Session 50 Theatre 4

Influence of phytate and phytase on native and supplemented zinc bioavailability in piglets

Schlegel, P. 1 and Jondreville, C. 2, 1 Agroscope Liebefeld-Posieux, Tioleyre 4, 1725 Posieux, Switzerland,

Nancy Université, URAFPA, Av de la Forêt de Haye 2, 54505 Vandoeuvre les Nancy, France;

patrick.schlegel@alp.admin.ch

Zinc (Zn) is an essential trace element, a heavy metal and a non-renewable resource. Phytate is identified as the major dietary factor affecting Zn bioavailability in monogastrics, as phytate-zinc complexes are insoluble. Data from 5 experiments (31 observations) on weaning piglets, published between 2002 and 2010 were used to evaluate the interactions between phytate, phytase and Zn on Zn bioavailability. A GLM procedure was conducted using bone Zn content as dependent variable and dietary native Zn (Znn), added . Zn sulfate (Znadd), Znadd² and non-hydrolyzed phytic P (PPhytNH) as independent variables. PPhytNH is a new variable and represents the residual phytic phosphorus (P) fraction remaining intact after hydrolysis by mainly vegetal and microbial phytase. It represents the difference between dietary phytic P and the quantity of released P. Bone Zn responded linearly to PPhytNH in non supplemented Zn diets (bone Zn = 91.7 (P<0.001) - 36.1 (P=0.001) * PPhytNH, R²=0.81, RSE=7.24). Results from the meta-analysis (R²=0.92; RSE=5.86) indicate that the positive effect on bone Zn from Znn (P<0.001) was clearly reduced by the interaction of PPhytNH (P<0.001). However, PPhytNH did not interact with Znadd (P>0.10). Znadd increased bone Zn linearly (P<0.001) and quadratically (P<0.001). The quadratic effect is probably due to the plateau of bone Zn with increasing dietary Zn. The present meta-analysis confirms that 1) neither phytic P nor phytase influences the bioavailability of supplemented Zn; 2) the release of Zn by phytase is proportional to the release of P; 3) microbial phytase offers an important possibility in adding value to native Zn. This model allows a quantification of the phytate antagonism on Zn bioavailability and could be used to review dietary Zn recommendations in pigs.

350

EAAP - 62nd Annual Meeting, Stavanger 2011