the visible range, and additional factors like gene/
protein expression strength and post-translational modifica-
tion state to explore whether we could identify factors that
negatively correlate with the rank prediction accuracy, and –
wherever possible – to assess whether such factors were
relevant across all four organisms.

One obvious candidate class is long proteins with many
tryptic peptides in the visible range; for these a correct
prediction of the 5 top ranking peptides is more difficult than
for short proteins. In fact, we were able to identify an overall
negative Spearman rank correlation between the number of
peptides within the visible range and predicted rank accuracy
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among the test proteins for all organisms (Bartonella: r = −0.431,
n = 401; Leptospira: r = −0.409, n = 521; Drosophila: r = −0.410,
n = 1353; Yeast: r = −0.329, n = 566). This negative correlation
also became obvious when comparing the distribution of rank
accuracies for proteins from the upper versus the lower quartile
of protein lengths. Among the physicochemical parameters
tested, protein length and number of peptides in the visible
range showed the highest negative correlation (Fig. 5A). Con-
versely, very weak or no correlation was observed for other
physicochemical parameters including isoelectric point (basic
proteinswith a highpercentage of R andK residueswill produce
on average shorter peptides andmight be hypothesized to have
a different rank accuracy), and grand average hydrophobicity
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Next, we tested whether it was more difficult to accurately
predict the toppeptides for proteinswhose geneswere expressed
at lower levels. For this question we could rely on the B. henselae
dataset, for which transcriptomics data had been generated
based on RNA extracted from matched samples [18]. However,
when we compared the nDCG@5 rank accuracy versus the
RPKM level of the encoding genes, we did not observe a
notable correlation. In contrast, a strong positive correlation
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The observation that the rank prediction accuracy tended
to be higher for more abundantly expressed proteins was
underscored by the analysis of the important protein class of
transcription factors. Transcription factors are often expressed
at low levels [62] and have unusual physicochemical properties
(i.e. they are often very basic). Among the top 500 proteins of the
Drosophila training set we only observed 4 of 755 transcription
factors that were annotated in the Drosophila genome [63].
Conversely, the test dataset, which included 853 remaining
proteins among the 1353 that were identified with 5 or more
peptides, contained 57 transcription factors. These transcription
factors displayed a lower average nDCG@5 prediction accuracy
compared to all Drosophila proteins expressed in the dataset
studied (data not shown). Importantly, however, the rank
prediction accuracy of PeptideRank for themembrane proteome
(i.e. proteins with predicted TM domains) was similar to the
overall rank prediction accuracy for all Bartonella proteins (for an
example of the PTP predictions for a Bartonella membrane
protein see Fig. 6).

PTMs may have a potential influence on the rank accuracy
prediction due to the fact that typically only few modifications
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can be considered in a database search. Therefore, heavily
modified proteins might display a lower rank prediction
accuracy. To test this hypothesis, we chose the UniProt annota-
tions for yeast proteins, many of which were derived from
manual SwissProt curations (see Methods). We counted all
sequence-modifying annotations for the yeast test-set proteins
and lookedwhether proteinswithmore annotatedmodifications
would result in lower predicted ranking accuracy. However, no
significant correlation was found. Since the overall number of
PTMannotationswas low, thismay indicate thatmore data from
large PTM studies under many different conditions would be
required to potentially detect a signal.
4. Discussion

In this study we showed that a rank-based approach represents
a valuable alternative to existing tools and can complement
existing tools for prediction of the top proteotypic peptides for
LC–ESI–MS/MS-based targeted proteomics measurements. Im-
portantly, in contrast to other predictors like PeptideSieve,
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ESPPredictor, and CONSeQuence, our approachdoesnot require
the selection of positive and negative training sets, an inher-
ently difficult and error-prone step.

The improved rank predictions are likely based on several
factors in addition to overcoming the delicate issue of selecting
positive and negative training sets: 1) we considered the
spectral count information as a relevant parameter while
most other approaches consider only binary outputs (observed,
not observed); 2) in contrast to existing tools we constructed
rank-based models for each protein—which model exactly the
peptide selection process for targeted proteomics where pre-
diction of the best detectable peptides for a particular protein is
needed, not a global detectability score; 3) a careful selection
of the training sets for each organism; 4) prediction in an
organism-specific context.

To best capture the characteristics we want to predict a
training set should contain a representative protein selection
without noise (proteinswith very lowspectral countswhichhave
a higher chance to include false positives), is not biased against
specific categories such as membrane proteins, and contains
many peptides observed with varying spectral counts. Combina-
tions of many experiments including replicate analysis increase
the sampling depth and are expected to allow tomore accurately
distinguish whether different peptide detectability versus sam-
pling depth issues account for certain peptides to be observed or
not.

Importantly, as illustrated in Fig. 4, the rank-based approach
performed best when trained on LC–ESI–MS/MS data from the
organism for which PTPs are to be predicted: this combination
boosts the rank prediction accuracy and consistently returned
better results than the other predictors that were all trained on
yeast data. A similar benefit has been observed before in the
context of predicting PTPs for accurate mass and time proteo-
mics for three prokaryotic organisms [30]. This suggests that
organism-specific differences in amino acid frequency and
composition are relevant, and that a predictor that can capture
these differences could represent a useful tool for the research
community. In cases where shotgun proteomics data are not
available for a specific organism, a large resource such as
PeptideAtlas should be used to select the top proteins for the
training set. Selecting data only from one study might not
provide the desired accuracy.

While our rank-based approach performedwell, there is still
room for improvement: for a sizeable fraction of proteins
neither the rank-based nor the other predictors performed
well. Analysis of several protein parameters and other factors
including the gene/protein expression level indicated that it
was difficult to predict the top ranked PTPs correctly for long
proteins with many peptides in the visible range, which
however represents an inherent problemof a ranking approach.
In contrast, the ranking was generally more accurate for more
abundantly expressed proteins, in line with the underlying
rationale of utilizing the information in repeatedly observed
spectra, rather than a mere distinction in observed/not ob-
served. As a consequence, transcription factors that are
typically low abundant proteins are not well-represented in
the training step of the ranking approach.

PTMs are also expected to affect the observed spectral
count of peptides: peptides that potentially contain PTMs
might be observed with low spectral counts because the search
algorithms were not instructed to search for specific PTMs and
such peptidesmight be classified as non-relevant although that
might not be the case. On the other hand, this would indirectly
put peptides with lower amount of PTMs at the top of the list,
which should help to minimize standard deviations for the
quantitation result for a protein based on several peptides in
downstream targeted proteomics applications. In our analysis,
the PTM status did not have a detectable effect. Since PTMs
change in a context-dependent fashion (e.g. under different
growth conditions, or developmental states), such an analysis
requires more diverse large PTM studies.

Other factors that we did not specifically assess but that
could also contribute to a lower rank prediction accuracy for
certain proteins include the efficiency of the trypsin digest, i.e.
are the respective peptides cleaved at all. CONSeQuence for
example includes such apredictor. Also, sample complexity can
change the observability of certain peptides in a probe.

Overall, we observed the best ranking predictions for
Bartonella, i.e. the organism where we achieved the highest
proteome coverage. There, the nDCG@5 values were consis-
tently higher than for the other organisms, and the prediction
accuracy was high for the important class of transmembrane
proteins (Fig. 6). A comparison with PTPs predicted by
PeptideSieve using the default threshold value (0.8) indicated
that for 144 proteins (i.e. roughly 10% of the annotated
proteome) we could experimentally identify PTPs which scored
below the threshold. This implies that one should use lower
cut-offs than the default provided by PeptideSieve and rely on
the ranked list of peptides, in particular for proteins of interest
with globally lower scores.

The prediction of peptide detectability is an important step
to enable researchers to select the best-suited peptides for
subsequent SRM experiments. To integrate the results of
PeptideRank in typical downstream workflows, we suggest to
further prioritize the list of ranked peptides by taking additional
points into consideration (Fig. 7): i) while excluded from the
training step, at this stage the peptide evidence class [21,61]
represents a useful selection criterium: shared class 3b pep-
tides, which can imply different proteins encoded by different
gene models, should not be used for assay development. In
contrast, and as requested by the Human Protein Detection and
Quantitation (HPDQ) project [64] classes 2a and 2b peptides
which imply a subset of protein isoforms encoded by one
distinct gene model (2a), or all protein isoforms encoded by a
gene model (2b), could be considered for specific questions. ii)
information from predicted TM domains, signal peptides and
post-translationalmodifications, as is available e.g. through the
Protter tool [65] represents a very useful visual aid to further
prioritize among predicted PTPs. iii) factors that affect the
specificity and accuracy of the downstream SRM quantification
step. These include information on potentially interfering
transitions and other factors that have been described else-
where [66–68]. With such a combined approach, one could e.g.
use the visual representation of Protter with integrated
PeptideClassifier information andhighlight top rankedpeptides
from surface exposed proteins to score surfaceomes (Fig. 7). As
demonstrated by the first description of a complete expressed
membrane proteome by discovery shotgun proteomics [18], the
entire set of membrane proteins (the surfaceome) – including
those found expressed at the cell surface and those without
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expression evidence in these specific conditions but predicted
to be localized there [69] – could now be scored under a variety
of conditions, with important implications for validation in
clinical cohorts [70] or for the discovery of novel targets to
combat the resurgence of infectious disease [18].

A correct prediction of the top peptides and subsequent
prioritization basedonadditional considerations is furthermore
expected to lower the downstream labor and costs associated
with selecting wrong or weak target peptides for subsequent
assay development for proteome wide studies, which can
exceed 100.000 Euro.

To allow researchers to make use of PeptideRank, we here
release the rank models for the four organisms (http://wlab.
ethz.ch/peptiderank/). We intend to add further organism-
specific models for several important organisms in the near
future.
Transparency document

The Transparency document associated with this article can
be found, in the online version.
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