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Abstract 

Total organic carbon (TOC) stocks in soil are of central importance for agricultural productivity, climate regulation, and soil 

ecological functions. They are strongly influenced by environmental conditions and agricultural management practices, yet 

changes in TOC stocks often only become detectable over decades. Long-term monitoring programs such as the Swiss 

National Soil Monitoring Network (NABO) enable reliable detection of such changes. While no changes in topsoil (0–20 

cm) TOC have been observed at more than 100 NABO sites over the past 30 years, data on subsoil dynamics remain 

scarce. This gap reflects the later introduction of systematic subsoil sampling and inconsistencies in sampling procedures, 

depth intervals, TOC analysis, and bulk density determination compared with the first NABO monitoring period (1985–

1989). The aims of this study were therefore to (i) harmonize data from the first (1985–1989) and seventh (2015–2019) 

monitoring period for profile-wide TOC stock calculations, (ii) quantify land use-specific changes in TOC stocks, (iii) assess 

the influence of pedoclimatic factors on TOC stocks and their temporal dynamics, and (iv) identify data limitations and 

provide recommendations for future monitoring. 

TOC stocks are calculated from measured TOC content and bulk density. Nearly complete datasets on TOC content and 

bulk density were available for 58 cropland, grassland, orchard/vineyard, and forest sites for both monitoring periods. To 

ensure comparability, four harmonization steps were implemented: (1) TOC contents determined with different analytical 

methods were standardized using a generalized linear model; (2) missing bulk density values were estimated with a newly 

developed pedotransfer function; (3) the depth distributions of the soil parameters were standardized to 60 cm using mass-

preserving spline interpolation; and (4) a regression model was developed to correct method-specific differences in bulk 

density between the monitoring periods. Changes in the harmonized TOC stocks were analyzed in relation to land use 

and site conditions using linear models. Finally, the minimal detectable difference, pedoclimatic effects, and uncertainties 

from the harmonization steps were quantified. 

Average TOC stocks across the first and seventh monitoring period were 62 and 55 t TOC ha⁻¹, respectively, in the topsoil 

(0–20 cm), and 57 and 50 t TOC ha⁻¹, respectively, in the subsoil (20–60 cm). Topsoil TOC stocks in croplands declined 

significantly over time, whereas changes in subsoil and in other land uses were not statistically significant. Depending on 

land use and soil depth, changes would have needed to be up to 18 times larger to be statistically significant. The topsoil 

in grassland had 1.5 times higher TOC stocks than cropland—likely due to lower soil disturbance and greater root 

biomass—while forests and orchards/vineyards showed intermediate values. No significant differences in subsoil TOC 

stocks were found between land uses. 

Topsoil TOC stocks in cropland, grassland, and forest sites were positively correlated with clay content, pointing at greater 

stabilization of organic matter in fine-textured soils. In the subsoil, TOC stocks correlated positively with soil pH, elevation, 

or slope, depending on land use. Changes in TOC stocks between monitoring periods were primarily negatively correlated 

with initial TOC stocks, suggesting gains in soils with initially low carbon and losses in soils with initially high carbon. 

Uncertainties in data harmonization were 7–9% for gap-filling and method conversions, but only ~1% for depth 

interpolation. 

For future monitoring of TOC stocks, differences in subsoil depth intervals are considered uncritical when spline-based 

interpolation is applied. However, consistent analytical methods for TOC content and bulk density, as well as quantification 

of small-scale variability and stone content, are essential for robust, profile-wide estimates of TOC stocks. To better 

evaluate management effects on cropland TOC and support sustainable soil management in Switzerland, future 

monitoring should systematically include management data alongside pedoclimatic factors. 

 

Zusammenfassung 

Der Gesamtvorrat an organischem Kohlenstoff (total organic carbon − TOC) im Boden ist von zentraler Bedeutung für die 

landwirtschaftliche Produktivität, die Klimaregulation und die ökologischen Funktionen des Bodens. Er wird massgeblich 

durch Umweltbedingungen sowie durch landwirtschaftliche Bewirtschaftungspraktiken beeinflusst. Änderungen im TOC-

Vorrat lassen sich häufig erst im Verlauf von Jahrzehnten quantifizieren. Langfristige Messprogramme wie die Nationale 

Bodenbeobachtung (NABO) ermöglichen es, solche Veränderungen zuverlässig zu erfassen. Während im Oberboden (0-

20 cm) an über 100 NABO-Standorten in den letzten 30 Jahren keine Veränderungen festgestellt wurden, fehlen bisher 
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Daten zur langfristigen Entwicklung des TOC-Vorrats im Unterboden. Grund dafür sind die spätere Einführung einer 

systematischen Tiefenbeprobung und Unterschiede in der Probenahme, Tiefeneinteilung, TOC-Analytik und Bestimmung 

der Lagerungsdichte im Vergleich zur ersten Erhebungsperiode der NABO (1985–1989). Ziel dieser Studie ist es daher, 

(i) die Daten der ersten (1985–1989) und siebten (2015–2019) Erhebung zur Berechnung des profilumfassenden TOC-

Vorrats zu harmonisieren, (ii) Veränderungen des TOC-Vorrats in Abhängigkeit von der Landnutzung zu quantifizieren, 

(iii) den Einfluss pedoklimatischer Bedingungen auf den TOC-Vorrat und dessen Entwicklung zu analysieren sowie (iv) 

bestehende Limitationen der Datengrundlage zu identifizieren und Empfehlungen für künftige Erhebungen abzuleiten. 

Der TOC-Vorrat berechnet sich aus dem gemessenen TOC-Gehalt und der Lagerungsdichte des Bodens. Für 58 

Standorte der Landnutzungen Ackerbau, Grasland, Obst-/Rebbau und Wald lagen annähernd vollständige Daten zum 

gemessenen TOC-Gehalt und zur Lagerungsdichte für beide Erhebungen vor. Zur Vergleichbarkeit der TOC-Vorräte 

wurden vier Harmonisierungsschritte durchgeführt: (1) Die TOC-Gehalte unterschiedlicher Messmethoden wurden mithilfe 

eines generalisierten linearen Modells vereinheitlicht, (2) fehlende Lagerungsdichten durch eine neu entwickelte 

Pedotransferfunktion geschätzt, (3) die Tiefenverteilung der Bodenparameter mittels massenerhaltender Spline-

Interpolation bis 60 cm standardisiert und (4) ein Regressionsmodell zur Korrektur methodenbedingter Unterschiede in 

der Lagerungsdichte entwickelt. Die harmonisierten TOC-Vorräte sowie deren Änderungen wurden in Abhängigkeit von 

Landnutzung und Standortbedingungen mithilfe linearer Modelle ausgewertet. Zudem wurden die minimale nachweisbare 

Differenz des TOC-Vorrats, pedoklimatische Einflüsse und Unsicherheiten der einzelnen Harmonisierungsschritte 

quantifiziert. 

Der TOC-Vorrat betrug in der ersten und siebten Erhebung durchschnittlich 62 respektive 55 t TOC ha⁻¹ im Oberboden 

(0–20 cm) und 57 respektive 50 t TOC ha⁻¹ im Unterboden (20–60 cm). Im Oberboden von Ackerbaustandorten zeigte 

der TOC-Vorrat eine signifikante Abnahme über die Zeit; im Unterboden und innerhalb der anderen Landnutzungen war 

der Unterschied zwischen den Erhebungen statistisch nicht signifikant. Hier wären je nach Landnutzung und Bodentiefe 

1.0–17.6 mal grössere Abweichungen erforderlich gewesen, um signifikante Veränderungen nachweisen zu können. 

Grasland wies im Oberboden einen 1.5-fach höheren TOC-Vorrat auf als Ackerland – vermutlich bedingt durch geringere 

Störungen des Bodens und höhere Wurzelbiomasse – während Wald-, Obst- und Rebbaustandorte dazwischen lagen. 

Im Unterboden wurden keine signifikanten Unterschiede im TOC-Vorrat zwischen den Landnutzungen festgestellt. 

Auf Acker-, Grasland- und Waldstandorten zeigte der TOC-Vorrat im Oberboden einen positiven Zusammenhang mit dem 

Tongehalt, was auf eine höhere Stabilisierung organischen Materials in feinkörnigen Böden hinweist. Je nach 

Landnutzung korrelierte der TOC-Vorrat im Unterboden positiv mit dem pH-Wert, der Höhenlage oder der Hangneigung. 

Die Änderung des TOC-Vorrats zwischen erster und siebter Erhebung stand primär in negativem Zusammenhang mit 

dem initialen TOC-Vorrat, was auf eine Zunahme bei zunächst niedrigen, und eine Abnahme bei zunächst hohem TOC-

Vorrat schliessen lässt. Die Unsicherheiten in der Datenharmonisierung lagen bei jeweils 7–9% für die Schätzung 

fehlender Werte und Umrechnungen von Werten zwischen verschiedenen Bestimmungsmethoden sowie bei nur etwa 

1% für die Tiefeninterpolation. 

Für das zukünftige Monitoring des TOC-Vorrats gelten Unterschiede in der Tiefeneinteilung von Unterbodenproben als 

unkritisch – vorausgesetzt, es kommen Spline-basierte Interpolationsverfahren zum Einsatz. Eine konsistente oder 

harmonisierte Methodik der Kohlenstoffanalytik und Bodendichtebestimmung sowie die Quantifizierung der kleinräumigen 

Variabilität und des tatsächlichen Skelettgehalts sind jedoch unerlässlich für belastbare, profilumfassende TOC-

Berechnungen. Um den Einfluss von Bewirtschaftungsmassnahmen auf den TOC-Vorrat in Ackerböden und für ein 

nachhaltiges Bodenmanagement in der Schweiz fundiert bewerten zu können, sollten künftig neben pedoklimatischen 

Bedingungen auch Informationen zur Bodenbewirtschaftung systematisch in die Datenauswertung einbezogen werden. 

Diese Publikation ist auch integral auf Deutsch erschienen: https://doi.org/10.34776/as216g  

 

Résumé 

Les réserves de carbone organique total (COT) dans le sol jouent un rôle central pour la productivité agricole, la régulation 

du climat et les fonctions écologiques du sol. Elles sont fortement influencées par les conditions environnementales ainsi 

que par les pratiques d’exploitation agricole. Les changements dans les réserves de COT ne peuvent souvent être 

quantifiés qu'au bout de plusieurs décennies. Des programmes de mesures à long terme, tels que l’Observatoire national 

https://doi.org/10.34776/as216g
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des sols (NABO), permettent de détecter de manière fiable de tels changements. Alors qu’aucune évolution n’a été 

constatée dans la couche supérieure (0–20 cm) sur plus de 100 sites NABO au cours des 30 dernières années, il n’existe 

jusqu’à présent aucune donnée sur l’évolution à long terme des réserves de COT dans la couche sous-jacente. Cette 

lacune s’explique par l’introduction plus tardive d’un échantillonnage systématique en profondeur ainsi que par des 

différences dans la méthode d’échantillonnage, la répartition en profondeur, les méthodes analytiques du COT et la 

détermination de la densité apparente par rapport à la première période de mesure du NABO (1985-1989). L’objectif de 

cette étude est donc d’harmoniser d’un point de vue méthodologique les données de la première (1985–1989) et de la 

septième (2015–2019) période de relevés afin de calculer les réserves de COT en fonction du profil, (ii) de quantifier 

l’évolution de ces réserves en fonction de l’utilisation du sol, (iii) d’analyser l’influence des conditions pédoclimatiques sur 

les réserves de COT et son évolution et enfin (iv) d’identifier les limites existantes de la base de données et de formuler 

des recommandations pour les relevés futurs. 

Les réserves de COT sont calculées à partir de la teneur mesurée en COT et de la densité apparente du sol. Pour 58 

sites correspondant à l’utilisation grandes cultures, surfaces herbagères, arboriculture, viticulture et forêts, des données 

presque complètes sur la teneur en COT et la densité apparente étaient disponibles pour les deux périodes de relevés. 

Quatre étapes d’harmonisation ont été réalisées afin de comparer les réserves de COT: (1) les teneurs en COT obtenues 

par différentes méthodes de mesure ont été unifiées à l’aide d’un modèle linéaire généralisé, (2) les densités apparentes 

manquantes ont été estimées à l’aide d’une nouvelle fonction de pédotransfert, (3) la répartition en profondeur des 

paramètres du sol a été standardisée jusqu’à 60 cm à l’aide d’une interpolation par  splines conservant la masse  et (4) un 

modèle de régression a été développé pour corriger les différences dues à la méthode dans la densité apparente. Les 

réserves de COT harmonisées ainsi que leur évolution ont été analysés à l’aide de modèles linéaires en fonction de 

l’utilisation du sol et des conditions du site. Par ailleurs, la différence minimale détectable dans les réserves de COT, les 

influences pédoclimatiques et les incertitudes associées à chaque étape de l’harmonisation ont été quantifiées. 

Les réserves de COT étaient en moyenne de respectivement 62 et 55 t de COT ha⁻¹ dans la couche supérieure (0–20 

cm) pour la première et la septième période de relevés et de respectivement 57 et 50 t de COT ha⁻¹ dans la couche sous-

jacente (20–60 cm). Dans la couche supérieure des sites grandes cultures, les réserves de COT ont significativement 

diminué au fil du temps; dans la couche sous-jacente et pour les autres types d’utilisation des terres, les différences entre 

les périodes de relevés n’étaient pas significatives du point de vue statistique. Selon l’utilisation du sol et la profondeur, 

des écarts 1,0 à 17,6 fois plus importants auraient été nécessaires pour détecter des changements significatifs. Dans la 

couche supérieure des surfaces herbagères, des réserves de COT 1,5 fois plus élevées que pour les grandes cultures – 

probablement en raison d’une moindre perturbation du sol et d’une biomasse racinaire plus importante – ont été relevées, 

tandis que les sites forestiers, arboricoles et viticoles affichaient des valeurs intermédiaires. Aucun écart significatif n’a été 

observé dans la couche sous-jacente entre les différentes utilisations du sol. 

Dans les grandes cultures, les surfaces herbagères et les sites forestiers, une corrélation positive a été observée entre la 

teneur en argile et les réserves de COT dans la couche supérieure, ce qui indique une meilleure stabilisation de la matière 

organique dans les sols à texture fine. Selon l’utilisation du sol, les réserves de COT dans la couche sous-jacente 

présentaient une corrélation positive avec le pH, l’altitude ou la déclivité. L’évolution des réserves de COT entre la première 

et la septième période de relevés était principalement corrélée négativement avec les réserves initiales de COT, ce qui 

suggère une augmentation là où les valeurs initiales étaient faibles et une diminution là où elles étaient élevées. Les 

incertitudes liées à l’harmonisation des données étaient de 7 à 9 % pour l’estimation des valeurs manquantes ainsi que la 

conversion des valeurs entre différentes méthodes de mesure et environ de seulement 1 % pour l’interpolation en 

profondeur.  

Pour le suivi futur des réserves de COT, les différences dans la répartition en profondeur des échantillons de la couche 

sous-jacente ne sont pas critiques, à condition d’utiliser des méthodes d’interpolation basées sur les splines. Toutefois, 

une méthodologie cohérente ou harmonisée pour l’analyse du carbone et la détermination de la densité du sol ainsi que 

la quantification de la variabilité spatiale à petite échelle et de la pierrosité réelle sont essentielles pour des calculs fiables 

des réserves de COT à l’échelle du profil. Afin d’évaluer de manière fondée l’influence des pratiques d’exploitation agricole 

sur les réserves de COT sur les sols des grandes cultures et de promouvoir une gestion durable des sols en Suisse, les 

données relatives à l’exploitation des terres devraient également être intégrées systématiquement dans l’analyse des 

données, en complément des conditions pédoclimatiques. 
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Riassunto 

Le riserve di carbonio organico totale (TOC) nel suolo sono di fondamentale importanza per la produttività agricola, la 

regolazione del clima e le funzioni ecologiche del suolo stesso. Esse sono fortemente influenzate dalle condizioni 

ambientali e dalle pratiche di gestione agricole. I cambiamenti nelle riserve di TOC possono spesso essere quantificati 

solo nel corso di decenni. Programmi di monitoraggio a lungo termine, come l’Osservatorio nazionale dei suoli (NABO), 

consentono di rilevare in modo affidabile tali cambiamenti. Nello strato superficiale (0–20 cm) non sono stati osservati 

cambiamenti in oltre 100 siti NABO negli ultimi 30 anni; tuttavia, mancano ancora dati sull’evoluzione sul lungo periodo 

delle riserve di TOC negli strati inferiori. Ciò è dovuto alla successiva introduzione di un campionamento sistematico in 

profondità e a differenze nei metodi per il prelievo dei campioni, nella suddivisione in profondità, nelle analisi del TOC e 

nella determinazione della densità apparente rispetto al primo periodo di rilevamento NABO. Lo scopo di questo studio è 

quindi quello di (i) armonizzare i dati del primo (1985–1989) e del settimo (2015–2019) rilevamento al fine di calcolare la 

riserva di TOC in funzione del profilo, (ii) quantificare i cambiamenti della riserva in funzione dell’uso del suolo, (iii) 

analizzare l’impatto delle condizioni pedoclimatiche sulle riserve di TOC e sul loro sviluppo, nonché (iv) identificare le 

limitazioni esistenti della base di dati e formulare raccomandazioni per i rilevamenti futuri. 

Le riserve di TOC si calcolano in base al tenore di TOC rilevato e alla densità apparente del suolo. Per 58 siti, il cui suolo 

è destinato a campicoltura, superfici inerbite, frutticoltura, viticoltura e foreste, erano disponibili dati quasi completi sul 

tenore di TOC rilevato e sulla densità apparente per entrambi i rilevamenti. Per rendere confrontabili le riserve di TOC, 

sono state effettuate quattro fasi di armonizzazione: (1) i tenori di TOC ottenuti attraverso diversi metodi di misurazione 

sono stati uniformati tramite un modello lineare generalizzato; (2) le densità apparenti mancanti sono state stimate tramite 

una nuova funzione di pedotrasferimento; (3) la distribuzione in profondità dei parametri del suolo è stata standardizzata 

fino a 60 cm mediante interpolazione spline a conservazione di massa ed (4) è stato sviluppato un modello di regressione 

per correggere le differenze nella determinazione della densità apparente scaturite dai metodi usati. Le riserve di TOC 

armonizzate, così come i loro cambiamenti, sono state analizzati mediante modelli lineari in funzione dell’uso del suolo e 

delle condizioni locali. Sono state inoltre quantificate la differenza minima rilevabile nella riserva di TOC, le influenze 

pedoclimatiche e le incertezze delle singole fasi di armonizzazione. 

Le riserve di TOC erano in media pari a 62 e 55 t TOC ha⁻¹ nello strato superficiale (0–20 cm) rispettivamente nel primo 

e nel settimo rilevamento, e a 57 e 50 t TOC ha⁻¹ nello strato profondo (20–60 cm). Nello strato superficiale dei siti a uso 

agricolo, si è osservata una diminuzione significativa della riserva di TOC nel tempo; nello strato profondo e nel caso di 

altri usi del suolo, le differenze tra i rilevamenti non risultavano statisticamente significative. A seconda dell’uso del suolo 

e della profondità, infatti, sarebbero state necessarie deviazioni da 1,0 a 17,6 volte maggiori per rilevare variazioni 

significative. Nello strato superficiale, le superfici inerbite presentavano una riserva di TOC 1,5 volte superiore rispetto ai 

terreni agricoli, probabilmente a causa del minore disturbo del suolo e della maggiore biomassa radicale, mentre i siti 

forestali, frutticoli e viticoli presentavano valori intermedi. Nello strato profondo non sono state riscontrate differenze 

significative nella riserva di TOC tra i diversi usi del suolo. 

Nei siti agricoli, prativi e forestali, la riserva di TOC nello strato superficiale mostrava una correlazione positiva con il 

contenuto di argilla, indicando una maggiore stabilizzazione della sostanza organica nei suoli a grana fine. A seconda 

dell’uso del suolo, la riserva di TOC nello strato profondo era positivamente correlata al valore pH, all’altitudine o alla 

pendenza. Il cambiamento nella riserva di TOC tra il primo e il secondo rilevamento era principalmente correlato 

negativamente con la riserva di TOC iniziale, il che indica un aumento nei siti con valori iniziali bassi e una diminuzione in 

quelli con valori iniziali elevati. Le incertezze legate all’armonizzazione dei dati erano del 7–9% per la stima dei valori 

mancanti e per la conversione dei valori tra metodi analitici differenti, e di circa l’1% per l’interpolazione della profondità. 

Per il futuro monitoraggio delle riserve di TOC, le differenze nella suddivisione per profondità dei campioni dello strato 

profondo non sono considerate critiche, a condizione che si utilizzino metodi di interpolazione basati su spline. Tuttavia, 

una metodologia coerente o armonizzata per l’analisi del carbonio e la determinazione della densità apparente, così come 

la quantificazione della variabilità spaziale su piccola scala e del reale contenuto scheletrico sono, a seconda del profilo, 

essenziali per calcoli affidabili della riserva di TOC. Per valutare in modo fondato l’influenza delle pratiche agricole sulla 

riserva di TOC nella campicoltura e promuovere una gestione sostenibile del suolo in Svizzera, in futuro dovrebbero essere 

sistematicamente integrate nell’analisi dei dati anche le informazioni sulla gestione del suolo, oltre alle condizioni 

pedoclimatiche. 
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1 Introduction and objectives 

The total organic carbon (TOC) stock in soils underpins their regulatory, habitat, and productive functions and 

represents a key component of the global carbon cycle. TOC stocks are therefore highly relevant both for agricultural 

production and for climate dynamics. Data on TOC stocks and their temporal development are used in scientific 

research, agricultural extension (Pfister et al., 2025), climate reporting (FOEN, 2025), and in the implementation of 

agricultural and environmental policy (Swiss Federal Council, 2025). 

Soil TOC dynamics are largely driven by inputs of organic material, microbial decomposition, and carbon losses 

through soil respiration as CO₂ (Jackson et al., 2017). All three processes are influenced in the short and long term 

by agricultural management—such as crop choice, fertilization, and tillage—as well as by environmental factors 

including soil texture, geology, climate, and weather (Funes et al., 2019; Vos et al., 2019; Wiesmeier et al., 2012). 

Because changes in TOC stocks typically occur over long timescales, they often only become detectable after several 

decades (Schrumpf et al., 2011). Long-term soil monitoring programs are therefore essential to identify long-term 

changes in TOC stocks, validate soil carbon models, and develop practice-oriented recommendations (Capriel, 2013; 

van Wesemael et al., 2011). Over the past decades, many long-term studies in European countries have reported 

declines in TOC stocks of agricultural soils (Arrouays et al., 2001; Goidts & van Wesemael, 2007; Heikkinen et al., 

2013; Kühnel et al., 2019; Lettens et al., 2005; Taghizadeh‐Toosi et al., 2014), although some studies have found 

increases (Dupla et al., 2021; Gubler et al., 2019; Wenzel et al., 2022) or no changes (Moll-Mielewczik et al., 2023). 

Most of the soil TOC is stored in the topsoil, since carbon is allocated not only via roots but also through aboveground 

plant residues and organic fertilizers. For this reason, most studies focus on topsoil (Capriel, 2013; Goidts, 

Wesemael, & Van Oost, 2009; Gubler et al., 2019). However, other research has shown that subsoil horizons also 

play an important role in TOC storage and should be included in long-term monitoring programs (Lorenz & Lal, 2005; 

Skadell et al., 2023). This is especially relevant because roots are the main source of carbon input to the subsoil, 

where carbon is characterized by longer residence times (Poeplau et al., 2021; Rumpel & Kögel-Knabner, 2011). 

Global estimates suggest TOC stocks of about 70 t TOC ha⁻¹ in topsoil and about 80 t TOC ha⁻¹ in subsoil. In Europe, 

values are slightly higher for topsoil (ca. 75–100 t TOC ha⁻¹) and similar for subsoil (ca. 60–100 t TOC ha⁻¹) (Panagos 

et al., 2022; Wang et al., 2024). Marked differences are observed between land uses: croplands generally contain 

lower TOC stocks (around 60 and 70 t TOC ha⁻¹ in topsoil and subsoil, respectively) compared with grasslands and 

forests (90–100 and 100–120 t TOC ha⁻¹, respectively) (Panagos et al., 2022). 

Within the Swiss National Soil Monitoring Network (NABO), TOC stocks in topsoil have been measured at more than 

one hundred sites across Switzerland for nearly 40 years. Previous studies have shown that topsoil TOC stocks have 

remained stable on average over time (Gross et al., 2024; Gubler et al., 2019; Moll-Mielewczik et al., 2023). In 

contrast, no comprehensive evaluation has yet been done for subsoils. Subsoil sampling and analysis were carried 

out systematically only during the initial site characterization in the first monitoring period (1985–1989) and again 

starting with the seventh monitoring period (2015–2019). Significant methodological differences between these two 

periods—such as depth intervals used for sampling, TOC analysis, and bulk density determination—complicate 

assessments of temporal changes in subsoil TOC stocks. As a result, there is not only a lack of information on 

changes in subsoil TOC stocks at NABO sites over the past decades, but also a gap in understanding the underlying 

drivers of subsoil carbon dynamics in Switzerland. 

The objectives of this study are therefore to: 

1. harmonize the depth intervals of soil samples as well as carbon and bulk density data between the first and 

seventh monitoring period, 

2. quantify changes in TOC stocks in topsoil and subsoil between the first and seventh NABO monitoring period 

with respect to land use, 

3. assess the influence of pedoclimatic conditions on TOC stocks in topsoil and subsoil and on their changes 

between the first and seventh monitoring period, and 

4. identify limitations of the current dataset and derive recommendations for robust assessments of TOC stocks 

in topsoil and subsoil. 
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2 Data collection 

2.1 NABO network and sites 

The NABO monitoring network currently comprises 114 sites distributed across Switzerland, where chemical and 

physical soil properties have been measured since 1985, and biological properties (microbiological and molecular-

genetic) for about ten years (Gross et al., 2024). Sampling follows a five-year cycle. Not all sites are sampled in the 

same year; instead, sampling of the entire network is spread across five years before a new monitoring period begins. 

Since the launch of the NABO program, eight monitoring periods have been completed. Starting with the seventh 

period (2015–2019), NABO sites have been divided into main and secondary sites, which differ in sampling intensity 

(Schwab & Gubler, 2015). At the 89 main sites, composite samples are taken from 0–20 cm depth, along with 

samples down to 75 cm. For the present analysis, only sites with subsoil sampling during both the first and the 

seventh monitoring periods were considered. 

During the first monitoring period (1985–1989), soil pits were excavated to the C horizon at all NABO sites (then 102 

sites; Desaules & Studer, 1993). The exact location of these pits is not precisely documented for every site. In many 

cases, pit profiles are sketched on the profile data sheets from the first monitoring period, with the distance to the 

NABO sampling plot noted. For some sites, the distance can only be estimated from schematic sketches. At 30% of 

the sites, the recorded distance between pit and plot was 2 m; at 41% of sites, it was up to 10 m (estimated); and at 

3% it exceeded 10 m. For 26% of sites, the distance is unknown because no pit was drawn on the profile sheets. 

Soil classification followed the methodology of the Soil Mapping Service of the Swiss Federal Research Station for 

Agronomy in Zürich-Reckenholz (internal FAP soil classification manual by Erwin Frei, unpublished). 

Land use categories in the NABO network include cropland, vegetable production, orchards, vineyards, permanent 

grassland, forest, urban parks, and protected sites. Protected sites are almost exclusively peat or fen locations and 

were excluded from this analysis. Some land use categories included very few sites and were therefore merged with 

related categories: urban parks with grassland, and vegetable production with cropland. Orchards and vineyards 

were also combined into one category, resulting in four land use categories used in the analysis: cropland, grassland, 

orchard/vineyard, and forest (Figure 1). 

 

Figure 1: Location and land use of the NABO sites included in this study for TOC stock analysis. 
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2.2 Soil sampling and sample preparation 

In the first monitoring period, at 52 of the initial 102 sites, soil samples were collected from three profile walls in fixed 

depth intervals of 20 cm, from the surface down to the C horizon. At the remaining 50 sites, samples were collected 

in a similar manner but by pedological horizon rather than fixed depth intervals. Horizons thicker than 40 cm were 

subdivided into two depth layers. Organic surface horizons were not sampled at the first 52 sites, but at the remaining 

50 sites they were collected and analyzed as separate horizons. To determine the bulk density of the fine earth 

fraction (BDFE), undisturbed core samples were taken with steel cylinders, three (1000 cm³) to five (100 cm³) 

replicates per horizon, from the middle of each horizon (Desaules & Studer, 1993). The stone content (in vol. %) 

recorded in the profile sheets was based on visual estimates at the soil pit. Samples for analysis of C were dried at 

40 °C, crushed, and sieved to 2 mm. Further details are provided in Desaules and Studer (1993). 

In the seventh monitoring period, sampling was carried out with a HUMAX impact probe (75 cm length, 5 cm inner 

diameter; GreenGround®) directly adjacent to the NABO sampling plot (10 × 10 m). At each site, four cores (up to 

14 m apart) were taken to a maximum depth of 75 cm and subdivided into pedological horizons. Horizon boundaries 

were determined while accounting for core compression. Sampling procedures and the calculation of compression 

for individual core segments are described in detail in Schwab and Gubler (2016). The samples from the four cores 

per site and monitoring period were pooled by horizon, and mean horizon depths were calculated. Horizon depths 

were also averaged across the four cores for the calculation of BDFE. Soil samples were dried at 40 °C for 48 hours 

and sieved to 2 mm. The stone content in the horizon samples was determined by the mass of the sieved residue. 

 

2.3 Carbon analysis 

In the first monitoring period, total carbon content was measured using a Carmhograph (FAC, 1989). The method is 

based on dry combustion at 1000 °C in an oxygen stream. After the generated CO₂ was absorbed in NaOH, the 

resulting change in conductivity was determined conductometrically. Combustion at 1000 °C also includes inorganic 

carbon, which was measured separately on subsamples after treatment with 5% hydrochloric acid (FAC, 1989). The 

amount of organic carbon, referred to as “orgC” in Desaules and Studer (1993), was calculated as the difference 

between total and inorganic carbon. As part of data harmonization, samples from soil pits of about 30 sites from the 

first monitoring period were remeasured by elemental analysis. 

In the seventh monitoring period, total carbon content of each pedological horizon was determined by elemental 

analysis, based on thermal oxidation at 1100 °C (ISO 10694, 1995) using a C/N analyzer (Trumac, Leco). Inorganic 

carbon was determined by digestion with hydrochloric acid and subsequent volumetric measurement of the released 

CO₂ following the Scheibler method (Agroscope, 2020). The amount of organic carbon, referred to as “TOC”, was 

calculated as the difference between total and inorganic carbon. 

 

2.4 Determination of soil bulk density 

In the first monitoring period, the undisturbed core samples taken from the soil pits were dried at 105 °C to constant 

weight and weighed after subtracting the weight of the cylinder (Desaules & Studer, 1993). The cylinder contents 

were then washed through a 2 mm sieve, and the dried residue retained on the sieve, corresponding to the stone 

fraction, was weighed. To determine the volume of stones, their mass was divided by an assumed average particle 

density of 2.65 g cm⁻³. The oven-dry bulk density of the fine earth was then calculated according to the following 

equation (Desaules & Studer, 1993): 

 

Bulk density of the fine earth [g cm−3] =
"Fine earth weight" [g]

Volume of the cylinder [cm3] − Volume of stones [cm3]
 (1) 
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The resulting density values do not correspond to the bulk density of the fine earth as defined in the current NABO 

methodology (BDFE [g cm⁻³] = massFE / volumesample), but rather to the packing density of the fine earth (PDFE [g 

cm⁻³]), defined as the mass per volume of the fine earth fraction of the sample (PDFE = massFE / volumeFE) (Schwab 

& Gubler, 2016). For the first monitoring period, continuous PDFE values are not available for all soil depths; in 

particular, the subsoil dataset is incomplete, with 62 missing values out of a total of 127. The raw data originally used 

for bulk density calculations are no longer available. 

In the seventh monitoring period, sample volume was calculated from the internal diameter and sampling depth, and 

together with the mass of the fine earth (masssample – massstones) was used to determine BDFE (Schwab & Gubler, 

2016). With few exceptions, bulk density data are available continuously down to 75 cm depth. 

 

2.5 Methodological differences between first and seventh monitoring period 

Methodological differences in all aspects of sampling and analysis existed between the first and seventh monitoring 

period (Table 1). 

Table 1: Comparison of methodological differences between the first and seventh monitoring period. 

 First monitoring period Seventh monitoring period 

Type of soil sampling Composite sample from 3 sides of a soil pit Composite sample from 4 soil cores (HUMAX 
impact probe) 

Distance between 
individual samples 

< 1 m up to 14 m 

Distance from the 
NABO plot 

2 m (30% of sites) 
≤ 10 m (41% of sites) 
> 10 m (3% of sites) 
unknown (26% of sites) 

≤ 1 m  

Sampling depth down to C horizon down to 75 cm depth (maximum) 

Depth intervals of the 
samples 

defined soil depths (50% of sites) 
by horizon (50% of sites) 

by horizon 

Carbon analysis dry combustion at 1000 °C (Carmhograph) thermal oxidation at 1100 °C (C/N elemental 
analysis, Trumac Leco) 

Determination of bulk 
density 

PDFE determined from cylinders (dried at 105 °C), 
assumed density of stones: 2.65 g cm-3 

BDFE determined from volumetric samples 
collected with the Humax impact probe (dried 
at 40 °C) 

Determination of stone 
content 

visual estimation at the soil pit, 
sieve residues 

sieve residues 

2.6 Additional data 

For the harmonization of bulk density measurements, additional data from the NABO soil physical monitoring program 

(NABOphys) were used (Supplementary Figure 1). Depth samples were collected with both the HUMAX impact probe 

and steel cylinders at 25 NABO sites (Schwab et al., 2022), 24 of which were also included in the TOC dataset. At 

each site, four 75 cm long cores were taken with the impact probe and subdivided into 5 cm segments, accounting 

for potential compression during sampling. Additionally, at each site, eight steel cylinder samples (5 cm each) were 

collected from three depths within a 60 cm deep borehole, representing topsoil, transition horizon, and subsoil. To 

determine BDFE, both the core segments and steel cylinder samples were dried at 105 °C to constant weight. An 

average density of 2.4 g cm⁻³ was assumed for the stone content of the impact probe samples. For the steel cylinder 
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samples, stones were washed out if visually estimated to exceed 10 vol. %, and the actual stone density was 

determined by water displacement. 

Other data used in this study included soil texture variables (clay, sand, and silt content), pH, and potential cation 

exchange capacity (CEC), as well as site characteristics including mean annual temperature, mean annual 

precipitation, elevation, and slope (Table 2; Figures 2 and 3; Supplementary Figure 2). For 46 sites, texture data from 

the first monitoring period were used because no texture data were available for the seventh period, and texture is 

assumed to remain stable over long timescales. For the remaining 12 sites, the texture data from the first monitoring 

period were considered erroneous, and texture data from the sixth monitoring period were used instead. pH values 

from the first and seventh monitoring periods were averaged. 

Table 2: Additional data including units, measurement methods, and references. 

Variable Unit Method Reference 

Clay, silt, sand % pipette method FAC 1989 

pH value - 0.01 M CaCl2 first monitoring period: FAC 1989 
seventh monitoring period: Agroscope 
2020 

potential CEC mmolc kg-1 percolation with BaCl₂ and atomic 
absorption spectroscopy 

FAC 1989 

Temperature °C average of annual means for 1985–2019 MeteoSwiss 

Precipitation mm average of annual sums for 1985–2019 MeteoSwiss 

Elevation m topographic maps SwissTopo 

Slope % Soil slope map  SwissTopo 

 

Changes in temperature and precipitation between the two monitoring periods were also calculated. For this purpose, 

a linear regression was performed with temperature or precipitation per year as the dependent variable and year as 

the explanatory variable: 

ΔTemperature a−1 = Coefficient of lm(Mean annual temperature ~ Year) (2) 

ΔPrecipitation a−1 = Coefficient of lm(Mean annual precipitation ~ Year) (3) 

 

 
Figure 2: Mean annual precipitation (top) and mean annual temperature (bottom) at sites with different land uses between 1990 
and 2016. The black line shows the annual mean across all sites per land use, the blue line indicates the linear trend, and the 
gray shaded area represents the 95% confidence interval of the linear trend. 
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Figure 3: Frequency distributions of the pedoclimatic variables, colored by land use. (a) Pedogenic variables for 0–20 cm soil 
depth, (b) pedogenic variables for 20–60 cm soil depth, and (c) climatic and topographic variables, independent of soil depth. 
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3 Data harmonisation 

3.1 Criteria for data selection 

The number of data points included in the analysis was primarily determined by the overlap of sites that were sampled 

down to the subsoil in both monitoring periods. To make the soil samples, which had been collected and analyzed in 

different ways, comparable, several harmonization steps were necessary, which are described below. As a result of 

this data harmonization, the number of usable data points was substantially reduced (Figure 4). Of the originally 

sampled 102 sites (first monitoring period) and 90 sites (seventh monitoring period), 58 sites were ultimately included 

in the analysis, with only topsoil data available for four of them. The representativeness of sites per land use was 

also affected by data preparation: a small number of cropland and orchard/vineyard sites, but many forest sites in 

both monitoring periods, were removed. The representativeness of grassland sites varied across the monitoring 

periods; a larger proportion of sites was included in the first period compared to the seventh period (Supplementary 

Figure 3). 

 

 

 

Figure 4: Harmonization steps for the data from the first and seventh monitoring period in chronological order (top to bottom). The 
reduction in the number of usable sites and data points (DP) per monitoring period results from data preparation and depth 
interpolation of different pedological horizons. The gray block indicates the number of sites used for estimating total organic carbon 
(TOC) content and bulk density (BD), reduced by outliers and missing data for texture and potential cation exchange capacity 
(CEC). 
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3.2 Harmonization of carbon content from different measurement methods 

To enable comparison of carbon contents from both monitoring periods, data from the Carmhograph method 

(TOCcarm) were harmonized with the elemental analysis data (TOCEA) using a conversion factor. For this purpose, 

the ratio TOCEA / TOCcarm was calculated and visualized for 86 samples from 24 sites where both TOCEA and TOCcarm 

values were available (Figure 5a). The ratio ranged from 0.5 to 2.5, so outliers were removed based on interquartile 

ranges according to Zar (2013). Using the remaining 72 data points from 23 sites, three different predictive models 

were tested to derive TOCEA values from TOCcarm values using classification and regression training (67% training 

data, 33% test data; 10 repetitions of 5-fold cross-validation): 

 

Linear model without variable transformation: lm(TOCEA ~ TOCcarm) (4) 

Linear model with variable transformation: lm(log(TOCEA) ~ log(TOCcarm)) (5) 

Generalized linear model (GLM) with gamma-

distribution function and identity link: 

glm(TOCEA ~ TOCcarm) (6) 

 

The linear model without transformation (Equation 4) showed a non-normal distribution of residuals and was therefore 

not further evaluated. The two remaining models (Equations 5 and 6) were compared using a resampling procedure 

based on the coefficient of determination (R²) and the root mean square error of the regression (RMSE). The 

generalized linear model performed best, with R² = 0.99 and RMSE = 0.11% for the training data, and R² = 0.98 and 

RMSE = 0.12% for the test data (Figure 5b), and was selected for further use (Figure 6). For the first monitoring 

period, estimated TOCEA values were only applied to data entries for which measured TOCEA values were not 

available. 

 

  

Figure 5: (a) Frequency distribution of the TOCEA / TOCcarm ratio and (b) measured TOCEA values versus TOCEA values predicted 
by the model. The 1:1 line is shown in blue. 
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Figure 6: TOC content measured with the Carmhograph and predicted by the model along the soil profile for four selected sites 
with different land uses. 

 

3.3 Estimation of missing bulk density values 

Missing bulk density values from the first monitoring period were estimated using a pedotransfer function (PTF). This 

approach assumes that a given soil parameter depends on other soil parameters and can thus be derived from them 

(Van Looy et al., 2017). Using existing PTFs (De Vos et al., 2005; Foldal et al., 2020; Schwab & Gubler, 2016) in 

preliminary tests produced unrealistic and, in some cases, negative bulk density values, so a PTF based on the 

present dataset was developed. Complete bulk density and texture data were available for 142 data points from 58 

sites. 

For sites where the texture data from the first monitoring period were unreliable, the texture data from the sixth 

monitoring period were interpolated onto the pedological horizons of the first monitoring period using a spline function 

(see also the subsection on Depth Interpolation). Two different PTFs were tested using classification and regression 

training (67% training data, 33% test data; 10 repetitions of 5-fold cross-validation): 

 

Linear model with stepwise variable selection: lm(BD ~ Pedoclimatic variable) (7) 

Random forest model: RF(BD ~ Pedoclimatic variable) (8) 
 

For the linear model, a forward/backward stepwise selection of the explanatory variables depth, TOC, clay, silt, CEC, 

temperature, elevation, and slope was performed. For the random forest model, the explanatory variables depth, 

TOC, clay, silt, sand, CEC, pH, temperature, precipitation, elevation, and slope were used. The number of 

explanatory variables in each tree (mtry) served as a tuning parameter (final model: mtry = 2). Since the random 

forest model (training data: R² = 0.70; RMSE = 0.121 g cm⁻³, test data: R² = 0.63; RMSE = 0.146 g cm⁻³) provided a 

better fit than the linear model (training data: R² = 0.62; RMSE = 0.136 g cm⁻³, test data: R² = 0.55; RMSE = 0.151 

g cm⁻³) (Figures 7 and 8), it was used for the development of the PTF. For subsequent calculations, the PTF-

estimated values were only applied to entries for which bulk density values from the first monitoring period were 

missing. Existing measured bulk density values were retained. 
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Figure 7: Measured versus PTF-predicted bulk density (BD), (a) for the linear model and (b) for the random forest model. The 1:1 

line is shown in blue. 

 

 
Figure 8: Measured and PTF-predicted bulk densities (BD) along the soil profile for four selected sites with different land uses. 

 

3.4 Depth interpolation of the different pedological horizons 

Subsoil samples were collected partially in horizon intervals during the first monitoring period and completely in 

horizon intervals during the seventh monitoring period (see Section 2.2). To enable depth-specific comparison of 

TOC stocks between monitoring periods, a mass-preserving spline interpolation was applied. This method connects 

measurement points with piecewise polygons, allowing interpolation at locations between measured points (Bishop 

et al., 1999). A maximum depth of 60 cm was chosen for the spline function, and the depth intervals of the interpolated 

values were set depending on the parameter, either at 1 cm or aggregated to 0–20 and 20–60 cm (Table 3). The 

smoothing parameter of the interpolation curve, λ, determines how closely the curve follows the measured points: 

the smaller the λ, the more closely the curve follows the measurements. For all splines, λ = 0.1 was used according 
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to Bishop et al. (1999), which provided the most accurate representation of the actual depth distribution of the soil 

parameters (Figure 9). 

 

Table 3: Soil parameters for which a spline method was applied for depth interpolation, and the corresponding 

interpolation intervals. 

Soil parameter Interpolation interval 

TOC content (first and seventh monitoring period) 1 cm 

Bulk density (first and seventh monitoring period) 1 cm 

Bulk density (additional data set, see section 3.5.) 1 cm 

Stone content (seventh monitoring period) 1 cm 

Clay, silt, and sand content (first and seventh monitoring 
period) 

by horizon (PTF), 
0–20 cm, 20–60 cm (pedoclimatic analysis) 

pH value (first and seventh monitoring period) 0–20 cm, 20–60 cm 

 

 
Figure 9: Measured (points) and mass-preserving spline-interpolated (lines) TOC content from the first and seventh monitoring 
periods for four selected sites with different land uses. 

 

3.5 Harmonization of bulk density from different methods 

Bulk density was measured with cylinders in the first monitoring period, whereas in the seventh monitoring period it 

was determined using impact probes (see Section 2.4). Significant differences in bulk density between the monitoring 

periods across all land uses (mean difference: 0.25 g cm⁻³) indicate that methodological differences in bulk density 

determination would lead to an inaccurate comparison of TOC stocks between periods. To relate bulk densities 

determined by the different methods, a predictive function was estimated. For this purpose, the NABOphys dataset 

(see Section 2.6) was used, in which bulk density was measured using both methods at various soil depths for 24 

cropland and grassland sites (Figure 10). Since these were unpaired samples, all bulk densities for the same method, 

depth, and site were first averaged, resulting in 71 data points from 24 sites. A predictive model was then developed 

to derive bulk density from soil cores based on bulk density measured with the impact probe, using classification and 

regression training (67% training data, 33% test data; 10 repetitions of 5-fold cross-validation): 
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lm(BDcylinder ~ BDimpact probe) (9) 

 

The final predictive model (Equation 9) had an R² of 0.70 and an RMSE of 0.09 g cm⁻³ for the training data, and an 

R² of 0.58 and an RMSE of 0.12 g cm⁻³ for the test data (Figures 10 and 11). 

Bulk densities from the seventh monitoring period (impact probe) were interpolated at 1 cm intervals using mass-

preserving splines. Using the interpolated TOC contents in the predictive model (Equation 9), the adjusted bulk 

densities (soil cores) were estimated (Figure 10). Finally, the estimated bulk densities (soil cores) were corrected by 

a factor of 0.937 to account for the use of different stone densities in the first and seventh monitoring periods. 

 

 
Figure 10: Measured versus predicted bulk density from soil cores based on the NABOphys data. The 1:1 line is shown in blue. 

 

 
Figure 11: Depth-interpolated bulk density from the first monitoring period measured with soil cores and from the seventh 
monitoring period measured with the impact probe, as well as bulk density calculated using Equation 9, for four selected sites with 
different land uses. All bulk densities were interpolated at 1 cm intervals using a spline method. 
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4 Data analysis 

4.1 Calculation of TOC stocks 

For the calculation of TOC stocks, the TOC content from the first and seventh monitoring periods, the bulk density 

from the first period, the adjusted bulk density from the seventh period, and the stone content from the seventh period 

were interpolated at 1 cm intervals using a spline function. By including the stone content, the calculation of TOC 

stocks involved the fine earth bulk density (BDFE) instead of the packing density (PDFE). The TOC stock was then 

calculated for each 1 cm interval as follows: 

 

TOC stock (1 cm) [t TOC ha−1] = TOC content [%] ∗ BD [g cm−3] ∗ (1 −
Stone content [%]

100
) ∗ 1 cm (10) 

 

For the topsoil and subsoil, the total TOC stock was calculated as the sum of the TOC stock in each 1 cm interval: 

TOC stock topsoil [t TOC ha−1] = ∑ TOC stock (1 cm)i [t TOC ha−1]

20

i=1

 (11) 

TOC stock subsoil [t TOC ha−1] = ∑ TOC stock (1 cm)i [t TOC ha−1]

60

i=21

 (12) 

 

Changes in TOC stocks between the first (TOC stock1) and seventh (TOC stock7) monitoring periods, as well as the 

annual changes, were calculated for the topsoil and subsoil as follows: 

 

ΔTOC stock [t TOC ha−1] =  TOC stock7 [t TOC ha−1] − TOC stock1 [t TOC ha−1]  (13) 

 

ΔTOC stockannual [t TOC ha−1 a−1] =
ΔTOC stock [t TOC ha−1]

Number of years [a]
 

(14) 

 

For two cropland sites, one grassland site, and one forest site, only the TOC stock in the topsoil could be calculated 

due to missing subsoil data. 

 

4.2 Statistical analysis 

The analysis of carbon stocks was conducted separately for the topsoil and subsoil. To meet the assumption of 

normally distributed model residuals, the dependent variable TOC stock was transformed using a Box-Cox function. 

This method estimates an exponent that results in the residuals best approximating a normal distribution (topsoil: 

log(TOC stock); subsoil: 
TOC−stock−0.4−1

−0.4
). 

 

Differences in TOC stocks between monitoring periods and land uses 

To test for differences in TOC stocks between monitoring periods, a paired t-test was conducted for each land use 

and soil depth: 
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t‐ test(TOC stock1~ TOC stock7) (15) 

 

For the land uses orchard/vineyard and forest, a Wilcoxon test was additionally performed due to the small number 

of data points and the non-normal distribution. The results of both tests differed only slightly, so the t-test was used 

for further analysis. 

To test for differences in TOC stocks between land uses (depending on the monitoring period), a linear mixed-effects 

model was fitted with Box-Cox transformed TOC stock as the dependent variable, land use in interaction with 

monitoring period as a categorical fixed effect, and site as a random effect, using restricted maximum likelihood 

(REML) for variance component estimation: 

 

lmer(BC(TOC stock) ~ Land use ∗ Monitoring period + (1|Site)) (16) 

 

Minimal detectable difference 

To quantify the change in TOC stocks required to reach statistical significance, the minimal detectable difference 

(MDD) was calculated for each land use and soil depth (Saby et al., 2008): 

 

MDDTOC stock  = √(tα(2),ν)
2

∗
sd

2

n
 

(17) 

 

Here, tα is the t-statistic for a two-sided t-test with 𝑣 = 𝑛 − 1 degrees of freedom at a significance level of 𝛼, and 𝑠𝑑 

is the standard deviation of ΔTOC stock across all 𝑛 sites. 

 

Influence of covariates on TOC stocks and their changes 

The effects of the pedoclimatic variables (Table 2; excluding CEC) on TOC stocks (Box-Cox transformed; Table 4) 

were then tested using a linear mixed-effects model, with the pedoclimatic variable as a fixed effect and site as a 

random effect, for each land use and soil depth: 

 

lmer(BC(TOC stock) ~ Pedoclimatic variable + (1|Site)) (18) 

 

For the models of grassland sites with slope as a covariate, the slope was additionally Yeo-Johnson (YJ) power-

transformed, which does not require the underlying data to be strictly positive (Yeo, 2000): 
(Slope+1)0.07−1

0.07
. The effects 

of the initial TOC stock, pedoclimatic variables (Table 2; excluding CEC), and changes in climatic variables on 

changes in TOC stocks were tested using a simple linear model. The models were initially fitted separately for each 

land use; however, due to the lower statistical performance of the individual models, a single model across all land 

uses was ultimately fitted: 

lm(YJ(∆ TOC stockannual) ~ Initial TOC stock) or (19) 

lm(YJ(∆ TOC stockannual) ~ Pedoclimatic variable) or  

lm(YJ(∆ TOC stockannual) ~ Δ Climate variable )  
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The annual change in TOC stocks was transformed using Yeo-Johnson functions for the 0–20 cm and 20–60 cm soil 

depths to ensure normality of the residuals. For the 0–20 cm soil depth, the transformation 
(ΔTOC stockannual+1)2−1

2
 for 

values greater than or equal to 0, and −log (−ΔTOC stockannual + 1) for values less than 0 was used. For the 20–60 

cm soil depth, the distribution of the annual change in TOC stocks still did not approximate a normal distribution after 

the Yeo-Johnson transformation. Two data points outside the interquartile range were identified as outliers and 

removed. The remaining data were then Yeo-Johnson transformed again, using 
(ΔTOC stockannual+1)0.07−1

0.07
 for values 

greater than or equal to 0, and 
−(−ΔTOC stockannual+1)2−0.56−1

2−0.56
 for values less than 0. 

 

Table 4: Box-Cox transformations of the dependent variable TOC stock for Equation 18. 

Land use, soil depth Box-Cox transformation 

Cropland, 0–20 cm 
TOC stock0.3 − 1

0.3
 

Cropland, 20–60 cm log (TOC stock) 

Grassland, 0–20 cm 
TOC stock0.8 − 1

0.8
 

Grassland, 20–60 cm 
TOC stock−0.6 − 1

−0.6
 

Forest, 0–20 cm 
TOC stock1.4 − 1

1.4
 

Forest, 20–60 cm 
TOC stock0.3 − 1

0.3
 

Orchard/vineyard, 0–20 cm 
TOC stock−0.9 − 1

−0.9
 

Orchard/vineyard, 20–60 cm log (TOC stock) 

 

Significance tests and relative importance of explanatory variables 

Differences in TOC stocks between monitoring periods (Equation 15) were tested using paired t-tests. Differences in 

TOC stocks between land uses (Equation 16) were tested using Type III analysis of variance (ANOVA) with the 

Satterthwaite method and multiple pairwise comparisons of the estimated marginal means (EMMs) with Tukey-

adjusted p-values. Significant differences between groups are indicated by different letters. Statistical significance 

was considered at p < 0.05 for all tests. 

To identify the main factors influencing TOC stocks and their annual changes, the relative importance of explanatory 

variables was calculated using variance decomposition for mixed (Equation 18) and simple linear models (Equation 

19) (Grömping, 2007; Lai et al., 2022). The dependent variable was again Box-Cox or Yeo-Johnson transformed, 

with two outliers removed for the annual change in TOC stocks at 20–60 cm soil depth. Silt content was excluded as 

an explanatory variable due to linear dependence on clay and sand content. 

 

4.3 Quantification of uncertainties 

Uncertainties in TOC stocks can arise from sampling, laboratory analysis, and data processing. Due to data gaps 

and the various harmonization steps, the following focuses only on the uncertainty associated with data processing: 

conversion of TOC contents between different analytical methods (TOCcarm to TOCEA: Equation 6), estimation of 

missing bulk densities using a PTF (Equation 8), conversion of bulk density between different sampling methods 
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(Equation 9), and depth interpolation of TOC stocks using mass-preserving splines. As an absolute measure of 

uncertainty, the deviation between predicted and observed values for each data processing step was calculated for 

each data point in the test dataset (Taylor, 1997): 

 

Uncertaintyabsolute = √(Valuepredicted − Valueabserved)
2
 

(20) 

 

The uncertainty from converting bulk density refers to the prediction uncertainty of the model (Equation 9) and not to 

the uncertainty between the estimated and measured bulk density, since no bulk density measurements with 

cylinders were conducted in the seventh monitoring period. 

To allow comparability of uncertainties across the harmonization steps, the absolute uncertainty was normalized by 

the observed value: 

 

Uncertaintyrelative =
Uncertaintyabsolute

Valueobserved

∗ 100% (21) 

 

Larger deviations are better accounted for at higher predicted values. Finally, the mean absolute and relative 

uncertainty was calculated across all data points in the test dataset. 

For depth interpolation using spline functions, two types of uncertainty can be distinguished. On the one hand, the 

continuous value of a soil parameter is unknown and is estimated by the spline value (points and line, Figure 12). On 

the other hand, discrete values from horizon or interval samples are smoothed by the spline function (rectangles and 

line, Figure 12). Since the true continuous value of the soil parameter is unknown and this uncertainty cannot be 

estimated, only the second type of uncertainty was calculated. 

 

 

Figure 12: Example illustration of the two types of 
uncertainty arising from the use of a spline function. 
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To evaluate how well the spline-based TOC stock agrees with the TOC stock determined from horizon samples, the 

TOC stock was calculated separately for both monitoring periods, once as the sum of TOC stocks per horizon and 

once using the spline function. Absolute and relative uncertainty was then calculated per site according to Equations 

20 and 21 for the summed TOC stock. Finally, the mean absolute and relative uncertainty across all sites was 

calculated. As several components of the total uncertainty from the different harmonization steps could not be 

quantified, uncertainty propagation was not performed. 

4.4 Software 

All data analyses were performed using R software, version 4.4.2 (R Core Team, 2024). Statistical analyses were 

carried out using the packages caret (Kuhn, 2008), car (Fox & Weisberg, 2019), emmeans (Lenth et al., 2023), 

multcomp (Hothorn et al., 2008), lme4 (Bates et al., 2015), relaimpo (Grömping, 2007), and glmm.hp (Lai et al., 

2022), and spline functions were implemented with mpsline2 (Malone, 2023; O’Brien et al., 2022). Data visualizations 

were produced using ggplot2 (Wickham et al., 2016) and ggcorrplot (Kassambara, 2023). 
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5 TOC stock in the first and seventh monitoring period 

and its change 

5.1 TOC stock in topsoil and subsoil 

In the first monitoring period, the cumulative TOC stock over the soil depth of 0–60 cm averaged 113 t TOC ha⁻¹ 

across all land uses, with a coefficient of variation of 45%. At cropland sites, it was 103 t TOC ha⁻¹, at grassland sites 

125 t TOC ha⁻¹, at orchard/vineyard sites 167 t TOC ha⁻¹, and at forest sites 96 t TOC ha⁻¹. In the topsoil and subsoil, 

the mean TOC stock was 62 t TOC ha⁻¹ (minimum to maximum: 30 to 161 t TOC ha⁻¹) and 55 t TOC ha⁻¹ (22 to 210 

t TOC ha⁻¹), respectively, across all land uses; 54 and 53 t TOC ha⁻¹ at cropland sites, 76 and 52 t TOC ha⁻¹ at 

grassland sites, 72 and 95 t TOC ha⁻¹ at orchard/vineyard sites, and 56 and 45 t TOC ha⁻¹ at forest sites (Figure 13; 

Supplementary Figures 4–7). 

In the seventh monitoring period, the summed TOC stock over the soil depth of 0–60 cm averaged 104 t TOC ha⁻¹ 

across all land uses, with a coefficient of variation of 36%. At cropland sites, it was 91 t TOC ha⁻¹, at grassland sites 

125 t TOC ha⁻¹, at orchard/vineyard sites 122 t TOC ha⁻¹, and at forest sites 92 t TOC ha⁻¹. In the topsoil and subsoil, 

the mean TOC stock was 57 t TOC ha⁻¹ (18 to 105 t TOC ha⁻¹) and 50 t TOC ha⁻¹ (16 to 147 t TOC ha⁻¹), respectively, 

across all land uses; 46 and 49 t TOC ha⁻¹ at cropland sites, 76 and 53 t TOC ha⁻¹ at grassland sites, 58 and 64 t 

TOC ha⁻¹ at orchard/vineyard sites, and 55 and 41 t TOC ha⁻¹ at forest sites (Figure 13; Supplementary Figures 4–

7). 

The TOC stocks in this study are within a similar range as those reported in other studies. In soil monitoring programs 

in Central Europe, mean TOC stocks amount to about 100 t TOC ha⁻¹ (0–50 cm and 0–100 cm) in cropland soils 

(Flessa et al., 2019; Taghizadeh-Toosi et al., 2014), 200 t TOC ha⁻¹ (0–100 cm) in grassland soils (Jacobs et al., 

2018), and between 65 t ha⁻¹ (0–30 cm) and 117 t ha⁻¹ (0–90 cm) in forest soils (De Vos et al., 2015; Wellbrock et 

al., 2017). 

 

Figure 13: TOC stocks in the first and seventh monitoring period, separated by topsoil and subsoil and by land use. Grey dots 
represent individual values. Different capital and lowercase letters indicate significant differences in TOC stocks between land 
uses and monitoring periods, respectively. The number of observations (n) per soil depth and land use is shown below each pair 
of boxplots. 
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In the topsoil of cropland sites, the TOC stock was significantly higher in the first compared to the seventh monitoring 

period (P = 0.001), while in the subsoil and within the other land uses no statistically significant differences between 

monitoring periods were observed (Figure 13). Other studies report different developments depending on land use, 

soil type, and region. In Austria and Belgium, topsoil TOC stocks increase under grassland, while they partly decrease 

in cropland (Goidts & van Wesemael, 2007; Lettens et al., 2005; Wenzel et al., 2022). In Germany, TOC stocks tend 

to increase in topsoil and decrease in subsoil (Steinmann et al., 2016), underlining the importance of subsoils for 

determining carbon stocks. Studies with a larger number of sites often reveal significant changes (Goidts, van 

Wesemael, & Van Oost, 2009; Lettens et al., 2005; Wenzel et al., 2022). These allow for a more detailed 

differentiation not only by land use but also by soil type, making it possible to better capture long-term developments 

in TOC stocks. 

 

5.2 Change in TOC stocks and minimal detectable difference 

The change in TOC stocks between the first and seventh monitoring period across all land uses averaged -5.6 t C 

ha⁻¹ (-72 to +37 t C ha⁻¹) for the topsoil and -4.9 t C ha⁻¹ (-148 to +61 t C ha⁻¹) for the subsoil. This corresponds to 

an average annual change of -0.19 t C ha⁻¹ yr⁻¹ for the topsoil and -0.17 t C ha⁻¹ yr⁻¹ for the subsoil. At cropland 

sites, the change from the first to the seventh monitoring period was -8.7 and -3.9 t C ha⁻¹ for topsoil and subsoil, 

respectively; at grassland sites -0.5 and +1.5 t C ha⁻¹; at orchard/vineyard sites -13.6 and -31.1 t C ha⁻¹; and at forest 

sites -1.2 and -4.0 t C ha⁻¹ (Table 5). The corresponding annual changes were -0.30 and -0.13 t C ha⁻¹ yr⁻¹ for 

cropland, -0.03 and +0.05 t C ha⁻¹ yr⁻¹ for grassland, -0.48 and -1.10 t C ha⁻¹ yr⁻¹ for orchard/vineyard, and -0.03 

and -0.14 t C ha⁻¹ yr⁻¹ for forest (Figure 14; Supplementary Figures 8–11). 

The MDD was 5.5 and 4.0 t C ha⁻¹ for cropland, 9.5 and 8.9 t C ha⁻¹ for grassland, 51.0 and 94.0 t C ha⁻¹ for 

orchard/vineyard, and 5.1 and 8.0 t C ha⁻¹ for forest for topsoil and subsoil, respectively (Table 5). At cropland sites, 

the change in topsoil TOC between the two monitoring periods was therefore approximately 1.6 times greater than 

the MDD. In contrast, the change in topsoil TOC for the other three land uses would have needed to be 3.7 to 17.6 

times greater to reach statistical significance. In the subsoil, this factor ranged between 1.0 and 5.7 across all land 

uses. Several studies have also calculated the MDD for TOC content or TOC stocks, but without relating it to actually 

measured differences (Deluz et al., 2020; Goidts, Van Wesemael, & Crucifix, 2009; Gubler et al., 2019; Saby et al., 

2008; Schrumpf et al., 2011), making a direct comparison with our study impossible. 

 

Table 5: Change in TOC stocks and minimal detectable difference (MDD) between the first and seventh monitoring 

period, separated by soil depth and land use. 

Soil depth Land use  
Change in TOC stock 
[t TOC ha-1] 

MDD of TOC stock 
[t TOC ha-1] 

0–20 cm 

Cropland -8.7 ±5.5 

Grassland -0.5 ±9.5 

Orchard/vineyard -13.6 ±51.0 

Forest -4.0 ±5.1 

20–60 cm 

Cropland -3.9 ±4.0 

Grassland +1.5 ±8.9 

Orchard/vineyard -31.1 ±94.0 

Forest -1.2 ±8.0 
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Figure 14: Annual change in TOC stocks, separated by topsoil and subsoil. Grey points represent individual values. The number 
of observations (n) per soil depth and land use is shown below each boxplot. The blue horizontal line represents zero change. 

 

5.3 TOC stocks in different land uses 

The comparison between land uses also reveals significant differences in TOC stocks (Figure 13; Table 6): 

Regardless of the monitoring period, TOC stocks in the topsoil of grassland sites are 1.5 times higher than in cropland 

sites (Figure 13). Differences between the other land uses are not significant. In the subsoil, TOC stocks differ 

significantly between the first and seventh monitoring periods, with significant interactions with land use (Table 6). In 

the first monitoring period, TOC stocks at orchard/vineyard sites are significantly higher than at grassland and forest 

sites, whereas differences between other land uses in the first monitoring period and between all land uses in the 

seventh monitoring period are not significant (Figure 13; Table 6). The difference for orchard/vineyard sites is due to 

a high outlier in the first monitoring period. The model of Equation 16 was therefore refitted for the subsoil with the 

outlier removed, and a repeated ANOVA showed neither a significant difference between monitoring periods nor a 

significant interaction term. 

Numerous studies show that land use strongly influences TOC stocks (Jacobs et al., 2018; Wenzel et al., 2022; 

Wiesmeier et al., 2012). Grassland generally exhibits higher topsoil TOC stocks than cropland (Lettens et al., 2005; 

Wenzel et al., 2022; Wiesmeier et al., 2012), which can be attributed to reduced disturbance from tillage (Six et al., 

1999), higher root biomass, and continuous carbon inputs via root exudates (Kätterer et al., 2011; Poeplau et al., 

2021). Long-term studies in different regions show site-dependent TOC dynamics: grassland typically promotes long-

term topsoil carbon accumulation, whereas management practices on cropland often lead to carbon losses or a 

redistribution of TOC between topsoil and subsoil (Kühnel et al., 2019; Skadell et al., 2023; Wenzel et al., 2022). Soil 

texture and water balance are key factors, influencing whether carbon is stored long-term or mineralized more quickly 

(Flessa et al., 2019; Jacobs et al., 2018). Detailed information on management and site conditions is therefore 

essential to better understand TOC stock changes and to develop targeted carbon storage measures in 

agroecosystems (Lettens et al., 2005; Wiesmeier et al., 2012). 

High variability in TOC stocks within grassland and orchard/vineyard sites highlights the diversity of these land uses 

(Figure 13). Variability among grassland sites is likely related to elevation differences (273–1880 m) and varying 

management intensity, while orchard/vineyard variability reflects heterogeneous crops and management practices. 

Steep slopes and high stone content at vineyard sites complicate representative sampling and may explain subsoil 

TOC variability. In such heterogeneous land uses, expanding the number of study sites is essential for robust 

assessments of TOC stock changes. 
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At forest sites, TOC stocks in this study fall between those of cropland and grassland sites. Other studies report 

higher TOC stocks in forest soils compared to grassland (Jackson et al., 2017; Lettens et al., 2005), mainly due to 

the organic layer. While the mineral soil under forest often has similar TOC stocks to grassland, the organic layer 

represents an additional carbon pool that is often not systematically assessed. Differentiated sampling of the organic 

layer is therefore crucial for accurately determining TOC stocks in forests and for comparisons with other land uses. 

The necessary data harmonization reduced the number of data points and increased uncertainty, likely masking 

actual differences in TOC stocks. Upscaling the results to the landscape level would further increase uncertainty 

(Goidts, Van Wesemael, & Crucifix, 2009) and is therefore not appropriate with the current dataset. However, future 

NABO monitoring periods conducted with consistent methodology will improve confidence in interpreting changes in 

TOC stocks over time. 

 

Table 6: P-values from an ANOVA based on a linear model with TOC stock as the dependent variable and 

monitoring period in interaction with land use as explanatory variables. 

Dependent variable Land use  Monitoring period Land use * Monitoring period 

TOC stock 0–20 cm [t TOC ha-1]  < 0.001 0.08 0.23 

TOC stock 20–60 cm [t TOC ha-1]  0.31 0.008 0.005 
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6 Pedoclimatic effects on the TOC stock and its change 

6.1 Pedoclimatic effects on the TOC stock 

Within individual land uses and soil depths, the TOC stock shows a significant positive relationship with clay content, 

pH, elevation, and slope, and a negative relationship with sand content and temperature (Table 7; Supplementary 

Figures 12–19). The positive relationship between fine-textured soils or pH and TOC stock is well documented in the 

literature. Clay minerals bind organic matter and promote the formation of microaggregates (Six et al., 2002), thereby 

protecting carbon from microbial decomposition (Lützow et al., 2006). Soil inventory data from France, Germany, and 

Belgium confirm this relationship, particularly for arable topsoils (Arrouays et al., 2006; Goidts & van Wesemael, 

2007; Poeplau et al., 2020). Positive correlations between clay content and TOC stock have also been reported in 

forest soils in Germany (Grüneberg et al., 2019). The positive effect of pH on TOC stock is attributed to pH-dependent 

sorption of organic matter and the associated stabilization mechanisms (Lützow et al., 2006). At low pH, Fe³⁺ and 

Al³⁺ predominantly stabilize organic matter, whereas at higher pH values (>6), typical of cropland soils in our study, 

Ca²⁺ plays a key role (Rowley et al., 2017). Studies from Bavaria and other parts of Germany also report a positive 

relationship between pH and TOC stock for mineral forest soils (Grüneberg et al., 2019; Wiesmeier et al., 2013) and 

grasslands (Kühnel et al., 2019). 

The observed relationship between elevation and TOC stock in forest soils may be related to decreasing 

temperatures with increasing altitude (Supplementary Figure 2). Although the relationship between temperature and 

TOC stock is not statistically significant, a negative trend is apparent (Supplementary Figure 19). Reduced 

decomposition rates at lower temperatures often lead to longer residence times of TOC in the soil and 

correspondingly higher TOC stocks (Kühnel et al., 2019; Leifeld et al., 2005), a pattern also observed at grassland 

sites in our study (Supplementary Figure 14). The positive relationship between slope and TOC stock in grassland 

and forest soils in our study contrasts with another study in which slope was identified as a key factor for decreasing 

TOC (Kühnel et al., 2019). This discrepancy may be explained by the strong correlations in our dataset between 

slope and elevation (positive) and slope and temperature (negative) (Supplementary Figure 2). Therefore, the 

observed positive effect of slope on TOC stock likely does not reflect a true causal effect. 

 

Table 7: Direction (and p-value) of the relationship between each covariate and TOC stock for all land uses and soil 

depths. Non-significant effects are not shown (this also applies to silt content and precipitation). 

Soil depth Land use 
Clay 
[%] 

Sand 
[%] 

pH 
[-] 

Elevation 
[m] 

Temperature 
[°C] 

Slope 
[%] 

0–20 cm Cropland + (0.003)      

Grassland + (0.005) - (0.042)   - (0.029) + (0.001) 

Orchard/Vineyard       

Forest + (0.029)      

20–60 cm Cropland   + (0.005)    

Grassland      + (0.038) 

Orchard/Vineyard       

Forest    + (0.005)  + (0.009) 

 

For the topsoil and subsoil, the analysis of the relative importance of explanatory variables reveals different key 

drivers (Figure 15). In the topsoil, the two most important factors are clay content and land use, which together explain 

over 55% of the variability in TOC stocks. In the subsoil, pH is the most influential factor, with a relative importance 

of nearly 30%, followed by clay content and slope (both 18%) (Figure 15). Other studies confirm the importance of 

land use for topsoil TOC stocks and show that pedological factors become increasingly important with depth (Flessa 

et al., 2019; Vos et al., 2019). In our study, climatic variables are assigned a relatively low importance for TOC stocks 
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in both soil layers, which contrasts with findings from other studies (Vos et al., 2019; Wiesmeier et al., 2014). The 

narrower range of mean annual precipitation in our dataset (530–1800 mm vs. 490–3300 mm in other studies) may 

explain why less variation is captured compared to previous studies. 

  

Figure 15: Relative importance of explanatory variables for TOC stocks in (a) 0–20 cm and (b) 20–60 cm soil depth. 

6.2 Pedoclimatic effects on the change in TOC stocks 

The annual change in TOC stocks in the topsoil shows a negative relationship with the initial TOC stock, which is by 

far the most important explanatory variable (Figures 16 and 18). In the topsoil, pH and temperature also have a 

negative effect on the annual change in TOC stocks, while elevation and precipitation have a positive effect (Figure 

16). For all other explanatory variables, the relationship with the annual change in TOC stocks is not significant 

(Figures 16 and 17). In the subsoil, land use is the most important explanatory variable (Figure 18). 

The negative relationship between initial TOC stocks and TOC change has been observed in various studies 

(Bellamy et al., 2005; Goidts & van Wesemael, 2007; Hanegraaf et al., 2009). One possible explanation is that soils 

tend toward a long-term equilibrium, where soils with higher initial TOC stocks experience greater losses than soils 

with lower starting values (Goidts & van Wesemael, 2007). A similar explanation is the biophysical saturation limit, 

according to which TOC-poor soils accumulate carbon more quickly, while TOC-rich soils may lose carbon faster 

until the saturation limit is reached (Slessarev et al., 2023). This also explains the positive relationship between TOC 

change and elevation, and the negative relationship with temperature and pH, because these variables are 

associated with higher TOC stocks in certain land uses (Table 7). Finally, a statistical explanation may also be 

relevant: regression to the mean. Initial TOC values that are unusually high or low due to random variation during 

sampling or processing are more likely to be followed by moderate measurements, producing a negative change for 

higher initial TOC and vice versa, thus explaining the observed negative relationship between TOC stocks and their 

change (Slessarev et al., 2023). 
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Figure 16: Relationship between initial TOC stock, pedoclimatic variables, and land use, and the annual change in TOC stocks in 
0–20 cm soil depth. The blue horizontal line indicates zero change. The direction of the effect and the corresponding P-value are 
shown for significant relationships. A regression line is not displayed due to prior data transformations. Land use: C, cropland; G, 
grassland; O/V, orchard/vineyard; F, forest. 
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Figure 17: Relationship between initial TOC stock, pedoclimatic variables, and land use, and the annual change in TOC stocks in 
20–60 cm soil depth. The blue horizontal line indicates zero change. Land use: C, cropland; G, grassland; O/V, orchard/vineyard; 
F, forest. 
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Figure 18: Relative importance of the explanatory variables for the annual change in TOC stocks in (a) 0–20 cm and (b) 20–60 

cm soil depth. 
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7 Limitations of the data and recommendations for soil 

monitoring 

The uncertainties in the TOC stock data from the first monitoring period are 7% for the conversion of TOC contents 

between the two analytical methods, 9% for estimating missing bulk density using the PTF, and 1% for depth 

interpolation using the spline function (Table 8). For the seventh monitoring period, uncertainties are 8% for the 

conversion of bulk density between the two sampling methods and also 1% for depth interpolation using the spline 

function (Table 8). However, since the uncertainty between the calculated and actual bulk density for the seventh 

monitoring period could not be quantified, the overall uncertainty is likely highest for the conversion of bulk density 

between the two sampling methods. 

 

Table 8: Absolute and relative uncertainties of the data harmonization steps. 

Monitoring 
period 

Data harmonization step Equation 
Mean deviation 
(absolute 
uncertainty) 

Normalized 
mean deviation 
(relative 
uncertainty) 

1 conversion of TOCcarm to TOCEA 6 0.09 mass-% 7% 

1 estimation of missing bulk density values using a PTF 8 0.11 g cm-3 9% 

1 depth interpolation using a spline function - 1.7 t TOC ha-1 1% 

7 conversion of bulk density from impact probe to bulk 
density from cylinders 

9 0.10 g cm-3 8% 

7 depth interpolation using a spline function - 1.4 t TOC ha-1 1% 

 

The effect of the sampling method on TOC stocks has been documented in several studies (Dold et al., 2018; Sharma 

et al., 2020). Both the type of sampling (cylinders vs. impact probe) and the diameter of the device significantly 

influence bulk density (Walter et al., 2016), and this effect can vary across soil depths (Dold et al., 2018). On average, 

higher bulk densities are measured with cylinders than with probes in the topsoil, while the opposite is often true in 

the subsoil (Poeplau & Gregorich, 2022). In the NABOphys dataset, bulk density measured with the impact probe is 

consistently lower than that measured with cylinders, although the values converge with increasing soil depth, 

showing the same depth-dependent effect (Supplementary Figure 1). To minimize uncertainty in TOC stocks due to 

the sampling method in long-term monitoring, the same method should be applied consistently across monitoring 

periods. Since bulk density determination using probes is efficient and can be flexibly combined with other soil 

analyses, probes are generally preferred (Poeplau & Gregorich, 2022). Among probe types, the closed sheet probe 

shows the smallest deviation from bulk densities measured with cylinders (Walter et al., 2016). 

Laboratory analysis also significantly affects TOC stock estimates. Many studies compare dry combustion with wet 

oxidation (Bisutti et al., 2004; Tivet et al., 2012; Vitti et al., 2016), but few provide information on how dry combustion 

affects total carbon content. Differences between methods are attributed to combustion temperature (900–1300 °C) 

in calcareous samples (Wright & Bailey, 2011), the type and quality of organic material in the sample (Grahmann et 

al., 2023), and sample mass (Brinton et al., 2025). In our study, the presence of lime and the type and quality of 

organic material added to the soil (e.g., roots, aboveground plant material, organic fertilizers) may have influenced 

uncertainty in converting TOC contents between analytical methods. The temperature-gradient method provides high 

precision and reproducibility and does not require additional analysis to account for inorganic carbon in calcareous 

samples (Bisutti et al., 2004). 

The estimation of missing values contributes similarly to uncertainty in TOC stocks as the conversion between 

measurement methods. PTFs are commonly used to estimate bulk density when direct measurements are 

unavailable, but their precision often depends on regional soil properties (Chen et al., 2024; Makovníková et al., 
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2017). Due to the limited dataset, we could not derive PTFs specific to different soil types. In contrast, the contribution 

of depth interpolation to TOC uncertainty is negligible. Several studies report good agreement when using spline 

functions for interpolated TOC stocks (Lacoste et al., 2014; Malone et al., 2009), making this approach suitable and 

reliable for comparing TOC stocks across different soil depths. 

Other sources of uncertainty not quantified in this study include small-scale spatial variability of TOC (Poeplau et al., 

2022) and the estimation of the stone content (Poeplau & Gregorich, 2022). In the first monitoring period, replicate 

sampling points at a site were located close together (same pit profile), whereas in the seventh period they could be 

up to 14 m apart. Additionally, pit profiles were located at varying distances from the current NABO plot (<2 m to >10 

m). As a result, small-scale variability differs both between monitoring periods and between sites. Pooling field 

replicates after sampling prevents quantification of this variability. Using three field replicates per sampling event can 

reduce uncertainty compared to single measurements by about 50% (Poeplau et al., 2022). Stone content is now 

considered when calculating bulk density according to the definition of fine-earth bulk density (BDFE), but due to the 

small volume of the impact probe, it is systematically underestimated (Schwab & Gubler, 2016). In the first monitoring 

period, stone content was not systematically recorded and, due to missing raw data, cannot be used to convert bulk 

density to BDFE. Both factors likely contribute significantly to uncertainty in the dataset. 

In summary, the conversion between different measurement methods and the estimation of missing values are the 

main contributors to measurable uncertainty in our dataset, while small-scale spatial variability and the determination 

of the stone content contribute to non-measurable uncertainty in the harmonized data. For the first monitoring period, 

the total measurable uncertainty of approximately 15% represents about one-third of the variation in summed TOC 

stocks across sites (coefficient of variation: 45%). 

To minimize uncertainties in estimating subsoil TOC stocks in future soil monitoring, we recommend to: 

• measure bulk density using probes 

• determine TOC contents using the temperature-gradient method (with the same temperature step as used 

in elemental analysis) 

• assess TOC stocks with multiple field replicates per sampling event and site 

• determine the stone content for each sample 

We do not consider harmonization of the sampling depth necessary when mass-preserving spline methods are used 

for depth interpolation of the TOC stock. 
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8 Conclusion 

In the present study, significant decreases in TOC stocks between the first and seventh monitoring periods were only 

observed in the topsoil of cropland sites, while differences in the subsoil and within the other land uses were not 

significant. Differences between land uses were generally small, except in the topsoil, where grassland sites had 

higher TOC stocks than cropland sites. Depending on land use, clay content, pH, and temperature were the main 

factors influencing TOC stocks, while the initial TOC stock was the strongest driver of changes in TOC. 

Data gaps and the necessary data harmonization resulted in a reduced dataset with increased variability, potentially 

masking existing differences in TOC stocks. Spline-based depth interpolation proved to be a robust method with 

relatively low uncertainty for comparing TOC stocks across soil depths. This makes it a suitable tool for long-term 

monitoring and cross-site comparisons of TOC stocks, and it also allows for the integration of additional datasets in 

the future. For future studies, it is particularly important to quantify uncertainties related to small-scale variability in 

TOC stocks in the field and to stone content of the soil. 

A deeper understanding of the factors driving TOC stock changes will require incorporating management information 

into data analyses, as neither site-specific soil and climate conditions nor climate changes between the two 

monitoring periods showed a significant effect on TOC stock changes. To specifically explain decreases in topsoil 

TOC at cropland sites, detailed data on crop rotation, tillage, fertilization, and carbon return via crop residues are 

needed. Since the soil monitoring of NABO is conducted on Swiss commercial farms, these data are particularly 

valuable for identifying practices that either increase or deplete soil organic carbon under real-world conditions and 

for providing recommendations for sustainable soil management in Switzerland. 
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Appendix 

 

Supplementary figure 1: Bulk densities measured with cylinders and an impact probe at different soil depths across 25 NABO 
grassland and arable sites (NABOphys). Each point represents a single measurement. 
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Supplementary figure 2: Correlation and principal component analyses (PCA) of the pedoclimatic variables. (a, c) Correlation 
plots for (a) 0–20 cm and (c) 20–60 cm soil depth, showing correlation coefficients for significant correlations; non-significant 
correlations are shown in white. (b, d) PCA biplots for (b) 0–20 cm and (d) 20–60 cm soil depth, with the first two principal 
components on the x- and y-axes. Individual sites are shown as points, and ellipses represent the 68% confidence intervals for 
the four land use types. 
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Supplementary figure 3: Proportion of sites in the NABO monitoring network (first and seventh monitoring periods shown 

separately) included in the analysis after data processing, separated by land use. 
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Supplementary figure 4: TOC stock per cropland site, divided by soil depth and color-coded by monitoring period. 
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Supplementary figure 5: TOC stock per grassland site, divided by soil depth and color-coded by monitoring period. 

 

 

 

 

 

 

 

Supplementary figure 6: TOC stock per orchard/vineyard site, divided by soil depth and color-coded by monitoring period. 
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Supplementary figure 7: TOC stock per forest site, divided by soil depth and color-coded by monitoring period. 
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Supplementary figure 8: ∆TOC stock per cropland site, divided by soil depth and color-coded by direction of change. 
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Supplementary figure 9: ∆TOC stock per grassland site, divided by soil depth and color-coded by direction of change. 

 

 

 

 

 

 

 

Supplementary figure 10: ∆TOC stock per orchard/vineyard site, divided by soil depth and color-coded by direction of change. 

 



Subsoil Carbon – 1985 / 2019 

 

 

Agroscope Sience  |  No. 216 / 2025 54 

 

 

Supplementary figure 11: ∆TOC stock per forest site, divided by soil depth and color-coded by direction of change. 

 

 

 

 

 
Supplementary figure 12: Effect of pedoclimatic variables on TOC stock at cropland sites in 0–20 cm soil depth. The direction and 
p-value of each covariate’s effect on TOC stock are shown if significant. A regression line is not shown due to prior data 
transformation. 
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Supplementary figure 13: Effect of pedoclimatic variables on TOC stock at cropland sites in 20–60 cm soil depth. The direction 
and p-value of each covariate’s effect on TOC stock are shown if significant. A regression line is not shown due to prior data 
transformation. 

 
Supplementary figure 14: Effect of pedoclimatic variables on TOC stock at grassland sites in 0–20 cm soil depth. The direction 
and p-value of each covariate’s effect on TOC stock are shown if significant. A regression line is not shown due to prior data 
transformation. 
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Supplementary figure 15: Effect of pedoclimatic variables on TOC stock at grassland sites in 20–60 cm soil depth. The direction 
and p-value of each covariate’s effect on TOC stock are shown if significant. A regression line is not shown due to prior data 
transformation. 

 

 

 
Supplementary figure 16: Effect of pedoclimatic variables on TOC stock at orchard/vineyard sites in 0–20 cm soil depth. 
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Supplementary figure 17: Effect of pedoclimatic variables on TOC stock at orchard/vineyard sites in 20–60 cm soil depth.  

 

 
Supplementary figure 18: Effect of pedoclimatic variables on TOC stock at forest sites in 0–20 cm soil depth. The direction and p-
value of each covariate’s effect on TOC stock are shown if significant. A regression line is not shown due to prior data 
transformation. 
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Supplementary figure 19: Effect of pedoclimatic variables on TOC stock at forest sites in 20–60 cm soil depth. The direction and 
p-value of each covariate’s effect on TOC stock are shown if significant. A regression line is not shown due to prior data 
transformation. 

 


