Spray drones in Switzerland

Image: S. Rüttimann

Thomas Anken, Agroscope Tänikon, 8356 Ettenhausen, thomas.anken@agroscope.admin.ch

The Swiss legal approach

- For spray drones a «National standard scenario» has been developed https://www.bazl.admin.ch/bazl/en/home/drohnen/specific/sts/ch-sts.html
- → drone type must be authorised by Agroscope for «ground application» and each drone passes a sprayer test
- → drone operating company needs a «Specific Operations Risk Assessment» (SORA) approved by the Federal Office of Civil Aviation
- After 2025: Spray drones need an authorisation of the Federal Office of Civil Aviation based on SORA or EU-PDRA, according to (EU) 2019/947 → an adaptation of the PDRA S-01 for spray applications is under work
- Today about 100 spray drones are in use in Switzerland

Homologation of spray drones

- each drone type (1 machine) needs to be homologated by Agroscope
- each single drone passes a sprayer tests all 3 years (like other sprayers)

Testing criterias for the homologation

- spray system fulfils principles of ISO 16122
- transversal distribution of spray liquid: coefficient of variation < 15 %
- accuracy of automated flight route: +/- 50 cm
- max. lateral windspeed (check for drift reduction)

Distance from drone	Meters above soil	wind speed m/s
10 m	1 m	5 m/s
	2 m	3 m/s
20 m	1 m	3 m/s
	2 m	2 m/s

Details see:

https://www.bazl.admin.ch/bazl/en/home/drohnen/specific/sts/ch-sts.html

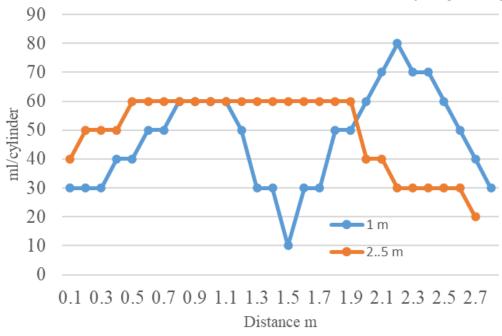
«Spray drones: Testing and approvals of sprayers»

Control of spray system (ISO 16122)

Standard checks of the spray system like:

filters available, dripping of nozzles after stop of spraying, nozzle flow, flow or pressure indication, leakages, weights...

Transversal distribution of spray liquid


Patternator (6 m x 3 m, same principle as the ones for field sprayers)

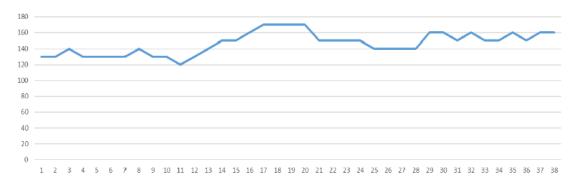
- drone is hovering at the same place over the patternator
- lateral wind is strongly influencing the distribution
- flying height 2.5 m

Flying height influences distribution

transversal distribution at 1 and 2.5 m flying height

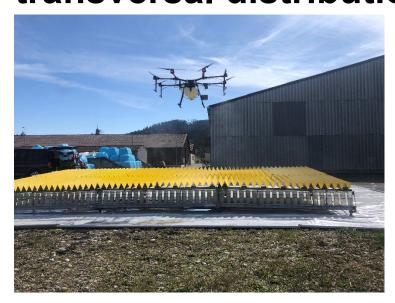


- Flying height of 1 m and less is not delivering a good distribution
- 2.5 3 m delivers a much better distribution
- → less influence of the single propellers, more homogeneous air flow



Overlap of two spray swathes is calculated

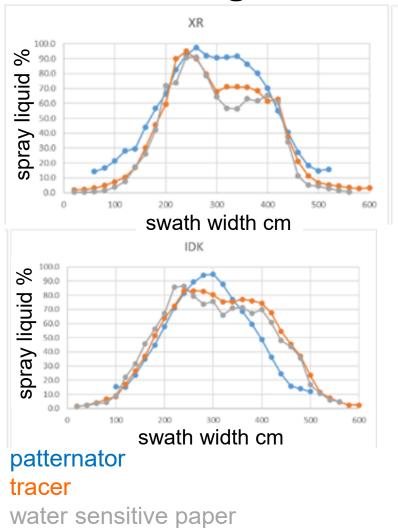
no overlap, working width of 3.8 m - coefficient of variation 48 %

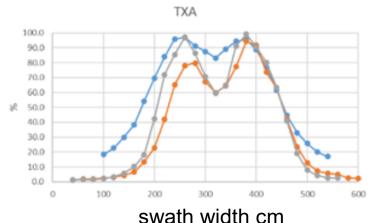


overlap 1 m on both sides, working width of 2.8 m – coeff. of variation 9.4 %

- → During the sprayer tests we calculate the optimal overlap to reach the lowest coefficient of variation
- → working width are lower than the indications of DJI
- → today most drones achieve a coefficient of variation < 15 %

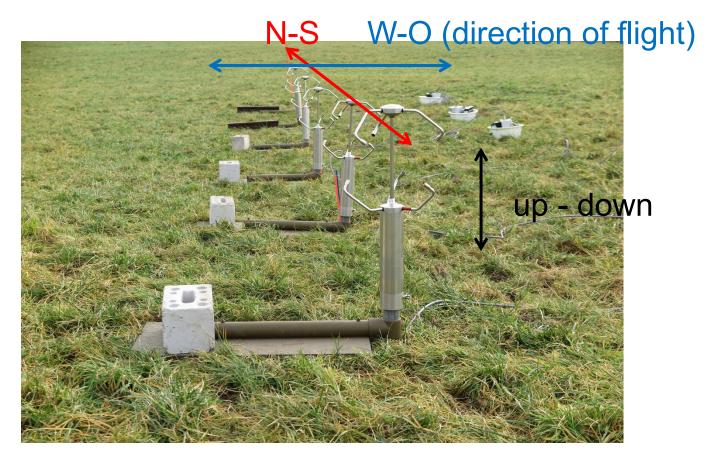
Comparison of 3 methods to measure transversal distribution


- patternator
- tracer and photometric analysis
- water sensitive paper: treated surface determinded by computer vision

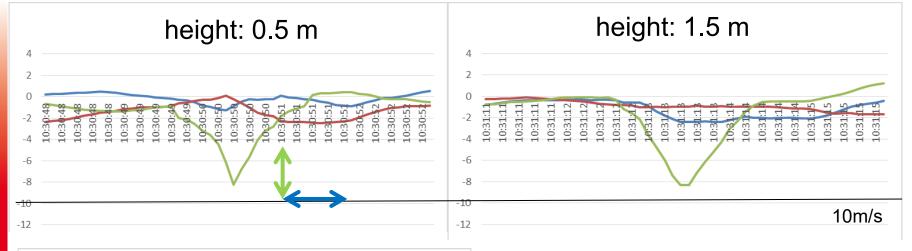

executed in collaboration with Syngenta

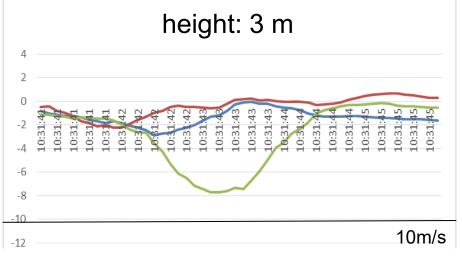
- yellow water sensitive paper
- white filter paper for tracer

Transversal distribution of different nozzles and measuring methods



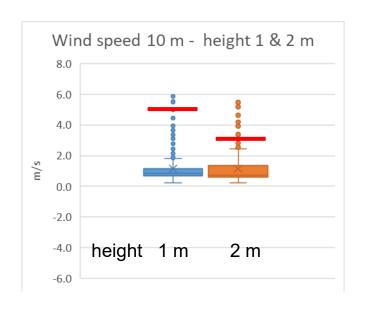
- Teejet XR (flat fan) & TXA (hollow cone), Lechler IDK (flat fan air injection) (Drone DJI T16)
- «water goes where the wind blows» → no significant influence of nozzles
- no significant differences between different methods




Measuring wind speeed

Each sensor is measuring wind speed in three directions west-east; north-south; up-down (10 Hz)

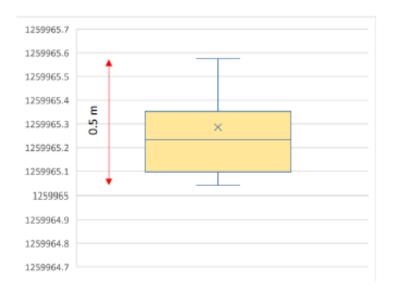
Windspeeds directly below a drone of 25 kg



- low lateral windspeeds, vertical speeds up to 8 m/s
- → ideal for reducing drift

Visualisation using smoke

Wind speeds of DJI T30, distance 10 & 20 m



→ heavier drones like DJI T30 lead to higher wind speeds, slowly approaching the limit values

Accuracy of flight route

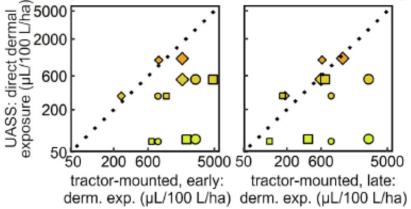
drone is flying along a defined route simulating a field (3 swathes)

drone is carrying an additional RTK-GNSS data logger to measure the deviation of the defined route

RTK logger

achieved accuracies in general:

- values are within 0.5 m
- 50 % of values +/- 10 cm



O

Drift and bystander measurements

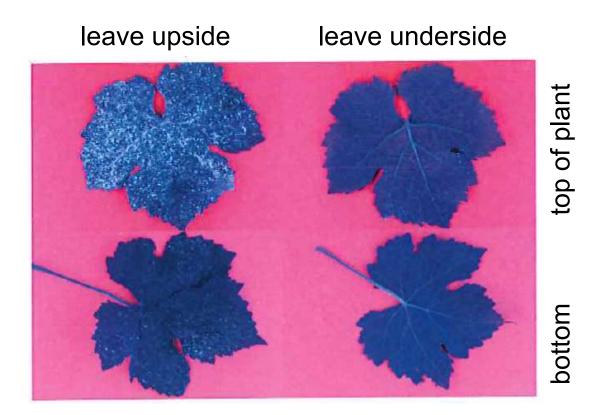
→ spray drift of drones has been quantified by means of bystanders and tracer measurements

B tractor-mounted spraying equipment vs. UASS: potential direct dermal resident and bystander exposure to spray drift

- O EFSA, 2022: Lloyd et al. (1987), 95th percentiles

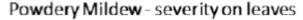
 Health and Safety Executive et al. (2021),
 95th percentiles, early/late

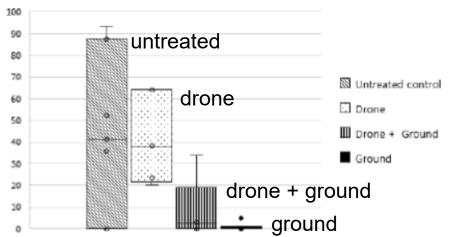
 Butler Ellis et al. (2014), 95th percentile
 estimates, early (blossom)/late
 - Downwind distance: 3 m 10 m Adults: O□♦ Children: o□♦


(Dubuis et al. 2023)

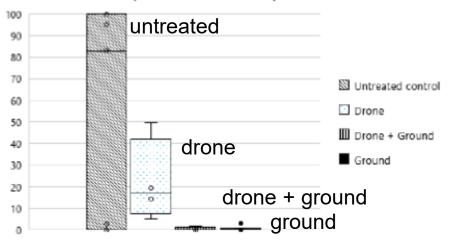
→ spray drift of drones is lower than standard tractor mounted blast sprayers

Efficacity of the treatment on vine




 downsides of leaves and bottom of plants as bunches are not well treated

(Dubuis & Jaquero 2021)



Efficacity of the treatments on vine

Powdery Mildew - severtiy on bunches

Average disease pressure:

combination with at least one complementary spray from the ground allows reaching reasonable levels of control

(Dubuis & Jaquero 2022)

Conclusions

- drones found their place in vineyards with steep slopes
- homologation and sprayer tests work well since 5 years
- many positive echoes as hard, exposed work with knapsack sprayers can be replaced
- drones are replacing helicopters but not tractors
- limits in efficacity have to be well respected

