Comparison of hays harvested at three stages of grass maturity in their effects on chewing activity and ruminal pH fluctuation of cows

Frigga Dohme and Andreas Münger

Agroscope Liebefeld – Posieux (ALP)
Swiss Federal Research Station for Animal Production and Dairy Products, Posieux

Introduction

In dairy cow diets, hay is often used as a source of effective fiber in order to maintain rumen function.

The physical effectiveness of hay is related to various factors, e.g.:

- Particle size
- Botanical composition
- Stage of maturity

Effect of an immature hay versus two mature hays harvested after different periods of regrowth on

- **→** Nutrient intake
- Chewing activity
- → Rumen pH

Animals

- ➤ 6 non-lactating cows
- > ruminally cannulated
- > Brown Swiss breed
- ➤ body weight: av. 650 kg
- ➤ kept in individual stalls

Experimental design

- ➤ double 3 x 3 Latin square
- > 14 d adaptation period and 7 d collection period

Hay

- > second cut of a permanent meadow
- ➤ 55% ryegrass, 23% white clover, 22% dandelion
- ➤ harvest at 36 d after regrowth (A, control)

50 d after regrowth (B)

61 d after regrowth (C)

fed as long hay

Nutrient composition g/kg DM					
	Hay A	Hay B	Hay C		
NDF	433	448	450		
ADF	264	291	298		
ADL	34	41	47		
Sugar	100	96	86		
Crude protein	153	142	137		

Treatment

	Hay A	Hay B	Hay C
Feeding			
Mineral supplement (0730 h)	300 g/d	300 g/d	300 g/d
Hay (0800 h)	ad libitum	ad libitum	ad libitum

Continuous recording of chewing activity

- > Continuous recording over 22 h (1500 h to 1300 h) for 5 d
- > Extrapolation of the data to 24 h

€ V2 0 V 20 14:12

Continuous recording of rumen pH

- > Continuous recording over 22 h (1500 h to 1300 h) in 30 s intervals for 5 d
- > Separation of the data into a day and a night period
- > Calculation of the minimum, maximum and mean pH values and the time pH was below 6.2
- > Calibration of the electrode and transfer of the data once a day

Check of the continuous measurements of the rumen pH

- Measurements of the pH of rumen fluid outside the rumen
 - on d 3 to 5 of each collection period
 - every 2 hours from 0700 to 1900 h

Statistical analysis

- > Analysis of variance designed for a double 3 x 3 Latin Square design
- Conduction of the treatment comparisons by orthogonal contrasts
 - hay A versus hays B and C
 - hay B versus hay C

Chewing activity per day

A vs. B and C; P = 0.12 C vs. B; P = 0.57

Chewing activity

A vs. B and C; P < 0.001 C vs. B; P < 0.001

Eating

Ruminating

Rumen pH of the continuous measurements

				Orthogonal contrasts		
Daytime (0700 - 1900 h)	Hay A	Hay B	Hay C	A vs. B and C	C vs. B	
Mean	6.27	6.41	6.44	< 0.05	0.69	
Maximum	6.57	6.65	6.64	0.19	0.88	
Minimum	5.97	6.15	6.23	< 0.05	0.39	
Time < 6.2, min / d	220	56	68	< 0.05	0.86	
				Orthogonal co	ntrasts	
Nocturnal (1900 – 0700 h)	Hay A	Нау В	Hay C	Orthogonal co A vs. B and C	ntrasts C vs. B	
Nocturnal (1900 – 0700 h) Mean	Hay A 6.25	Hay B 6.33	Hay C 6.42	•		
,		•	•	A vs. B and C	C vs. B	
Mean	6.25	6.33	6.42	A vs. B and C 0.08	C vs. B 0.23	

LIEBEFELD-POSIEUX

Summary

* Comparison of the immature hay with the two mature hays

- intake of DM
- ruminating time per day and per kg DM and NDF consumed
- intake of ADF and ADL
- eating and ruminating time per kg ADL consumed
- intake of sugar
- mean and minimum rumen pH during the day
- ↑ time when the pH was < 6.2</p>

* Comparison of the two mature hays

- the intake of ADL increased with increasing maturity
- the time spent eating and ruminating per kg ADL consumed decreased with increasing maturity

Conclusion

In conclusion, the reduced rumen pH with the immature hay could be explained by the higher sugar intake (r = -0.67; P < 0.01).

The few differences between the two mature hays could be explained by the very similar nutrient composition.

