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Abstract

Fire blight caused by the bacterium Erwinia amylovora is a severe threat to apple and pear orchards
worldwide. Apple varieties exhibit a wide range of relative susceptibility/tolerance to fire blight. Although,
no monogenic resistance against fire blight has been identified yet, recent evidence indicates the existence of
quantitative resistance. Potential sources of fire blight resistance include several wild Malus species and
some apple cultivars. F1 progenies of ‘Fiesta’x ‘Discovery’ were inoculated with the Swiss strain Ea 610 and
studied under controlled conditions to identify quantitative trait loci (QTLs) for fire blight resistance.
Disease was evaluated at four time points after inoculation. Shoot lesion length and the area under disease
progress curve (AUDPC) values were used for QTL analysis. One significant (LOD score of 7.5-8.1,
»<0.001) QTL was identified on the linkage group 7 of ‘Fiesta’ (F7). The F7 QTL explained about
37.5-38.6% of the phenotypic variation.

Abbreviations: AUDPC — Area under disease progress curve; DAI — Days after inoculation; F7 — Linkage
group 7 of Fiesta; LOD — Logarithm of odds; MQM — Multiple QTL Model; PLL — Percent lesion length;
QTL - Quantitative trait loci

Introduction

Fire blight, caused by the Gram-negative
enterobacterium Erwinia amylovora, infects many
members of the Rosaceae family and is a major
economic threat to apple, pear and quince pro-
duction worldwide. Since first being described in
the Eastern USA in 1780, fire blight has spread
throughout North America, and to, New Zea-
land, Western and Central Europe and the
Middle East (Bonn and Van der Zwet 2000). Fire
blight attacks flowers, leaves, branches, roots and
fruits and in severe cases entire trees and orch-

ards can be devastated within a season. The
pathogen invades through natural openings and
wounds. The occurrence and severity of fire
blight is determined by the interaction between
the pathogen, favorable weather conditions and
host plant susceptibility/tolerance (Thomson
2000). Control options are largely limited to
exclusion (quarantine), eradication, and antibi-
otics (banned in many countries) (McManus
et al. 2002; Norelli et al. 2003). Some success has
been achieved using growth regulators (Radem-
acher and Kober 2003) and biocontrol (Johnson
and Stockwell 1998).



No fire blight resistant commercial cultivars
are available although there are reports of a large
variability among apple genotypes regarding fire
blight susceptibility/tolerance. Little is known
about the genetic basis of this tolerance (Norelli
et al. 1987). Several wild Malus species have been
identified as potential sources for fire blight
resistance, including M. robusta, M. sublobata,
M. atrosanguinea, M. prunifolia and M. fusca
(Aldwinckle and Beer 1979). A promising level
of resistance has also been observed in some
Malusx domestica cultivars, such as ‘Nova Easy-
gro’ and ‘Florina’ (Aldwinckle and van der Zwet
1979; Keck et al. 1997; Fischer and Fischer
1999). Monogenic resistance to fire blight has not
been identified in apple and it is thought that
disease resistance is a quantitative trait (Korban
et al. 1988; Brisset et al. 2002; Dondini et al.
2004).

Quantitative Trait Loci (QTL) mapping can
identify chromosomal regions controlling quanti-
tative traits. This approach has been successfully
used to study many agronomic traits including
disease resistance in many plant species including
tomato (Goldman et al. 1995; Mangin et al.
1999), maize (Berke and Rocheford 1995;
Krakowsky et al. 2004), rice (Ishimaru et al.
2001; Zenbayashi et al. 2002) and wheat
(Anderson et al. 1993; Otto et al. 2002). Genetic
linkage maps, which are an essential foundation
for QTL analysis, are now available for apple
(Conner et al. 1998; Maliepaard et al. 1998; King
et al. 2001; Liebhard et al. 2003b; Kenis and
Keulemans 2005). Conner et al. (1998) identified
QTLs for growth and development characteristics
in juvenile apple trees. King et al. (2000, 2001)
reported the mapping of QTLs for fruit flesh
firmness and fruit texture. Liebhard et al. (2003a)
mapped several quantitative physiological traits,
such as stem diameter, height, leaf size, number
of flowers, sugar content of fruit and fruit acidity.
QTLs have also been found for apple scab resis-
tance (Durel et al. 2003; Liebhard et al. 2003c¢).
Recently the QTL mapping approach has been
used to study fire blight resistance in pear
(Dondini et al. 2004) and apple (Calenge et al.
2004a, 2005). In this study, we applied the
available linkage map data for the apple cross
‘Fiesta’x ‘Discovery’ to identify QTLs for fire
blight resistance (Liebhard et al. 2003b).

Materials and methods
Plant material

Eighty-six F1 progeny plants from the
‘Fiesta’ x‘Discovery’ cross previously used by
Liebhard et al. (2003a) were chosen at random. Six
replications for each of theses 86 progenies along
with 12 replications of each parent were whip-
grafted on ‘virus-free M.9 T337 rootstocks. Plants
were grown in the quarantine greenhouse facility
at Agroscope FAW Widenswil (Swiss Federal
Research Station for Horticulture). Space limita-
tion necessitated splitting the replications into two
adjacent greenhouse cabins (three replications/
greenhouse cabin). Temperature and humidity
were controlled throughout the experiment (rela-
tive humidity was 70% and temperature was
maintained at 21-25 °C).

Inoculation and evaluation of disease resistance

Inoculation was performed using the Swiss
E. amylovora strain Ea 610. Inoculum was pre-
pared by growing Ea 610 on plates of King’s
medium B (KB) for 24-36 h at 27 °C, scraping the
bacterial lawn into tubes with phosphate-buffered
saline (PBS, pH 7.2), and adjusting the concen-
tration to approximately 1 x 10° cfu/ml based on
optical absorbance at 600 nm. After 4-5 weeks,
plants with minimum shoot length of 13.5 cm were
inoculated as described by Momol et al. (1998).
Inoculum was introduced to the shoot tip by
inserting a syringe of 1.3-mm diameter (18-gauge)
needle through the stem just above the youngest
unfolded leaf. Plants in the two greenhouse cabins
were inoculated two days apart. The first necrotic
symptoms were visible at 3 days after inoculation.
Lesion length (cm) was measured at four time
points after inoculation (i.e., 6, 13, 20 and 27 days
after inoculation (DAI)). After 27 days, disease
progress completely ceased.

Statistical analysis
Statistical analysis was performed using SYSTAT

software (SPSS 2000) (version 10; SPSS Corp.,
Chicago, IL). Prior to analysis, percent lesion



length (PLL) was calculated by dividing the lesion
length (cm) by the shoot length (cm; measured at
6 DAI) (Norelli et al. 1984). An area under disease
progress curve (AUDPC) value was calculated for
each progeny (Campbell and Madden 1990). PLL
measurements at 6, 13, 20 and 27 DAI were inte-
grated using the formula

n—1

AUDPC =Y [(tiy1 — 1) (i + ¥it1) /2]
i=1

where ¢ is time in days of each measurement, y is
the PLL at each measurement and # is the number
of measurements.

Data were checked for outliers, normal distri-
bution and progenyxgreenhouse cabin interac-
tions. Outlying data from two progeny were
detected and removed. Differences between green-
house cabins were significant for all measurements
(6, 13, 20 and 27 DAI) and AUDPC. Plants in
greenhouse cabin 1 consistently had longer PLL
than plants in greenhouse cabin 2, however no
progeny x greenhouse cabin interaction was found.
Finally, data for both greenhouse cabins were
pooled together. PLL for each progeny was aver-
aged and used to calculate mean, range, standard
deviation, and 95% confidence interval (CI). Data
were not normally distributed and shoot length
(cm), absolute lesion length (cm), PLL and
AUDPC for each progeny was log transformed.
Log transformed and non-transformed PLL and
AUDPC were used to perform analysis of variance
and to estimate broad sense heritability. Broad
sense heritability was estimated by the formula,

h2 = 625/02p and o2, = (024 + 02€/n)

where, 05, is genetic variance, o, is phenotypic
variance; o, is environmental variance and » is the
mean number of replicates per genotype (Calenge
et al. 2004b).

QTL mapping

Only log transformed data were used for further
analysis. Least Square mean values were calculated
for PLL at four different intervals and AUDPC for
each progeny using the GLM procedure of SY-
STAT and then used for QTL analysis (Krakowsky
et al. 2004). Least Square mean values for shoot
length and absolute lesion length were also esti-

mated and used in QTL mapping. The maps used
in QTL analysis were those already used by Lieb-
hard et al. (2003b) for both ‘Fiesta’ and ‘Discov-
ery’. Maps consisted of a total of 734 markers,
whereas ‘Fiesta’ had 345 markers including 137
AFLP, 108 SSR, and 100 RAPD markers, and
‘Discovery’ had 389 markers including 160 AFLP,
103 SSR, 1 SCAR and 125 RAPD markers with 91
SSRs in common on both maps (Liebhard et al.
2003b). The maps were calculated with 251 indi-
viduals of each parent. The average linkage group
length was 66.96 cM for ‘Fiesta’ and 84.36 cM for
‘Discovery’. Logarithm of odds (LOD) threshold
value was calculated following Van Ooijen (1999).
Significant (LOD >4.5) threshold was set to declare
a QTL significant at the 95% confidence level (King
et al. 2000).

MapQTL version 4 (Van Ooijen et al. 2000) was
used for QTL mapping. Preliminary QTL analysis
was done by interval mapping and Kruskal—
Wallis test. Multiple QTL mapping (MQM) was
performed only for QTL with LOD score exceed-
ing the significant LOD threshold by interval
mapping (Van Ooijan, personal communication).
For MQM, marker with highest LOD value was
taken as a co-factor (Hunt et al. 1998). The 2-
LOD support interval was calculated to estimate
the position of significant QTL with ~95% confi-
dence (King et al. 2000; Durel et al. 2003). Interval
mapping, Kruskal-Wallis test and MQM results
were used to characterize the QTL (Atienza et al.
2004). Phenotypic variation explained by QTL was
estimated by the multiple regression method
(Lauter and Doebley 2002).

The ‘Fiesta’x‘Discovery’ population was di-
vided into sub-populations based upon the alleles
of marker closest to the significant QTL at 6, 13,
20 and 27 DAI and AUDPC and then the average
PLL was calculated for these sub-populations.
Analysis of variance was performed to verify
statistical differences between the two sub-popu-
lations at 6, 13, 20 and 27 DAI and AUDPC.

Results
Phenotypic evaluation of fire blight
Shoot length at the time of inoculation ranged

from 13.7 to 48.4 cm with the average length of
25.7,26.2 and 29.0 cm for ‘Fiesta’, ‘Discovery” and



their progenies (‘Fiesta’x ‘Discovery’), respectively
(Table 1). At 6 DAI, most of the plants showed
disease symptoms and the average PLL was almost
double at 13 DAI while it remained constant after
20 days (Table 1). The mean PLL of the progenies
ranged from 2.6 to 26.4% at 6 DAI, from 4.2 to
49.4% at 13 DAI and from 4 to 51.9% for both 20
and 27 DAI. The 95% CI for mean PLL at 6 DAI
did not overlap the 95% CI for average PLL at 13,
20 and 27 DAI, which means that PLL at 6 DAI

was significantly different from PLL at 13, 20 and
27 DAI. The data was positively skewed and
transformation of the data normalized the distri-
bution (Table 2). Genetic variation among the
progenies in our population were significant
(p<0.001) for all measurements (6, 13, 20 and
27 DAI)and AUDPC. Variance was less for 6 DAI
than 13, 20 and 27 DAI; however these latter three
had almost the same variance. Broad sense herita-
bility ranged from 0.90 to 0.94 (Table 2).

Table 1. Basic statistics for the mean PLL of parental cultivars and progeny plant of ‘Fiesta’x ‘Discovery’.

Trait Basic statistics® Fiesta Discovery FiestaxDiscovery
Shoot length Mean 25.70 26.22 29.01
Standard deviation 4.54 4.63 6.29
Range 18-31 18-34.50 13.75-48.42
95% CI 22.46-28.94 22.91-29.53 27.66-30.36
6 DAI Mean 10.78 13.14 12.56
Standard deviation 7.08 6.93 5.13
Range 2.00-24.50 4.30-25.90 2.64-26.40
95% CI 5.72-15.84 8.19-18.10 11.46-13.66
13 DAI Mean 17.33 19.58 23.26
Standard deviation 12.88 12.39 10.50
Range 2.00-40.70 6.40-46.40 4.25-49.38
95% CI 8.12-26.54 10.71-28.44 21.01-25.51
20 DAI Mean 18.87 20.63 25.19
Standard deviation 13.71 12.47 11.55
Range 2.00-42.40 6.40-47.80 4.04-51.73
95% CI 9.06-28.68 11.71-29.55 22.71-27.66
27 DAI Mean 19.04 21.49 25.69
Standard deviation 13.59 12.25 11.54
Range 2.00-42.40 6.40-47.80 4.04-51.95
95% CI 9.32-28.76 12.73-30.25 23.22-28.16
AUDPC Mean 357.73 402.80 472.98
Standard deviation 253.36 229.62 201.80
Range 42.00-794.90 126.60-867.40 88.23-949.53
95% CI 176.48 -538.98 238.54-567.06 429.71-516.24

“Mean, range, standard deviation, and 95% CI were calculated for the mean shoot length (cm), mean PLL at 6, 13, 20, 27 DAI and
mean AUDPC for parental cultivars and progeny plant of ‘Fiesta’x ‘Discovery’ separately.

Table 2. Comparison among PLL and log transformed PLL data for population of ‘Fiesta’x ‘Discovery’.

Trait 6 DAI 13 DAI 20 DAI 27 DAI AUDPC

PLL Log trans.* PLL Log trans. PLL Log trans. PLL Log trans. PLL Log trans.
df 85
Variance components 422 0.06 147.0  0.08 174.0  0.08 177.3  0.08 54737.5  0.07
Broad sense heritability  0.90 0.91 0.92 0.94 0.92 0.94 0.92 0.94 0.92 0.94

Variance components, F-test results of corresponding mean squares and broad sense heritability at 6, 13, 20, 27 DAI and AUDPC.

F-test results in all cases were significant at p <0.001.
#Log-transformed PLL data.



QTL mapping

A significant QTL (p<0.05) was identified on
linkage group 7 of ‘Fiesta’ (F7) (Figure 1). The F7
QTL was found in both preliminary interval
mapping and MQM with the maximum likelihood
position at 50.1 cM. It was associated with the
AFLP marker E37M40-0400, for all time points
(except at 6 DAI) and AUDPC. Kruskal-Wallis
analysis showed highly significant (p <0.0001)
association of AFLP marker to fire blight resis-
tance at 13, 20 and 27 DAI and AUDPC (Ta-
ble 3). For MQM, the marker E37M40-0400 was
selected as cofactor. The LOD score and pheno-
typic variation explained by F7 QTL for PLL at
13, 20 and 27 DAI and AUDPC were 7.5 (37.5%),
8.1 (38.2%), 7.8 (37.5%) and 7.7 (38.6%) (Table 3,
Figure 1), respectively. The 2-LOD support inter-
val for the F7 QTL based on MQM results ranged
from map position 46.5-51.5 cM (Figure 1).
There was a significant difference (p <0.05)
between the mean PLL for the subpopulations
divided based upon the presence/absence of AFLP

marker E37M40-0400 on linkage group 7 of cul-
tivar ‘Fiesta’ at 13, 20 and 27 DAI and AUDPC,
whereas at 6 DAI it was not significant (Figure 2).
The F7 QTL was also identified with log trans-
formed absolute lesion length (Table 3). No QTL
was found associated with shoot length (LOD > 2)
(data not shown).

Discussion

The same QTL was identified with log transformed
lesion length and PLL (percentage of diseased
shoot length) data. However, the data corrected
for the variability of the shoot length (PLL)
resulted in an increased LOD score and a higher
percentage of the phenotypic variation was
explained by the identified QTL. No QTL was
identified with shoot length data, which means
that the fire blight QTL identified with PLL is not
artifacts due to the combination of shoot and
lesion length.
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Figure 1. Multiple QTL mapping (MQM) results for the QTL identified on linkage group 7 of ‘Fiesta’ with log transformed PLL at 13,
20, 27 DAI and AUDPC. The x-axis indicate the linkage map of ‘Fiesta’ in cM; the y-axis show the LOD scores. The smooth
horizontal line represents the significant (p <0.05) threshold, and the solid black bar indicates 2-LOD support interval for the position

of the QTL.



Table 3. QTL identified in the segregating population of ‘Fiesta’x‘Discovery’ at 13, 20, 27 DAI for log-transformed lesion length,
PLL and AUDPC showing chromosome, genetic locus, closest marker, DAI, LOD score, PVE, and Kruskal-Wallis results.

Chr Locus Closest marker Parent/Method Trait Lesion length (cm) PLL
LOD score® PVE® Kruskal-Wallis LOD PVE Kruskal-Wallis
(%) score (%)
7 50.1 E37M40-0400  Fiesta/MQM 13 DAI  6.22 34,0 ks 7.5 37.5 ek
20 DAI 691 35.5 ks 8.1 382  RwEEEEx
27 DAL 6.66 34.7 ek 7.8 37.5 ek
AUDPC N/A 7.7 38.6  HwEEEEx

#Significant linkage (LOD >4.5).

PPVE = phenotypic variance explained by QTL. N/A = Not available, ***¥*%% < (.0001.

The QTL identified on linkage group 7 of
‘Fiesta’ (F7) explained approximately 38% of the
phenotypic variation. Kruskal-Wallis test also
showed highly significant association between the
marker E37M40-0400 and this QTL. The F7 QTL
was identified at 13, 20 and 27 DAI, and the same
QTL could also be identified with AUDPC values
which might be explained by the strong correlation
between PLL measurements and AUDPC. In
contrast to Calenge et al. (2005), we could not
identify any QTL at one week after inoculation
which could be due to different strains or may be
due to different methods of inoculation used in
both studies (cutting vs. injection). Lesion mea-
surements and PLL at 6, 13, 20 and 27 DAI
showed significant differences (p <0.05) between
progenies therefore, different intervals after inoc-
ulation (6, 13, 20 and 27 DAI) can be very infor-
mative about the disease development and could
be used to calculate the AUDPC (Jorge and Ver-
dier 2002). One possible explanation for the large
amount of phenotypic variation attributed to the

F7 QTL is the relatively small size of the progeny
population. Beavis (1998) reported that when
population size is small, QTLs with small effect
could be overestimated and vice versa for QTLs
with large effect. In this study, the reduced popu-
lation size may have led to underestimation of a
number of QTLs, overestimation of QTL effects,
and a failure to quantify QTL interactions (Mel-
chinger et al. 1998). More likely, however, F7 is a
real QTL for fire blight resistance. This explana-
tion is supported by the results of Calenge et al.
(2004a, 2005), who identified a QTL in Fiesta in
the same region of chromosome 7 using the
bacterial strain CFBP 1430 in two different genetic
backgrounds. The results reported here and the
work of Calenge et al. (2004a, 2005), shared a
common SSR (CHO04e05) on linkage group 7 of
the map of cultivar ‘Fiesta’. The distance of this
SSR marker and the 2-LOD support interval
of the QTL identified in both studies overlap
suggesting they may be the same. Interestingly, the
F7 QTL was identified with two different strains.
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Figure 2. Mean PLL of the two subpopulations of progeny plants (‘Fiesta’x ‘Discovery’) divided based upon the presence/absence of
AFLP marker ‘E37M40-0400" at 6, 13, 20, 27 DAI (a) and AUDCP (b). Black and gray columns represent presence and absence of
E37M40-0400 band, respectively. Letters indicate significant differences (p <0.05) and bars represent the +standard error.



Therefore, the F7 QTL can be considered to be a
stable QTL since it is consistent in different genetic
backgrounds and at least for two different
E. amylovora strains.

Minor QTLs identified by Calenge et al. (2005)
on linkage group 3 of cultivar ‘Fiesta’ and linkage
groups 12 and 13 of cultivar ‘Discovery’ could not
be identified in our experiments. The phenotypic
variation explained by F7 QTL (37.5-38.6%) was
less than the broad sense heritability, indicating
that there are additional genetic elements con-
tributing to fire blight resistance that were not
identified in this study.

The data presented here together with those
presented by Calenge et al. (2005) identify a QTL
on chromosome 7 of ‘Fiesta’ associated with
resistance to fire blight. However, F7 QTL should
be further validated in other genetic background
and with other pathogen strains. DNA markers
for this QTL have genuine potential to be trans-
lated into an easy-to-use tool for rapid selection
of genotypes conferring increased resistance to
E. amylovora which could lead to the development
of fire blight resistant cultivars.
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