Agroecology and Environment Research Division Agroscope

# Describing effects of grazing on soil quality in LCA

#### Andreas Roesch

Peter Weisskopf Hansruedi Oberholzer Alain Valsangiacomo

Agroscope, Switzerland

LCA food, Bangkok, 18 Oct 2018

### Agenda

- 1. Introduction
- 2. Methods
- 3. Data
- 4. Results
- 5. Discussion
- 6. Outlook

# Introduction – Pasture damage caused by grazing livestock









### Introduction

- Share of grassland on AUU is high (West Europe: 40%, Switzerland: 70%)
- Number of cows 2016 in Switerland: 1.56 million cattle (700 thousand cows)
- Stress through hooves (claws) of cattle/ horses can be very high: static up to 200 kPa; moving up to 400 kPa (Tractor -> 30-150 kPa)
- Animal trampling: Damage on the soil structure (topsoil) (operations with heavy machinery: also subsoil)
- Compaction from cattle not regionally limited (passage of machines: lanes are locally concentrated)
- Compaction impacts (i.a.) on macropore volume and aggregate stability

# Literature Research: Some key findings

- Little literature on the impact of animal treading on soil physical properties (mostly field studies)
- Risk of soil compaction due to grazing cattle
  - increases with stocking density and soil moisture
  - depends on soil structure, soil type, soil cover and topography
- Compaction affects the water cycle (decreasing infiltration capacity, enhanced surface runoff) and tends to decrease the yield.
- Overgrazing can also lead to excessive defoliation, erosion and water quality deterioation (eutrophication)

## Method: SALCA-SQ

(Swiss Agricultural Life Cycle Assessment – Soil Quality)

**SALCA-SQ** estimates soil quality on the basis of **9 indicators** (impact sub-classes); three of which are on **soil physics, soil chemistry** and **soil biology**.

| Soil physics        | Soil chemistry     | Soil biology       |
|---------------------|--------------------|--------------------|
| Rooting depth       | Organic carbon     | Earthworm biomass  |
| Macropore volume    | Heavy metals       | Microbial biomass  |
| Aggregate stability | Organic pollutants | Microbial activity |

### **SALCA-Soil quality: Flow chart**



## SALCA-SQ – Changes of soil structure





#### Approach: «Overuse»

Concentration factor *K* serves as a proxy for soil structure damage through grazing

$$\mathbf{K}_{pw} = \mathbf{K}_{o} \times \mathbf{c}_{1} \times \mathbf{c}_{2} \times \mathbf{c}_{3} \times \mathbf{c}_{4}$$

 $K_{pw}$ : Concentration factor of pasture p and grazing event w $K_o$ : Initial value: f (soil moisture und soil stability)soil moisture = f (month, soil type)

**c<sub>1</sub>**,..., **c<sub>4</sub>**: correction factors

#### $K_{farm}$ = Sum up $K_{pw}$ over all pastures and grazing events

Classify the risk of soil structure damage through trampling animals, using threshold values, into the classes «0» (no impact), «-» (unfavorable) and «- -» (very unfavorable).

#### Approach: «Overuse»

c1: Overuse due to "too high" stocking density and duration -> Look-up table (intensity of browsing)

 $c_2$  = 1.2, if standard yields of pasture is below the feed intake of the herd (otherwise  $c_2$ =1)

**c**<sub>3</sub>: Bearing capacity of the pasture  $c_3 = 0.8$ , if grass-rich  $c_3 = 1.2$ , if rich of herbs and leguminous plants

 $c_4 = 0.8$ , if rotational grazing (otherwise  $c_4 = 1$ )

#### **Approach: «Wheeling»**

#### Assessment of the risk for a damage of soil structure

#### Idea: Treat animal hooves the same way as a tractor wheel



Damage in subsoil



Damage in topsoil only

#### **Approach: «Wheeling»**

Procedure for each single grazing event:

- 1. Determine concentration factor *K* from lookup-table (depending on soil stability and soil humidity)
- 2. Compute surface stress and treaded area
- 3. Estimate vertical soil stress at 10 cm soil depth
- 4. Classification based on a lookup-table (depending on vertical soil stress and percentage of trampled area)

|                                       | Vertical soil stress at 10cm soil depth [kPa] |       |       |        |         |       |
|---------------------------------------|-----------------------------------------------|-------|-------|--------|---------|-------|
| Percentage<br>of trampled<br>area [%] | <30                                           | 30-59 | 60-89 | 90-119 | 120-149 | >=150 |
| > 50                                  | 0                                             | -1    | -1    | -2     | -2      | -2    |
| 26-50                                 | 0                                             | 0     | -1    | -1     | -2      | -2    |
| 10-25                                 | 0                                             | 0     | 0     | -1     | -1      | -2    |
| <10                                   | 0                                             | 0     | 0     | 0      | -1      | -1    |

## **Comparison: Tractor vs. Cattle**

| Variable                                 | Tractor (Wheeling)                                             | Cattle (trampling)                                               |  |  |
|------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------|--|--|
| Stress (contact surface)                 | f(tyre width, wheel<br>load)                                   | f(hoof size, hoof load)                                          |  |  |
| Soil moisture                            | f(soil type, time of operation)                                | f(soil type, time of grazing event)                              |  |  |
| Soil stability                           | grain size, soil structure, soil moisture)                     |                                                                  |  |  |
| Stress propagation                       | f(soil stability) -> «Pressure pulb»                           |                                                                  |  |  |
| Risk of compaction (at selective points) | Soil stability vs. ground contact pressure («Pressure pulb»)   |                                                                  |  |  |
| Area used                                | f(number of tyres,<br>working width, number<br>of operations,) | f(stocking density,<br>animal activity,<br>duration of grazing,) |  |  |

### Assumption: Approach «Wheeling»

- Size of claws (both claws: ~90 cm<sup>2</sup>, Bilotta et al., 2007, Mattern and Laser, 2007)
- Mean weight of a cow (assumption: 700 kg)
- Stride length (81 cm, Benz, 2003)
- Activity of cows:
  - 1-13 km daily [Krohn et al., 1992 und KTBL, 2009])
  - Dairy cows full pasture trial GEOGS (Posieux, 2013): Logging of movements by GPS-trackers (Felber et al., 2016, Biogeosciences)

=> Daily walking distance on pasture : approx. 8 km



**GPS** Tracker

### **Dataset: SAEDN farm data**

- ✓ Comprehensive dataset covering the period 2011-2014
- ✓ 254 (year 2014) to 297 (year 2011) farms
- ✓ Details on length of grazing events and stocking density
- ✓ Approx. 24'450 grazing events
- ✓ Total number of grazing days (all years, all farms, all pastures): 690'000 days (approx.1900 years)





#### Daily grazing time SAEDN-farms, 2011-2014



#### **Result: Correction factor c**<sub>2</sub> Is the grass yield sufficient for the herd?



# Method comparison: risk of compaction through grazing



Difference between the two approaches is not significant.

#### **Evaluation of indicator Aggregate stability**

(Negative) impact of animal treading on soil structure



#### **Evaluation of indicator Macropore volume**

(Negative) impact of animal treading on soil structure



## Discussion

- New approach «Wheeling» is a promising method for modelling soil compaction of treading animals similar to wheeling
- The new approach «Wheeling» is based on measurable (verifiable) soil mechanics properties: only quantifiable are included in the calculations
- SAEDN-Data are ideal for validating the plausibility of the two approaches
- Both approaches «Overuse» und «Wheeling» do provide (at least) plausible results
- Large variability among the farms

### Outlook

- Future research is needed (both field trials and methodological developments)
- Validation of new approach "Wheeling" with field trials
- Estimation of relative importance of soil structure damage induced by grazing animals and agricultural machinery

























#### Thank you very much for your attention

#### **Andreas Roesch** andreas.roesch@agroscope.admin.ch

#### Agroscope



Agroscope



















