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ABSTRACT
Private and voluntary initiatives, such as voluntary carbon markets, can support public policies aimed at reducing greenhouse gas 
(GHG) emissions in agriculture. This study investigates the impact of behavioural factors (reluctance to change) and social dy-
namics (peer imitation) on the adoption of two mitigation practices on Swiss dairy and beef farms: the use of the feed additive 
3- nitrooxypropanol (3- NOP), the commercial product Bovaer and substituting concentrate feeds with on- farm cultivated legumes. 
Using a bio- economic agent- based model and a diverse sample of farms, we simulated outcomes for reducing GHG emissions under 
increasing levels of financial compensation in scenarios reflecting behavioural and social influences. The results show that, assuming 
profit- maximising behaviour, emissions could be reduced by up to 24% at a price of 150 CHF per tonne of CO2- equivalent. However, 
when farmers' reluctance to change is considered, the mitigation potential decreases significantly. Introducing social network effects, 
such as peer imitation, improves outcomes, increasing the potential reduction and showing that social influence can help overcome 
behavioural resistance. These findings suggest that, although private and voluntary schemes offer meaningful potential for reducing 
agricultural emissions, their effectiveness is limited when real- world behavioural dynamics are considered. The study highlights the 
importance of aligning voluntary market mechanisms with supportive public policies to maximise GHG reductions.
JEL Classification: Q12, Q13, Q18, Q58

1   |   Introduction

Agricultural and food systems are responsible for a third of 
global anthropogenic greenhouse gas (GHG) emissions (Crippa 
et  al.  2021). Thus, climate change mitigation in agriculture is 
high on political agendas globally and is especially reflected 
in European agri- environmental policy (Fellmann et  al.  2018; 
IPCC 2019; Richards et al. 2016; Wuepper et al. 2024). However, 
current policies applied in European agriculture are often inef-
fective in reducing GHG emissions and are very costly in terms 
of public spending and farms' opportunity costs (Balogh 2023; 

Domínguez and Fellmann 2015; Pe'er et al. 2019, 2020; Solazzo 
et al. 2016). Beyond public policy measures, private actors (e.g., 
up-  and downstream industries) are also pushing to reduce 
GHG emissions in the agricultural sector. In this regard, volun-
tary schemes such as voluntary carbon markets have become 
an important option for private actors to get compensation for 
reducing GHG emissions (OECD  2019; Streck  2021), and the 
first examples are emerging in European agriculture (Laine 
et al. 2023; Nonini and Fiala 2021). Unlike regulated carbon mar-
kets, such as the EU Emissions Trading Scheme, which enforce 
mandatory caps and compliance, voluntary carbon markets are 
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optional. In these markets, farmers have the opportunity (but no 
obligation) to earn carbon credits for reducing their emissions 
below a predetermined baseline and to sell them to private firms 
(OECD 2019).

The success of these approaches, that is, the potential to reduce 
carbon emissions through voluntary and private schemes, de-
pends on the farmers' uptake of climate change mitigation mea-
sures. This uptake is influenced by factors such as cost- efficiency 
of mitigation measures, opportunity costs, farm structures, per-
sonal characteristics of farmers or the social environment (Buck 
and Palumbo- Compton  2022; Rong and Hou  2022). Although 
behavioural and social factors are known to be potentially deci-
sive for farmer decisions in the context of sustainable production 
practices (Dessart et al. 2019), the effect of these factors on the 
adoption of mitigation measures and thus on the efficacy and 
efficiency of voluntary programmes, including voluntary carbon 
markets in agriculture, remains unexplored.

Here, we develop and apply a bio- economic agent- based model-
ling approach to provide an ex- ante assessment of the impact of 
behavioural and social factors on the adoption of two mitigation 
measures appropriate for a voluntary scheme, such as a volun-
tary carbon market, at different economic compensation levels. 
Our main question is how these farmer- specific factors and 
their heterogeneity across the farmer population influence GHG 
emission reduction potentials and at what level of economic com-
pensation the maximum abatement is reached. We specifically 
evaluate the impact of reluctance to change as a behavioural 
factor and the influence of social networks on peer behaviour 
through imitation. Agent- based models (ABMs) are well suited 
for this analysis, as they can incorporate these behavioural and 
social factors and the heterogeneity in farmer decision- making, 
which are seldom considered (Huber et al. 2018). We here quan-
tify the impact of (i) farmers' reluctance to change their current 
production practices, (ii) social networks that support the imita-
tion of successful adoption by peers and (iii) the combination of 
both. Reluctance to change is based on a set of empirically col-
lected dispositional, cognitive and social factors from 49 dairy 
and beef farmers in Switzerland. The social network, that is, the 
basis for imitating peer behaviour, is based on a social network 
analysis using interviews with farmers. We compare the simu-
lation results to a scenario in which we assume that farmers are 
profit maximisers. We apply this analysis to mitigation measures 
with a high potential for voluntary carbon markets: (a) the feed 
additive 3- nitrooxypropanol (3- NOP), which, like the commer-
cial product Bovaer, reduces methane from enteric fermentation 
in cattle and (b) substituting concentrate feeds with on- farm 
cultivated legumes that allow the reduction of upstream GHG 
emissions. These measures were selected for their ability to 
lower GHG emissions without compromising food production. 
This makes them attractive to farmers and may increase their 
adoption.

Previous research has identified the efficacy of different strat-
egies for reducing GHG emissions in agriculture (Haenel 
et al. 2018; Kebreab et al. 2023; Maigaard et al. 2024). Economic 
aspects have also been addressed in previous research, for exam-
ple, by addressing the cost- efficiency of GHG emission measures 
in agriculture (Huber et al. 2023; Lanigan and Donnellan 2018; 
MacLeod et al. 2010, 2015; Moran et al. 2008, 2011). Moreover, 

previous research has assessed the suitability of different public 
policy designs, including taxation (Abadie et  al.  2016; Bakam 
et al. 2012; Grosjean et al. 2018; Mosnier et al. 2019; Vermont 
and De Cara  2010; Weersink et  al.  1998), emission trading 
schemes (ETS) (Bakam et al. 2012; Bakam and Matthews 2009; 
Bognar et al. 2023; Breen 2008; De Cara and Jayet 2011; Grosjean 
et  al.  2018; Latinopoulos and Sartzetakis  2015), and regional 
level policy targets (Tarruella et al. 2023). In addition to these 
public policies, voluntary carbon markets have been identified 
as a promising way to achieve GHG reduction targets for agri-
cultural emissions (Guigon 2010; Kreibich and Obergassel 2019; 
Streck 2021). These markets provide a platform for individuals 
and organisations to voluntarily offset their emissions by pur-
chasing carbon credits or converting their own emission re-
ductions into economic value. This voluntary nature contrasts 
with the mandatory nature of emission trading schemes set up 
by governments, where participation is mandatory and caps or 
compliance are imposed (Pinto 2010). Due to the voluntary na-
ture of participation in these schemes, farmers' behaviour and 
acceptance of these schemes are crucial (Burton et  al.  2008; 
Godefroid et al. 2023).

Few studies have explored how behavioural and social factors 
influence farmers' participation in voluntary carbon markets 
(i.e., Kragt et al. 2017). For example, studies such as those by 
Buck and Palumbo- Compton (2022) and Rong and Hou (2022) 
recognise the importance of factors such as social networks, 
cognitive barriers and profit expectations. Kreft, Finger, and 
Huber  (2024) demonstrate that behavioural factors influence 
the effectiveness of voluntary action- based and results- based 
payments depending on whether the mitigation measure cre-
ates co- benefits or not. In addition, Kreft, Huber, et al. (2024) 
show that social networks can increase farmers' uptake of cli-
mate change mitigation measures. However, a research gap re-
mains in quantifying how behavioural and social factors may 
affect the potential of voluntary schemes at different compen-
sation levels. Quantifying this potential in ex- ante assessment 
can provide valuable additional insights into the role of vol-
untary carbon markets in achieving GHG emission reduction 
targets (Gillenwater et  al.  2007; Guigon  2010; Kreibich and 
Obergassel 2019; Streck 2021).

In this paper, we address this research gap by providing 
a modelling framework to perform ex- ante simulations of 
farmers' uptake of climate change mitigation measures suit-
able for a voluntary carbon market scheme. This allows us to 
assess the potential of such private initiatives to achieve cli-
mate reduction targets. Based on the work by Kreft, Finger, 
and Huber 2024; Kreft, Huber, et al. (2024), we employ a bio- 
economic agent- based modelling approach that combines the 
farm- level bio- economic model FarmDyn (Britz et  al.  2019) 
with the agent- based model FARMIND (Huber et  al.  2021). 
This enables us to assess the impact of economic compensation 
(i.e., carbon credit prices) and determine the price per tonne 
of CO2- equivalent that maximises emission reductions under 
different behavioural and social scenarios. Additionally, we 
account for the uncertainty of our results by considering the 
upper and lower bounds of the mitigation potential for the 
feed additive 3- NOP as reported in the literature. We focus on 
a Swiss case study, where the national climate strategy explic-
itly relies on private initiatives to complement public policies 
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(BLW 2022b). This makes Switzerland a relevant context for 
exploring the potential of voluntary adoption of mitigation 
measures to help achieve emissions targets.

Our study contributes to the existing literature by illustrating 
the potential of two mitigation measures suitable for a private 
initiative like a voluntary carbon market in agriculture and by 
considering farmers' behavioural and social factors that affect 
participation in these markets. This complements studies that 
focus on governmental strategies (e.g., carbon prices) to reduce 
carbon emissions in agriculture and thus informs the debate 
about potential synergies between public and private efforts in 
climate change mitigation (Gillenwater et al. 2007; Guigon 2010; 
Kreibich and Obergassel 2019; Streck 2021; Winter et al. 2024). 
By exploring the reduction potential of voluntary alternatives, 
our study goes beyond the work of Kreft (2022) and exemplifies 
to what extent private initiatives can contribute to reaching gov-
ernmental targets with respect to GHG emissions. This can ben-
efit both the government and farmers by reducing the need for 
regulatory enforcement.

Our findings show that these mitigation measures can contribute 
to significant reductions in agricultural GHG emissions. We find 
that when farmers aim to maximise profit, emission reduction at 
the current carbon prices in Swiss voluntary carbon markets (70 
CHF)1 ranges from 6% to 17%, depending on the efficiency of 3- 
NOP. The maximum possible reduction is achieved with a price 
of 150 CHF and lies between 18% to 24%, depending on the as-
sumed efficiency of 3- NOP. However, we observe that the poten-
tial depends critically on farmers' behavioural and social factors. 
When the model considers reluctance to change only, the maxi-
mum emission reduction ranges from 6% to 7%, which is 12 to 18 
percentage points lower than the reduction achieved under profit 
maximisation. When imitation through social networks is con-
sidered alongside reluctance to change, emission reductions are 
lower than in the profit maximisation scenario but higher than 
in the reluctance to change scenario. In this case, the reductions 
range from 15% to 19%, only 3 to 5 percentage points below those 
achieved when farmers optimise profits.

The remainder of this paper is organised as follows: the next 
section provides a background on behavioural and social factors 
in the context of climate change mitigation measures, followed 
by the description of the conceptual framework underlying this 
study and a section describing the case study context. Section 3 
presents the agent- based modelling framework and its applica-
tion. The results are then presented in Section 4, followed by a 
discussion and conclusions in Sections 5 and 6, respectively.

2   |   Background

2.1   |   The Role of Behavioural and Social Factors in 
the Adoption of Voluntary Mitigation Measures

Understanding the impact of behavioural and social factors is es-
sential in voluntary schemes such as voluntary carbon markets 
because their success depends on farmers' willingness to par-
ticipate. Dessart et  al.  (2019) and OECD  (2012) emphasise that 
understanding the impact of behavioural factors is essential in vol-
untary agri- environmental schemes, with factors such as farmers' 

personalities, awareness of human- made GHG emissions, innova-
tiveness and social networks influencing participation in schemes 
like agri- environmental programmes (Adenaeuer et  al.  2021; 
Klebl et al. 2024; Kragt et al. 2017; Kreft, Huber, et al. 2021; Kreft, 
Angst, et al. 2021; Kreft et al. 2023; Schaub et al. 2023; Schulze 
et al. 2024). However, only a few studies have directly assessed 
the behavioural and social factors influencing participation in a 
voluntary scheme, although cognitive factors such as educational 
barriers, dispositional factors such as profit and cost expectations, 
and the influence of social networks have been found to influence 
participation in voluntary carbon markets (Buck and Palumbo- 
Compton 2022; Rong and Hou 2022).

In this paper, we specifically focus on behavioural and social 
factors, namely reluctance to change and the impact of imita-
tion through the social network, respectively, in our sample. 
Reluctance to change has been identified in various studies as a 
significant obstacle for farmers when adopting more sustainable 
practices (Burton et  al.  2008; Dessart et  al.  2019). This reluc-
tance to change is often attributed to the status quo bias, where 
individuals prefer maintaining their current choices as they per-
ceive changes as losses (Ritov and Baron 1992; Samuelson and 
Zeckhauser 1988). In the agricultural sector, status quo bias has 
been observed to influence and affect farmers' decision- making 
and contribute to a partial resistance to certain measures 
(Burton et al. 2008; Hermann et al. 2016; Peterson et al. 2012). In 
this study, reluctance to change is operationalised using a set of 
empirically collected dispositional, cognitive and social factors 
(see Section 3). We expect reluctance to change to affect farmers' 
decision- making (Dessart et al. 2019) and thus influence the up-
take of mitigation measures suitable for a voluntary scheme like 
a voluntary carbon market.

By contrast, social factors, such as descriptive and injunctive 
norms, are promoted by social networks, particularly through 
the imitation of peers (Dessart et al. 2019). Studies have shown 
that farmers' decisions to adopt mitigation measures are in-
fluenced by the behaviour of their peers (Dessart et  al.  2019; 
Kreft  2022; Lapple and Kelley  2015; Schmidtner et  al.  2012), 
and social networks have been demonstrated to enhance the 
reduction of GHG emissions (Kreft, Huber, et  al.  2024). This 
influence stems from farmers' decisions being shaped by social 
learning, as they learn from observing and interacting with oth-
ers (Skaalsveen et al. 2020; Wood et al. 2014), which, in turn, is 
a key driver of technology and innovation diffusion processes 
in agriculture (Shang et al. 2021; Xiong et al. 2016; Zhang and 
Vorobeychik  2019). We assume that farmers' decision- making 
processes will be influenced by interactions with their peers, as 
they tend to learn from one another. This assumption is based 
on the idea that individuals tend to conform to social norms. 
Therefore, if a farmer's decision significantly differs from that 
of their peers, they may be inclined to emulate the behaviour 
observed within their social network (Jager and Janssen 2012).

To evaluate the impacts of behavioural and social factors in 
voluntary schemes ex- ante, it is crucial to use a model that 
incorporates and simulates farmers' decision- making while 
accounting for these factors. However, many existing ex- ante 
modelling approaches assume that farmers aim to maxi-
mise their utility or profit (Arnsperger and Varoufakis 2006; 
Huijps et al. 2010) and often ignore concepts such as personal 
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preferences, emotions and intuitive and unconscious decision- 
making (Kahneman 2003). Despite this, various studies high-
light the necessity of including these factors when modelling 
farmer behaviour (Dessart et al. 2019; Wuepper et al. 2023). 
ABMs serve as a significant ex- ante approach for incorpo-
rating and simulating the heterogeneity of farmer decision- 
making while considering behavioural and social factors 
(Huber et al. 2018). These models are crucial for understand-
ing how farmers respond to changing conditions, such as en-
vironmental factors (An 2012; Berger and Troost 2014; Huber 
et  al.  2021; Magliocca et  al.  2015). From a behavioural and 
social perspective, these models typically integrate prospect 
value theory2, social networks and farming preferences to 
simulate farmers' choices (Huber et al. 2021).

Here, we use the agent- based model framework FARMIND to 
evaluate the reduction potential of mitigation measures for a 
voluntary carbon market. This model allows to combine farm 
specific abatement costs, for example, due to different farm 
structures and production types, with the effect of behavioural 
factors and the imitation of peers through social networks.

2.2   |   Conceptual Framework

To assess the potential for voluntary adoption of climate 
change mitigation measures, we here consider three catego-
ries of factors that influence farmers' decision- making pro-
cess in our modelling framework: (1) behavioural and social 
factors, (2) farm structure and production- related opportunity 
costs and (3) economic incentives for reducing GHG emissions 
(Figure 1).

First, based on the arguments in Section 2.1, we consider the role 
of behavioural and social networks—in particular, reluctance to 
change and imitation of peers—in farmers' decision making. We as-
sume that these factors shape the options a farmer considers when 
deciding whether to adopt climate change mitigation measures.

Second, farm structure and production type influence participa-
tion through opportunity costs. Larger farms or those with less 
intensive production systems may face different cost–benefit 
trade- offs when adopting mitigation measures. We assume that 
farmers will only adopt measures if benefits outweigh the costs 
for their individual farms.

Third, economic incentives to reduce GHG emissions provide fi-
nancial compensation for adopting mitigation measures. Higher 
compensation levels can offset costs, making these measures 
more attractive, also for farms with high abatement costs.

In our conceptual modelling framework, the three factors in-
teract through a two- step decision- making process: First, be-
havioural and social factors shape each farmer's strategy. These 
strategies may include repeating past behaviour, maximising 
profit, imitating peers or choosing not to adopt (see Section 3.3 
for details). Each strategy determines which mitigation options 
the farmer considers. Second, the farmer adopts a mitigation 
measure only if the expected economic benefits exceed the 
costs. These benefits depend on the level of financial compensa-
tion. To explore the potential for voluntary adoption, we analyse 
scenarios with increasing compensation payments.

Please note that our contribution focuses on farmers' decision 
making when voluntarily adopting climate change mitigation 

FIGURE 1    |    Conceptual framework for farmers' decision- making in adopting climate change mitigation measures.
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measures rather than modelling a formal carbon market 
structure. However, the analysis of these three factors allows 
us to assess the potential of private economic incentives to 
promote the adoption of selected mitigation measures and to 
support the achievement of public GHG reduction targets in 
such markets.

2.3   |   Swiss Case Study: Policy Context 
and Mitigation Measures

Voluntary projects have become increasingly important in 
reducing agricultural GHG emissions and meeting climate 
targets, offering a promising approach for efficient miti-
gation (Gillenwater et  al.  2007; Guigon  2010; Kreibich and 
Obergassel  2019; Raina et  al.  2024; Streck  2021). This is of 
specific importance in Switzerland where the official climate 
strategy considers voluntary and private initiatives as an 
important pillar of achieving GHG mitigation targets (BLW 
2022a, 2022b).

Agriculture accounts for 14.6% of Switzerland's total emis-
sions (BAFU 2022), primarily from milk and meat production. 
Switzerland aims to reduce agricultural emissions by 25% 
from 1990 levels by 2030 and by 40% by 2050 while maintain-
ing over 50% self- sufficiency in food production (BAFU 2022; 
BLW  2022a, 2022b). However, progress has been slow, with 
only an 11% reduction achieved by 2021 (BAFU  2022). 
Switzerland's current agricultural policies primarily rely on 
direct payments, which focus on biodiversity and environ-
mentally friendly production systems rather than direct GHG 
reductions (FOAG  2020; Huber, El Benni, and Finger  2024; 
OECD  2017). While a new voluntary agri- environmental 
scheme to promote cow longevity began in 2024 (Winter 
et al. 2024)3, no direct payment scheme currently targets GHG 
reductions.

In its 2050 climate strategy for agriculture and food, the Federal 
Office for Agriculture (FOAG) explicitly highlights the role of 
private initiatives in contributing to climate targets. It argues 
that all actors in the food system should take responsibility by 
implementing their own measures (BLW 2022a, 2022b). As a 
result, public policy expects the farming sector to actively par-
ticipate in programmes such as voluntary carbon markets to 
complement public efforts.

Existing voluntary carbon market programmes in Switzerland 
are entirely privately organised. Swiss producer cooperatives 
Mooh and Fenaco, for example, have launched programs aimed 
at reducing methane emissions by providing feed additives for 
farmers to include in cattle diets. The carbon credits generated 
through these programmes are priced between 65 and 80 CHF 
per tonne of CO2- equivalent, aligning with prices in the EU com-
pliance markets (Fenaco  2022; Mooh|Climate Program  2022). 
The cooperatives then sell the carbon credits to private actors 
to offset the costs of the feed additives. These examples high-
light the growing significance of private compensation schemes 
in Swiss agriculture. Understanding their potential contribution 
to the overall targets requires estimating the benefits and costs 
of mitigation measures suitable for certification on voluntary 
markets and considering behavioural and social factors, which 

are critical for assessing the abatement potential of voluntary 
programmes.

To be effective, the mitigation measures offered must be fea-
sible, easy to monitor and aligned with the additionality crite-
rion—the idea that emission reductions should only be credited 
if they would not have occurred without financial incentives 
(Gillenwater et al. 2007; Kollmuss et al. 2008). In this context, 
we analyse the suitability of two mitigation measures:

1. The feed additive 3- NOP (Bovaer): Inhibiting methano-
genesis in livestock digestion with 3- NOP can signifi-
cantly reduce methane emissions. However, due to the 
added costs, it is unlikely to be adopted without financial 
support, making it a strong candidate for voluntary car-
bon markets.

2. Locally grown legumes: Replacing imported concentrate 
feed with locally grown legumes reduces emissions asso-
ciated with transportation, land use change and fertiliser 
use. Financial incentives may be necessary to offset the 
costs and risks involved in shifting to local production.

Both measures show strong potential to meet the additional-
ity criterion, with well- documented emission reductions that 
facilitate monitoring and demonstrate cost- effectiveness (see 
Table 1)4. They also offer synergies with food production, mak-
ing them attractive to farmers as well as not requiring an im-
mediate adjustment to production. By evaluating the adoption 
of these measures under increasing compensation levels and 
behavioural scenarios, this study examines to what extent pri-
vate incentives could increase the adoption of these mitigation 
measures and support national reduction targets.

3   |   Methodology: Agent- Based Modelling 
Framework (FARMIND)

Our agent- based modelling framework, FARMIND (see Huber 
et  al.  2021), aims to simulate the effects of accounting for re-
luctance to change as well as imitation through social networks 
on farmers' uptake of GHG mitigation measures suitable for a 
voluntary carbon market scheme. We do this by analysing the 
abatement potential achieved for different economic compen-
sations, that is, the compensation per tonne of CO2- equivalent 
avoided by implementing mitigation measures.

FARMIND incorporates aspects of cumulative prospect theory 
(Tversky and Kahneman 1992) and social network theory and al-
lows the simulation of decisions made by individual agents repre-
senting farmers with certain behavioural and social factors, that is, 
cognitive, social and dispositional factors. These factors are empir-
ically based on a survey of farmers in our case study region (Kreft 
et  al.  2020; Kreft, Huber, et  al.  2021; Kreft, Angst, et  al.  2021). 
The agents' decision- making process is defined by a two- step pro-
cedure. First, FARMIND calculates the behavioural and social 
heuristics for each agent by incorporating behavioural factors and 
considering the social network into their decision making (see 
Table 2). The implementation of these heuristics is based on the 
CONSUMAT framework. This framework integrates different 
theoretical concepts into a structured sequence of modelling steps 
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(e.g., Jager and Janssen 2012). Second, based on the corresponding 
strategy, an agent adopts the mitigation measure if it is profitable 
for its own farm at a given economic compensation.

There are two endogenous variables in the model: (i) the agent's 
satisfaction with their income, which is derived from their pros-
pect value and (ii) the tendency of a farmer to engage in social 
processing, which is based on their willingness to consider the 
behaviour of their peers. The four behavioural and social heu-
ristics—repetition, imitation, optimisation and opting out—are 
then derived as follows (see Table 3):

• When a satisfied farmer does not engage in social process-
ing, they repeat the practices from the previous simulation 
run and only consider mitigation measures adopted in the 
previous run (repetition). Farmers engaged in this strategy 
are reluctant to change their behaviour.

• When a satisfied farmer seeks additional information, they 
tend to imitate the behaviour of their peers within their so-
cial network (imitation). This implies that the agent consid-
ers mitigation measures adopted by their peers.

• If a dissatisfied farmer focuses on individual behaviour, 
they try to optimise their situation by considering all avail-
able practices in the model (optimisation).

• If a dissatisfied farmer engages in socially oriented behaviour, 
they examine the behaviour of other agents in general and seek 
opportunities outside the practices modelled in FARMIND, 
thus not adopting sustainable practices (opt- out).

Please note that other implementations of the CONSUMAT 
framework apply different heuristics for dissatisfied and so-
cially oriented farmers (e.g., Malawska and Topping  2016; 
Pacilly et al. 2019; van Duinen et al. 2016). The main advan-
tage of our approach is that it allows mitigation measures to 
vary over time, which means that disadoption can also occur 
during the simulation period. To test the robustness of this 
assumption, we evaluate alternative approaches consistent 
with those used in other studies (see Appendix S1). Our main 
results are unaffected. However, our assumption provides a 
more conservative estimate of the impact of social processing 
(see also Discussion section).

The combination of behavioural and social factors with farm- 
level benefits and costs of GHG mitigation measures makes 
FARMIND suitable for our research question to test the abate-
ment potential of the mitigation measures under different be-
havioural and social scenarios. The economic costs and benefits 
of implementing the mitigation measures are calculated using 
the bio- economic farm- level model FarmDyn (Britz et al. 2019). 
This sub- model allows us to calculate the changes in GHG emis-
sions and profits under the selected mitigation measures. More 
information on FarmDyn and details on the input and output 
costs can be found in Appendix S1.

The main outcomes of this modelling process in this study are the 
farmers' adoption of the two mitigation measures suitable for vol-
untary carbon markets (3- NOP and replacement of concentrate 
feeds) for different economic compensations, and the associated 
GHG emission reduction for different behavioural scenarios.T
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In the following, we describe the simulations in four steps. First, 
we describe the behavioural and social scenarios used in this 
study. Second, we present the agent characteristics and the data 
used for the parameterisation of the model. Third, we formally 
describe the agents' decisions and interactions. Fourth, we pres-
ent a short description of our simulation setup and the sensitivity 
analysis. For more details of the modelling framework, we refer 
to the ODD+D protocol in Appendix S1.

3.1   |   Scenario Description

To address our main research objective of quantitatively eval-
uating the influence of behavioural and social factors on the 
uptake of the proposed mitigation measures for a potential vol-
untary carbon market, we simulate and compare four different 
behavioural and social scenarios. These can be distinguished by 
the inclusion of behavioural factors and the presence of social 
comparisons and knowledge exchange through social networks.

In Scenario 1 (optimisation scenario), agents adhere to the neo-
classical economic model, which assumes profit maximisation. 
In this scenario, agents evaluate all the activities in the model 
without behavioural biases or social influences. This scenario 

serves as a reference to compare the effects of behavioural and 
social factors in the other scenarios.

In Scenario 2 (imitating scenario), agents primarily consider the 
mitigation measures adopted by their peers within a given social 
network. In our case, we consider an observed network derived 
from personal interviews with the farmers. This scenario tests 
the impact of peer learning, which echoes findings from other 
studies that emphasise the critical role of social networks in en-
hancing participation in voluntary markets (Kreft et al. 2023). 
This scenario represents a situation in which all farmers fre-
quently exchange information within their social networks 
about climate change mitigation measures, including their costs 
and benefits. This means that information about successfully 
implemented mitigation measures is shared among peers. This 
may trigger future adoption by farmers who have not yet imple-
mented these measures.

In Scenario 3 (reluctance to change scenario), agents base their 
decision- making on individual behaviour, initialising with per-
sonal characteristics such as satisfaction thresholds and practice 
preferences, without imitating peers in their social network. 
Unlike Scenario 2, where social imitation plays a role, here, 
agents rely only on their predispositions influenced by their 

TABLE 2    |    FARMIND decision heuristics.

Farmers' satisfaction

Prospect value with reference income as a 
threshold to determine gains and losses

Satisfied Dissatisfied

Engagement in social 
processing

Individual oriented Repetition
The agent solely considers 

mitigation measures conducted 
within the previous year.

Optimisation
The agent evaluates all 
mitigation measures.

Social oriented Imitation
The agent considers mitigation 

measures that are adopted 
within the social network.

Opt- out
The agent does not adopt 

mitigation measures.

Note: Table adapted from Huber et al. (2021) and showing the different choice sets of strategic decisions depending on the satisfaction and social behaviour of farmers.

TABLE 3    |    Behavioural and social scenarios in the simulations.

Social network (imitation of 
peers)

Cognitive, dispositional and social factors

No Yes

No Scenario 1—Optimisation 
scenario (reference scenario)
Decision heuristic: Optimisation

Agents are profit maximisers only.

Scenario 3—Reluctance to change
Decision heuristic: repetition 

and optimisation
Agents are reluctant to change due to 

cognitive and dispositional factors.

Yes Scenario 2—Imitation of peers
Decision heuristic: repetition and imitation

Agents can learn by imitating the behaviour 
of peers in their social networks.

Scenario 4—Reluctance to 
change and imitation of peers

Decision heuristic: repetition, 
optimisation, imitation and opt- out

Agents may be reluctant to change but can 
imitate peers through social networks.
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reluctance to change. Their available decision strategies are lim-
ited to either repeating or optimising. This scenario represents 
a situation in which farmers make isolated decisions about 
adopting climate change mitigation measures in a world with-
out influence from social networks or peer interactions. This im-
plies that farmers may be willing to adopt mitigation measures 
primarily when they see a clear potential to increase profits. 
Otherwise, adoption rates remain low.

In Scenario 4 (combined behavioural and social network factors) 
both social imitation and behavioural reluctance to change in-
fluence decision- making. This scenario integrates peer effects 
from social networks with individual behavioural tendencies, 
making all decision heuristics available to the farmer. This 
scenario assumes the presence of both social and behavioural 
mechanisms, making it the closest representation of the real- 
world context reflected in our data collected from farmers. This 
means that social influence can counteract the reluctance of in-
dividual farmers to change.

By comparing the four main scenarios, we can disentangle the 
specific effects of social imitation and behavioural factors from 
purely profit- maximising strategies. These scenarios also help 
to identify the overall reduction potential relative to a baseline 
without any mitigation measures.

3.2   |   Agents' Characteristics and Farm Sample

In FARMIND, each agent is characterised by three distinct sets 
of state variables. First, there are farm- specific costs and poten-
tial reductions in GHG emissions attributed to the two mitiga-
tion measures, 3- NOP and the substitution of concentrate feeds 
by on- farm- produced legumes. These variables are highly farm-  
and context- specific and are calculated using the bio- economic 
farm- level model FarmDyn, which is initialised with census 
data pertaining to each farm in our sample (Britz et  al.  2019; 
Huber et  al.  2023). The mitigation costs incurred are, in part, 
offset by the carbon credits per tonne of CO2- equivalent miti-
gated, for which we test different price levels. Second, each agent 
possesses personal behavioural factors that parameterise the 
model. These include social elements (e.g., tolerance for devia-
tion from fellow farmers), cognitive factors (e.g., preferences for 
particular mitigation measures and a reference income to deter-
mine satisfaction with current income levels), and dispositional 
factors (e.g., reluctance to change). These attributes are derived 
from a farm survey (Kreft et al. 2020). Third, a social network 
among farmers facilitates the exchange of climate change miti-
gation knowledge as identified through social network analysis 
conducted via face- to- face interviews (Kreft, Huber, et al. 2021; 
Kreft, Angst, et al. 2021; Kreft et al. 2023).

Whereas most behavioural and social factors are directly incor-
porated, parameters originating from survey questions utilising 
a Likert scale undergo a transformation process to maintain 
relative proportions between agents (for detailed methodology, 
refer to sections on input data, calibration and sensitivity analy-
sis in the ODD+D protocol, Appendix S1).

In this study, we precisely evaluate the effectiveness and eco-
nomic feasibility of these two on- farm mitigation measures 

across 49 Swiss dairy, suckler and bull- fattening farms in the 
Weinland region of the canton of Zürich (Switzerland). All of 
these farms have arable land and are situated in lower lands; 
thus, grassland- based farming is not included in this study. 
Structural data from these farms are derived from census data, 
and the behavioural and social network data are derived from 
an online survey and face- to- face interviews, respectively (Kreft 
et al. 2020; Kreft, Huber, et al. 2021; Kreft, Angst, et al. 2021), 
both of which are used to parameterise the agent- based model 
FARMIND. In particular, our sample consists of 24 dairy and 
25 beef cattle farms including both suckler and bull- fattening, 
which on average are 35 ha in area and have 38 cattle livestock 
units, which makes them larger than the average farm in the 
canton of Zurich, with 25 ha (more details are provided in 
Appendix S1).

3.3   |   Agents' Interactions and Decision- Making 
Processes

FARMIND employs a two- tiered decision- making process for 
farmers, that is, the choice of a strategy (as presented in Table 2) 
and, subsequently, the (non- ) adoption of mitigation measures 
(Huber et al. 2021). This choice of strategy is modelled in several 
steps. First, the farmer's satisfaction is determined by the farm- 
specific prospect value, computed according to their individual 
reference income and risk preferences. The prospect value Vi, 
which is determined by the incomes x in year t and all preceding 
years within the agents' memory span (set to 5 years), catego-
rises incomes above (below) the agent's individual reference in-
come Vref i as gains (losses). The prospect value is calculated for 
each farm individually, based on parameters (risk aversion, loss 
aversion, probability distortion) that have been elicited using 
incentivised multiple price list experiments (following Tanaka 
et  al.  2010) and using the individual reference income as a 
threshold; that is, this measure serves to determine satisfaction 
or dissatisfaction. If the prospect value is positive (negative), the 
agent is satisfied (unsatisfied).

Formally, given a set of past incomes of farm i in year t as 
{

x1, ⋯ , xm
}

, the value function v
(

xt
)

 and the decision weight 
denoted Φ

(

xt
)

, the prospect value for each farm is defined as 
follows:

where the value function is negative for losses and positive for 
gains (depending on the valuation α+∕− for gains and losses, and 
the loss aversion for losses �), and the decision weight deter-
mines the probability weight in gains and losses.

Second, the calculation of whether a farmer will engage in social 
processing is determined by the dissimilarity index. This cap-
tures the extent to which other farmers within a farmers' net-
work also adopt GHG reduction measures. More specifically, we 
calculate the average count of mitigation measures within the 
agent network throughout the memory length. Subsequently, 
we divide the average count for each adopted measure by the 
total number of mitigation measures carried out within the cor-
responding network. Formally, assuming that a activities are 

Vi =
∑m

t=1
v
(

xt
)

Φ
(

xt
)
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performed by all the peers in the social network, agent i's activ-
ity dissimilarity is as follows:

here, P
(

Ai
j

)

 represents agent i's performance status for activity 
j , where P

(

Ai
j

)

= 1 if activity Aj is performed and P
(

Ai
j

)

= 0 
otherwise, while n denotes the number of peers linked to an 
agent. The dissimilarity index di, indicates the extent of similar-
ity between an agent and their peers, measured relatively, with 
a value of 1 indicating uniform engagement in the same activity 
across all farms. This index is recalculated in each simulation 
run and can vary for each agent based on their peers' decisions. 
It is important to note that the agents' dissimilarity also relies 
on the network's size (n) and the number of activities (a) within 
the network. A larger network with more activities increases the 
likelihood of agents being dissimilar to their peers.

The dissimilarity index is assessed against a tolerance level, 
representing an individual's inclination to accept divergent be-
haviour among fellow farmers. A low tolerance level suggests 
a greater likelihood for a farmer to conform to social norms, 
avoiding deviation from the group (i.e., the agent is socially 
oriented). Derived from survey responses regarding the sig-
nificance of peers in decision- making, measured on a Likert 
scale (Kreft et al. 2020), the tolerance level remains constant 
for each agent throughout the simulation. If the dissimilar-
ity index surpasses the tolerance level, the agent engages in 
learning from peers; otherwise, the agent remains individu-
ally oriented.

Depending on the chosen strategy, a selection of potential 
GHG mitigation measures is carried over to the second simu-
lation phase. Repeating agents exclusively consider measures 
utilised in the previous simulation run. Optimising agents 
evaluate all available mitigation measures. Imitating agents 
replicate mitigation measures successfully employed by their 
peers, while agents opting out select none of the mitigation 
measures. Utilising this information, agents in FARMIND 
determine the combination of mitigation activities that 
maximise farm income. The resulting income and adopted 
GHG mitigation measures are subsequently fed back to the 
FARMIND strategic decision level to update the measures and 
income distribution among farm agents.

3.4   |   Model Set Up and Sensitivity Analysis

We initialise the model with agents who have not adopted cli-
mate change mitigation measures. In this setup, agents have no 
prior experience with such measures. We then simulate a 6- year 
period using FARMIND. During this time, agents endogenously 
select strategies and may adopt mitigation measures. The 6- year 
period is chosen to allow the model to reach a saturation point, 
where the number of adopted measures stabilises because ad-
ditional measures are not profitable at the level of compensa-
tion (see also Huber, El Benni, and Finger 2024; Huber, Kreft, 
et al. 2024). For the imitation scenario, where no optimisation 
takes place, we introduce a ‘seed agent’ that has adopted both 

mitigation measures. This agent serves as an initial example, 
and the adoption decisions of other agents emerge through im-
itation over the course of the simulation (see Huber et al. 2021).

To check the robustness of our simulations, we complement the 
behavioural scenarios with scenarios of different efficacy levels for 
the use of 3- NOP. More specifically, we use the lower and upper 
estimates of 3- NOP's abatement potential as reported in the litera-
ture: 15% for both dairy and beef cattle at the lower end, and 30% 
for dairy cattle and 22% for beef cattle at the higher end (Kebreab 
et al. 2023). As milk and meat prices affect farmers' opportunity 
costs, we also incorporate price uncertainty by simulating 200 
price vectors over the six- year simulation period. These vectors are 
randomly drawn from a uniform distribution based on observed 
milk and beef prices over the last decade in Switzerland (Reflex 
Preiskatalog Agridea 2023). Crop prices are not included in the 
uncertainty analysis as they have remained comparably stable 
due to the Swiss tariff system. The resulting uncertainty in the 
abatement potential due to fluctuating output prices is reflected 
in our results as confidence intervals for each level of economic 
compensation. Finally, we test a different model implementation 
by allowing farmers with the opt- out strategy to imitate their peers 
(see Section 3.4 in ODD+D protocol in Appendix S1).

We also provide an output sensitivity analysis with respect to 
the amount of GHG emissions emitted, which can be found in 
the ODD+D protocol in Appendix S1. We do it for three different 
types of parameters: various social network connectivity levels 
(i.e., observed ties versus a full network); behavioural factors; 
and exogenous factors, such as the output price levels of beef and 
milk, the carbon price levels and different abatement potentials 
for 3- NOP. The method we employ in our sensitivity analysis 
is the standardised regression coefficient (SRC), following the 
protocol by Thiele et al.  (2014). The sensitivity analysis shows 
that the social network, the economic compensation per tonne 
of CO2- equivalent and the abatement potential range of 3- NOP 
have the strongest influence on total GHG emissions. This find-
ing supports our choice to design scenarios that reflect the un-
certainty range of these key factors.

4   |   Results

We find that voluntary adoption of the considered climate 
change mitigation measures by farmers can reduce GHG 
emissions by up to 24%, which is close to the government's 
target of a 25% reduction by 2030 (Figure 2). This level of re-
duction is achieved with a payment of CHF 150 per tonne of 
CO2- equivalent, assuming that farmers are profit maximisers 
(Scenario 1) and that the abatement potential of 3- NOP is high. 
At the current price level of around CHF 70 for carbon credits 
on the voluntary carbon market in Switzerland, the reduction 
potential is between 6% and 17%, depending on the effective-
ness of the 3- NOP and the assumption that farmers maximise 
their profits.

The results of the four behavioural scenarios show that imitating 
successful peers (Scenario 2) can lead to significant GHG reduc-
tions. With high 3- NOP effectiveness, emissions can be reduced 
by up to 20% compared to a no- adoption baseline. In the reluc-
tance to change scenario (Scenario 3), the reduction potential 

di =
1

a

a
∑

j= 1

#of peers performing Aj

n

(

1 − P
(

Ai
j

))
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drops by up to 17 percentage points compared to the profit max-
imisation scenario. In the combined scenario (Scenario 4), simi-
lar reduction levels as in the imitation scenario can be achieved, 
provided that the financial compensation is sufficiently high. In 
the following, we describe the results of the behavioural and im-
itation scenarios in more detail.

In Scenario 2 (imitation), we observe how the effect of imitat-
ing peers leads to emission reductions comparable to those in 
the optimisation scenario. The emission reductions range from 
16% to 20%, reflecting an absolute decrease of 2 to 4 percent-
age points and a relative reduction of 11% to 17% compared to 
Scenario 1 (optimisation). Given that some farmers have only a 
few isolated links, not all farms in our sample can imitate suc-
cessful adopters, thus remaining slightly below the optimisation 
scenario. Overall, the simulations show that peer imitation can 
significantly increase GHG mitigation potential. This is also 
confirmed by our sensitivity analysis (detailed in the ODD+D 
protocol in Appendix S1). The sensitivity analysis reveals that, 
among all the parameters considered in the simulation—in-
cluding structural, behavioural and threshold values related to 
reference income and tolerance—social networks have the most 
significant impact on the total reduction of GHG emissions.

In Scenario 3 (reluctance to change), we observe how the be-
havioural factor of reluctance to change reduces the percentage of 
emissions abated. When farmers are reluctant to adopt new prac-
tices, the emissions reductions range from 6% to 7%, representing 
an absolute decrease of 12 to 17 percentage points and a relative 
decline of 67% to 71% compared to Scenario 1 (optimisation).

However, when reluctance to change is combined with peer imi-
tation (Scenario 4), the reduction in emissions improves. We find 

a decrease in GHG emissions from 15% to 19%, which reflects 
an absolute change of −3 to −5 percentage points and a relative 
change of −17% to −21% compared to Scenario 1 (optimisation). 
This means that the reduction due to reluctance to change 
(Scenario 3) is offset by farmers imitating their peers (Scenario 
4). As a result, when peer imitation is included, the reduction in 
emissions increases by an absolute range of 9 to 12 percentage 
points and relatively by 60% to 63% compared to the reduction 
observed when only reluctance to change is considered.

We also observe that the smaller differences between the min-
imum and maximum 3- NOP efficacy scenarios are due to the 
fact that the carbon credits are paid per tonne of CO2- equivalent. 
This means that a higher abatement potential leads to higher 
compensation, making the use of the feed additive 3- NOP prof-
itable for more farms. Consequently, the effects of reluctance to 
change and social networks become more pronounced at higher 
3- NOP reduction potentials. Comparing the minimum and max-
imum abatement potentials in Figure 2, the results show that for 
low 3- NOP effectiveness, financial compensation must exceed 
CHF 100 to induce a significant increase in emission reductions. 
In contrast, at maximum 3- NOP effectiveness, compensation 
levels as low as CHF 50 are sufficient to induce additional GHG 
reductions.

Finally, some farms in our sample also replace concentrates 
with legumes produced on the farm without requiring a car-
bon credit, suggesting that these are win–win measures that 
can reduce GHG emissions and increase farmers' profits. This 
explains why GHG emissions are reduced across all scenarios, 
even without carbon credit compensation. However, the effect 
remains very small, with only a 3% reduction in GHG emissions. 
Once carbon credit compensations are introduced, legumes 

FIGURE 2    |    Average GHG emission reduction by economic compensation per tonne of CO2- equivalent in four behavioural and social scenarios 
with 3- NOP and replacement of imported concentrates with on- farm production of legumes. Each line represents one behavioural and social sce-
nario, and the dashed line corresponds to the target reduction in Switzerland by 2030. The left graph corresponds to the case for which we consider 
3- NOP to have a low mitigation potential (15%), and the right graph corresponds to the case for which we consider 3- NOP to have a high mitigation 
potential (30% for dairy and 22% beef cattle). The error bars correspond to a 95% confidence interval across all farms in the sample for 200 random 
price realisations.
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are consistently adopted together with 3- NOP. This reflects the 
higher abatement potential of 3- NOP, which leads to greater 
compensation for farmers. Detailed adoption rates under the 
compensation levels of 65 and 150 CHF/tCO2eq are provided in 
Tables 5B–8B of Appendix S2.

5   |   Discussion

Farmers' participation in voluntary carbon markets can lead 
to substantial GHG emission reductions, complementing pub-
lic policy efforts. However, our findings show that behavioural 
and social factors play a critical role in shaping the actual re-
duction potential of these schemes. While previous ex- ante 
assessments have examined factors influencing farmer partic-
ipation (Blazy  2021; Buck and Palumbo- Compton  2022; Chen 
et al. 2023; Hermann et al. 2017; Kragt et al. 2014; Kreft, Finger, 
and Huber  2024; Kreft, Huber, et  al.  2024), they have not ex-
amined how behavioural and social factors jointly affect overall 
emission reductions at varying levels of economic compensa-
tion, nor how these influence the maximum abatement potential 
achievable through voluntary measures. Thus, our results pro-
vide quantitative support for previous findings that emphasise 
the importance of building trust among farmers within a com-
munity to encourage participation in voluntary programmes, 
particularly for those aimed at reducing GHG emissions (Chen 
et al. 2023; Rong and Hou 2022). Our results show that technical 
assessments alone may send inappropriate signals, as policy-
makers may rely solely on the technical potential of voluntary 
schemes. This approach could lead to the omission of necessary 
complementary policies that take into account participation in-
fluenced by behavioural and social factors (Brown et al. 2021). 
Moreover, drawing on the stages of technology adoption iden-
tified by Weersink and Fulton (2020), our findings suggest that 
voluntary mitigation tools may gain traction over time. As peer- 
to- peer interactions among farmers increase, they can foster 
wider adoption, thereby enhancing the long- term effectiveness 
of these policy instruments in reducing GHG emissions.

Our results also highlight the importance of specific mitiga-
tion measures such as 3- NOP and legume substitution. While 
previous studies have demonstrated the effectiveness of 3- NOP 
in reducing GHG emissions (Alvarez- Hess et  al.  2019; Zerbe 
et al. 2025), our results show lower reductions compared to life 
cycle assessments such as that of Uddin et  al.  (2022), which 
reported a 31% reduction on dairy farms. This discrepancy 
highlights the need to consider behavioural and social barriers 
when assessing the implementation of mitigation measures in 
voluntary schemes. Assuming profit maximisation as the un-
derlying decision- making process when evaluating voluntary 
programmes is likely to overestimate the true reduction poten-
tial of these initiatives. Moreover, our results align with the find-
ings of Luke and Tonsor  (2024), who demonstrated that farm 
structures affect the adoption of 3- NOP.

Similarly, our findings confirm the potential of legume substitu-
tion as a mitigation measure. Several studies have evaluated the 
potential of this measure to reduce emissions and improve farm 
sustainability (Eugène et al. 2021; Reckling et al. 2016). For ex-
ample, Morais et al. (2018) found that growing legumes on- farm 
reduces emissions more effectively than using concentrates, 

with a reduction of 25% per kilogram of live animal weight in 
beef production. Other research has further emphasised the 
broader benefits of this mitigation measure, including reduc-
ing environmental pressure from food systems and improving 
human health (Stagnari et al. 2017; van Loon et al. 2023). van 
Loon et al. (2023) also confirmed that this approach enhances 
food and feed self- sufficiency.

Nevertheless, these results have some limitations. First, we 
have selected two mitigation measures: using the feed additive 
3- NOP and replacing concentrate feeds with on- farm- produced 
legumes. These measures have been proven to reduce GHG 
emissions while maintaining production levels and have docu-
mented abatement potential with corresponding uncertainties. 
Thus, they are well suited for voluntary schemes, such as vol-
untary carbon markets. However, challenges may arise, such 
as monitoring costs and the uncertainty surrounding the long- 
term effects of the feed additive 3- NOP (Gillenwater et al. 2007; 
Oldfield, Lavallee, et al. 2022; Wongpiyabovorn et al. 2022). In 
addition, these measures are not applicable to the entire agri-
cultural sector, meaning that the overall contribution of these 
measures to the 2030 target is lower. Our simulation model also 
does not incorporate changes in the production structure, which 
may constrain the adaptability of the results.

While our simulation approach required certain assumptions 
with respect to 3- NOP (see Appendix  S1 and S2, Section  4.4), 
their potential impact on the results is reflected in the lower 
bound of the uncertainty range for 3- NOP's mitigation poten-
tial. Furthermore, as our simulations are based on a produc-
tion model only, they do not consider market feedback effects. 
Consequently, we cannot assess the potential land use changes 
or carbon leakage effects resulting from increased on- farm le-
gume cultivation. However, we expect crop prices to remain 
stable due to the Swiss tariff system. Nonetheless, it remains 
crucial to promote these measures, even if they only apply to a 
portion of the sector, because the affected farms (dairy and beef) 
are likely to have higher emissions.

Second, the modelled results exhibit a substantial range of uncer-
tainty. The main sources of this uncertainty are the efficacy of 
3- NOP, the variability in GHG emissions reduction under vary-
ing economic compensations, and the output price uncertainty 
from milk and beef prices. We did not account for changes in crop 
prices due to the stable tariff system in Switzerland. Our sensitiv-
ity analysis (provided in Appendix S1) confirms that, in addition 
to social networks, the efficacy of 3- NOP and the economic com-
pensations for GHG emissions reduction have the strongest im-
pact on total GHG emissions reduction. However, other sources of 
uncertainty, such as the variability in grain and fertiliser prices, 
are not explicitly modelled for the reasons outlined above.

Third, we did not explicitly model a voluntary scheme such as 
a voluntary carbon market. (Gillenwater et  al.  2007; Oldfield, 
Eagle, et al. 2022; Oldfield, Lavallee, et al. 2022). For instance, 
credible voluntary carbon markets rely on third- party verifi-
cation and reporting processes, which incur transaction costs, 
though these may be lowered by leveraging social networks 
(Kreft, Huber, et al. 2024). This is where intermediaries, such 
as the Swiss cooperatives Mooh and Fenaco, can play a role in 
coordinating the verification and reporting processes.
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Finally, the accuracy and validity of our simulations depend on 
the theoretical foundation outlined in FARMIND's conceptual 
framework (see, e.g., Troost et al. 2023). A key assumption in 
our model is that farmers who are dissatisfied and engaged in 
social processing may consider alternatives beyond the mod-
elled activities and do not adopt climate change mitigation mea-
sures (opt- out strategy). This represents the idea that agents can 
reverse previous adoption decisions and are not locked into a 
measure even if they are dissatisfied with their income. We 
tested the robustness of this assumption by running a scenario 
in which dissatisfied agents following a social learning strat-
egy could retain previously adopted measures (see Malawska 
and Topping 2016; Pacilly et al. 2019; van Duinen et al. 2016, 
for similar implementations). Allowing unsatisfied farmers to 
keep adopted measures increased the influence of social in-
teractions in our simulations (see Figure 3A in Appendix S1). 
At equal compensation levels, engagement in social process-
ing increased GHG mitigation by up to 6 percentage points. In 
this case, the results of Scenario 4—which includes both reluc-
tance to change and imitation—approach those of Scenario 1, 
where farmers maximise their profits. Nevertheless, our main 
conclusion regarding the behavioural scenarios remains valid: 
adoption rates are lower when behavioural factors such as re-
luctance to change and imitation are taken into account. This 
finding holds even under different operationalisations of be-
havioural strategies in FARMIND, confirming the robustness 
of our results.

Still, the accuracy of our simulations is closely linked to the 
theoretical foundation established in the FARMIND concep-
tual framework. While our approach uniquely integrates survey 
data, social network analysis and farm structure information to 
account for a range of behavioural and social factors, the model 
is not directly transferable to other settings, farm types or geo-
graphical regions. In order to draw more generalisable conclu-
sions, the modelling framework would need to be extended to 
include different regions, farm types and additional mitigation 
measures.

6   |   Conclusion

In this paper, we explore the reductions of GHG emissions 
through farmers' adoption of two mitigation measures (the 
use of the feed additive 3- NOP and the reduction of upstream 
emissions by substituting imported concentrate feeds for on- 
farm- produced legumes) under different compensation levels. 
Using the bio- economic model FarmDyn with census data and 
the agent- based model FARMIND with survey data, we test the 
effect of behavioural and social factors on potential emissions 
reduction across four behavioural and social scenarios. Our re-
sults indicate that the adoption of these two measures under a 
voluntary scheme can significantly reduce GHG emissions in 
the agricultural sector. Assuming agents aim to maximise their 
incomes and considering Swiss current carbon credit prices of 70 
CHF (with Fenaco prices ranging from 65 to 80 CHF per tonne 
of CO2- equivalent), emissions could potentially be reduced by 
6%–17%, with these reductions corresponding to minimum and 
maximum 3- NOP efficiencies, respectively. We also find that 
the maximum potential reduction in emissions ranges between 
18% and 24% relative to the baseline, in which no mitigation 

measures are adopted. However, this potential diminishes when 
behavioural factors are included in the simulation. Behavioural 
factors alone limit the maximum abatement potential to 6%–7%, 
which translates to an absolute reduction of 12 to 17 percent-
age points and a relative reduction of 67%–71% compared to the 
scenario where all farmers are income maximisers (i.e., opti-
misers). However, when peer imitation is promoted through so-
cial networks, the maximum abatement potential increases to 
16%–20%, corresponding to an absolute change of −2 to −4 and 
a relative change of −11% to −17% in respect to the case in which 
farmers are optimisers.

The policy implications of our results are fourfold. First, the 
promotion of 3- NOP and replacement of concentrate feeds for 
home- grown legumes through a voluntary scheme like a vol-
untary carbon market can effectively contribute to achieving 
GHG emission reduction goals. Policymakers should consider 
how these schemes can complement other policies and ensure 
that they are accessible to farmers. Second, our results indicate 
that when considering behavioural and social factors, volun-
tary schemes alone will likely not meet GHG emission reduc-
tion targets. This means that policymakers cannot rely solely 
on voluntary measures but should also implement other strate-
gies. These strategies could include other mitigation measures 
that may be less suitable for a voluntary programme, such as 
measures that might address the reduction of both the produc-
tion and consumption of animal products. Third, our results 
show that social networks, which allow farmers to imitate 
successful mitigation measures, can significantly enhance the 
potential for GHG emission reductions. Therefore, it is crucial 
to design voluntary programmes by promoting and strengthen-
ing social networks, for example, through joint support groups, 
organisation of farm visits or events to support informal ex-
change to increase farmer participation in such schemes. These 
insights align with the findings of (Kreft, Huber, et al. 2024). 
Our analysis extends those by showing that payment levels 
also influence the effect of social networks. Their role becomes 
particularly significant at higher compensation levels, where 
the abatement potential is greater and imitation behaviour 
amplifies participation, helping to overcome reluctance to 
adopt new practices. Building on this, our results further show 
that the greatest GHG emission reductions are achieved at a 
compensation level of 150 CHF per tonne of CO2- equivalent. 
Beyond this point, the emissions reductions stabilise, as there 
is a maximum contribution these two mitigation measures can 
make to the total reduction. This finding provides guidance for 
intermediaries or cooperatives designing a voluntary carbon 
market with these measures, indicating the optimal carbon 
credit price for maximising GHG emissions reduction. Overall, 
our study demonstrates how privately adopted voluntary mea-
sures can complement governmental efforts to reduce GHG 
emissions in agriculture.

Our analysis has implications for future research. To achieve more 
accurate results, transaction costs, such as those associated with 
monitoring, reporting and verification, should be included. Future 
studies could also generalise our findings to a broader sample of 
farms, consider different production types and explore additional 
mitigation measures suitable for arable production that do not 
necessarily maintain constant production levels. Furthermore, 
to better understand adoption patterns in voluntary schemes, 
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future research could explore how these patterns, especially those 
shaped by peer imitation, develop over time and differ across re-
gions. Including a reduction in the consumption of animal prod-
ucts to avoid carbon leakage could also be beneficial. Therefore, 
for a more holistic view, future research could employ a general 
global equilibrium model that includes both the demand and pro-
duction sides while also capturing the potential carbon leakage ef-
fects from land- use changes resulting from substituting imported 
concentrate feeds with home- grown legumes. Given the current 
emergence of voluntary carbon markets in agriculture worldwide, 
future research should provide ex- post evidence on these initia-
tives, and such analysis can also be used to inform and improve 
ex- ante analysis (El Benni et al. 2023).
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Endnotes

 1 It is important to note that this price refers exclusively to the Mooh and 
Fenaco voluntary carbon markets, which cover only a limited segment 
of the agricultural sector. These are two cooperatives that operate vol-
untary carbon schemes focused on feed additives for cattle. For further 
details, see Fenaco (2022) and Mooh|Climate Program (2022).

 2 Prospect value theory describes how individuals evaluate potential 
gains and losses asymmetrically, with losses typically weighing more 
heavily than equivalent gains (Kahneman and Tversky 1979).

 3 The cow longevity scheme aims to reduce GHG emissions by de-
creasing the need for replacement heifers and increasing milk yield 
per cow (Winter et al. 2024). Additionally, studies on the abatement 
costs of this measure in Switzerland indicate that it would also 
generate economic benefits (Huber et  al.  2023; Kreft, Finger, and 
Huber 2024).

 4 A detailed description of the mitigation measures, including the 
abatement mechanisms, abatement potential, associated uncertain-
ties and costs, and model implementation assumptions, is provided in 
Appendix S1.
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