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Abstract Biodiversity loss on agricultural land is a 
major concern. Comprehensive monitoring is needed 
to quantify the ongoing changes and assess the effec-
tiveness of agri-environmental measures. However, 
current approaches to monitoring biodiversity on 
agricultural land are limited in their ability to capture 
the complex pattern of species and habitats. Using 
a real-world example of plant and habitat monitor-
ing on Swiss agricultural land, we show how mean-
ingful and efficient sampling can be achieved at the 
relevant scales. The multi-stage sampling design of 
this approach uses unequal probability sampling in 
combination with intermediate small-scale habitat 
sampling to ensure broad representation of regions, 
landscape types, and plant species. To achieve broad 
coverage of temporary agri-environmental measures, 

the baseline survey on permanent plots is comple-
mented by dynamic sampling of these specific areas. 
Sampling efficiency and practicality are ensured at all 
stages of sampling through modern sampling tech-
niques, such as unequal probability sampling with 
fixed sample size, self-weighting, spatial spreading, 
balancing on additional information, and stratified 
balancing. In this way, the samples are well distrib-
uted across ecological and geographic space. Despite 
the high complexity of the sampling design, simple 
estimators are provided. The effects of stratified bal-
ancing and clustering of samples are demonstrated in 
Monte Carlo simulations using modelled habitat data. 
A power analysis based on actual survey data is also 
presented. Overall, the study could serve as a useful 
example for improving future biodiversity monitoring 
networks on agricultural land at multiple scales.

Keywords Balanced sampling · Habitat · Multi-stage · 
Vegetation · Geographic spreading · Unequal probability

Introduction

Agriculture is one of the main causes of the massive 
loss of biodiversity in recent decades. In Europe, his-
torically established biodiversity on agricultural land 
has declined dramatically since the beginning of the 
twentieth century with the progressive intensification 
of farming (Allan et al., 2014; Richner et al., 2015). In 
Switzerland, for example, around 95% of seminatural 
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grassland has disappeared (Lachat et  al., 2010). Fur-
ther changes are expected in the future due to climate 
change, demographic shifts, and changing productivity 
values (Debonne et al., 2022). The negative impacts of 
biodiversity loss on important ecosystem services, such 
as pollination, pest control, and soil conservation, are 
well known (Allan et al., 2015; Soliveres et al., 2016). 
Agri-environmental measures have therefore been 
introduced to enhance existing biodiversity by pay-
ing farmers for appropriate management. This public 
expenditure is significant, and the effectiveness of agri-
environmental measures therefore needs to be carefully 
monitored (Sutcliffe et  al., 2015; Batáry et  al., 2015; 
Herzog & Franklin, 2016).

Comprehensive biodiversity monitoring requires 
the collection of data on habitats and species in a rep-
resentative sample of the target area. For the selection 
of the sample, a probability sample is essential in order 
to draw valid statistical conclusions about the target 
area based on probability theory (Tillé, 2020; Lohr, 
2022). Current approaches to biodiversity monitoring 
on agricultural land rely on equal probability sampling, 
such as simple random sampling or spatial grid sam-
pling, to produce reliable national statistics (e.g. Bio-
diversity Monitoring Switzerland (BDM Coordination 
Office, 2014)). In doing so, most large-scale biodiver-
sity monitoring approaches have adopted a stratified 
approach (Herzog & Franklin, 2016) to ensure better 
representation of smaller regions and rare landscape 
types (Metzger et  al., 2013) and use two-stage sam-
pling to cover multiple units per selected site (Carey 
et al., 2008; Pascher et al., 2011). Spatial concentration 
of the survey effort reduces travel costs, which allows 
a larger sample size and thus broader sample coverage. 
Two-stage approaches are also targeted for simultane-
ous monitoring of biodiversity at local and landscape 
scales. The inclusion of both scales is important, for 
example, to study the effects of land-use intensification 
on biotic homogenisation (Gossner et  al., 2016). The 
landscape scale as such is particularly important for 
mobile taxa at higher trophic levels; for example, but-
terflies and birds often have different areas for forag-
ing and nesting, so that the effects of management may 
be less evident at the local scale than at the landscape 
scale (Meier et al., 2022). Unfortunately, the biodiver-
sity monitoring approaches described so far are not 
very effective at monitoring biodiversity on small-scale 
agricultural land, where a few species and habitats are 
predominant and widespread, while most species and 

habitats tend to be rare or spatially clumped. In this set-
ting, most elements of interest are not adequately sam-
pled at the local scale. If, on the other hand, additional 
small-scale information, e.g. from habitat mapping and 
remote sensing, is obtained, a stratified approach can 
be adopted in the second stage of sampling to cover a 
broader range of local biodiversity (Bunce et al., 2011).

In addition to broad sample coverage, for esti-
mation efficiency reasons, samples should be well 
spread across the variables known to influence the 
variables we are interested in estimating (i.e. indica-
tors) (Tillé, 2011). Specifically, since the distribution 
of habitats and species is influenced by environmen-
tal variables, such as climate, topography, and soil 
properties (Guisan et al., 2017), biodiversity samples 
should be well spread across these variables. Spread-
ing across geographic space (Grafström et al., 2012) 
is additionally important, as species and habitats that 
are close to each other may not be independent of 
each other, due to common management, incomplete 
dispersal processes, and biotic interactions through 
species competition (Legendre & Legendre, 1998).

There is currently no large-scale monitoring 
approach using probability sampling that simultane-
ously covers a broad range of local, landscape, and 
regional biodiversity on agricultural land, features an 
optimal distribution of the sampling units across eco-
logical and geographic space, and yet is suitable for 
operational field campaigns. Furthermore, there is no 
existing probability sampling approach that includes 
a nationwide assessment of agri-environmental meas-
ures (Herzog & Franklin, 2016) to evaluate their con-
tribution to biodiversity on agricultural land and to 
adjust them as needed in a timely manner.

Here, we present a long-term monitoring approach 
for species, habitats, and structures on the agricul-
tural land of Switzerland (‘ALL-EMA’; http://www.
allema.ch). ALL-EMA takes into account all the above 
requirements by using modern sampling techniques, 
such as unequal probability sampling with fixed sam-
ple sizes, balancing on auxiliary information (Deville 
& Tillé, 2004), stratified balancing (Chauvet, 2009), 
spatial spreading (Grafström & Tillé, 2013), two-phase 
sampling (see Särndal et al., 1992, pp. 343–385), and 
self-weighting (see Särndal et al., 1992, pp. 132–154). 
Unequal probability sampling allows sampling rates to 
be adjusted in a way similar to stratification, but with-
out the need to introduce artificial boundaries. In com-
bination with spatial spreading and balancing, it allows 
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additional spreading in geographic and environmental 
space. Meanwhile, the stratified balancing method, 
which is balancing on categorical variables, retains 
control over the sample sizes within strata. These tech-
niques have already been used in sampling designs for 
forest inventories (Vallée et  al., 2015), conservation 
monitoring (Tillé & Ecker, 2014), land-use and land-
cover estimation (Fattorini et al., 2015), soil mapping 
(Brus, 2019), and population surveys (Fattorini &  
Ferretti, 2020). However, these studies have focused 
on landscapes with biodiversity patterns less complex 
than those on agricultural land or have pursued objec-
tives other than biodiversity assessment.

The aim of the ALL-EMA monitoring approach is to 
represent a wide variety of plant species, habitat types, 
and agri-environmental measures and to efficiently esti-
mate predefined biodiversity indicators for a range of tar-
get groups and at different scales. The practical example 
of Switzerland is well suited to assess the effectiveness of 
agri-environmental measures (e.g. ecological focus areas 
(EFAs)) on a large scale, as these measures are linked to 
subsidies through a cross-compliance mechanism, which 
means that almost all farmers implement such measures 
on their farms. However, as this is a real-world example, 
additional constraints have to be taken into account, e.g. 
an existing national but landscape-level survey of plants, 
butterflies, and breeding birds in grid squares of 1  km2 
(BDM-Z7 sample) (BDM Coordination Office, 2014) 
has to be integrated. The survey is therefore conducted 
on a subset of the BDM-Z7 grid squares and follows 
its rotational survey schedule. Another challenge of the 
ALL-EMA monitoring design is to divide the sampling 
effort between the squares of the BDM-Z7 sample, the 
target regions, and the habitat and species survey and to 
cover a wide variety of EFAs.

The ALL-EMA sampling scheme that was ulti-
mately implemented defines two types of surveys: a 
baseline survey of permanent plots to record biologi-
cally relevant structures, habitat types, and plant spe-
cies on the whole agricultural land, and an additional 
survey of non-permanent plots to record the same 
information from the EFAs that may change location 
over time. The sampling of both surveys is organised 
into three stages. In the first stage, a targeted sample of 
squares is selected from the initial BDM-Z7 squares. 
In a second stage, a spatial grid of nested circular plots 
of 10 m2 and 200 m2 is defined within the first-stage 
sampling units for the baseline survey of habitat types, 
structures, and neophytes on the agricultural land 

in a square. Next, a targeted subsample of the 10 m2 
plots is selected for the baseline survey of plant spe-
cies composition. The sampling design of the base-
line survey thus includes two-phase sampling to gen-
erate a priori missing information on habitats for a 
broader survey of the plant species. For the survey of 
the dynamic EFAs, two additional stages of sampling 
are used within the same first stage selection of BDM-
Z7 squares. First, one plot is randomly placed within 
each EFA of a square. A targeted subsample of these 
intermediate plots is then selected for the concurrent 
survey of habitat types and plant species. Sampling 
in the three-stage ALL-EMA sampling procedure is 
carried out using modern techniques. In both survey 
types, unequal probability sampling is used in the first 
and third stage of sampling to achieve a broader rep-
resentation of target regions, plant species, or EFA 
categories. In each case, unequal probability sampling 
is combined with balancing on additional information, 
stratified balancing, geographic spreading, and self-
weighting to achieve optimal efficiency.

In the following sections, we describe how the 
ALL-EMA sampling design was developed and the 
expected efficiency of some of the sampling proce-
dures. We first present the sample population and the 
target parameters, including the underlying field data, 
in the ‘‘Population and target parameters’’ section. In 
the ‘‘Organisation of the ALL-EMA survey’’ section, 
we give an overview of the organisation of the ALL-
EMA design, presenting the survey samples and nota-
tion, the main ideas and stages of sampling, and the 
rationale for sample sizes. In the ‘‘Sampling design in 
full detail’’ section, we describe the sampling proce-
dures in full detail. We then present simple point and 
variance estimators for plot-level estimation in the 
‘‘Estimators’’ section. We assess the estimation effi-
ciency of the sampling procedure in the ‘‘Sample effi-
ciency assessment’’ section, using Monte Carlo simu-
lations based on modelled data and conducting power 
analyses based on recent survey data. Finally, we pro-
vide a brief conclusion on the ALL-EMA sampling 
design in the ‘‘Conclusions’’ section. Further informa-
tion on the full sampling design of the EFA survey, the 
temporal organisation of the survey, the characteristics 
of the final square sample, additional examples of esti-
mation, and general comments on estimation in space 
and time, as well as power analyses based on simula-
tions, can be found in the Supplementary Information.
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Population and target parameters

Population and sampling frame

ALL-EMA aims to assess the entire agricultural area 
of Switzerland, which makes up 38% of the national 
surface area of 41,285 km2 . Grassland is the predom-
inant land-cover type, covering 79% of this agricul-
tural land. The remainder is occupied by arable land, 
vineyards, orchards, and special cultures (Herzog 
et al., 2017). For practical reasons, the target popula-
tion is restricted to accessible areas. Therefore, the 
aim is to cover the full area of Switzerland, exclud-
ing forests, settlements, and lakes, as well as unpro-
ductive and inaccessible areas. However, the extent 
of the target area is not known exactly. In the sam-
pling frame, a preliminary delineation of the agri-
cultural land from a GIS database is used to repre-
sent the survey area. This delineation is checked and 
updated in the field, and this process is repeated for 
each survey run.

The agricultural land is further divided into agri-
cultural production zones (ERZOs) and biogeo-
graphic regions (UZL-HRs) (Walter et  al., 2013). 
These areas are the relevant units for evaluating 
the EFAs. As EFAs can emerge and disappear over 
time, they are included in the sampling frame as 
annual delineations.

The ALL-EMA sampling is restricted to the 
BDM-Z7 sampling units, a grid of sample squares of 
1  km2 (BDM Coordination Office, 2014). The grid 

density is doubled in the Southern Alps and Jura 
regions (Fig. 1). The raw grid has 509 squares. In the 
BDM-Z7 survey, 35 squares are excluded because 
they are covered completely by glaciers, lakes, or 
inaccessible terrain. A further 19 squares do not con-
tain any accessible agricultural land. Thus, the sam-
pling frame of the ALL-EMA survey encompasses 
455 BDM-Z7 squares.

Target groups and indicators

The ALL-EMA survey covers the entire agricultural 
area of Switzerland, but has various predefined geo-
graphical and thematic subgroups for separate evalu-
ation. Of particular interest are (a) the five ERZOs, 
i.e. valley zone, hill zone, lower mountain zones I and 
II, upper mountain zones III and IV, and summering 
zone (Fig. 1a); (b) 23 types of EFA; and (c) habitat 
types, partitioned into 91 categories.

Target groups of secondary importance are (a) the 
five biogeographic regions (UZL-HRs), namely the 
Central Plateau and low areas of the Jura mountains, 
the Alps (including its low areas) plus the high west-
ern Jura mountains, low areas in the canton of Valais, 
and the southern Alpine fringe (Fig. 1b), and (b) the 
individual sampling squares.

The biodiversity of the agricultural land is 
assessed using a predefined list of indicators that 
can be divided into four main thematic groups: (a) 
the diversity of species, habitats, and structures; (b) 
the area share of species, habitats, and structures; (c) 

Fig. 1  Systematic distribution of the initial grid squares 
(1  km2) of the existing landscape-level survey of plants, butter-
flies, and breeding birds (BDM-Z7), with double grid density 
in some areas in Switzerland. Two types of geographic stratifi-
cations are used in the sampling design: a agricultural produc-
tion zones (ERZOs) and b biogeographic regions (UZL-HRs). 

ERZOs: 1 = valley zone, 2 = hill zone, 3 = lower mountain 
zones I and II, 4 = upper mountain zones III and IV, 5 = sum-
mering zone. UZL-HRs: 1 = Central Plateau and low areas of 
the Jura mountains, 2 = Alps, 3 = high western Jura mountains 
and low areas in the Alps, 4 = low areas in the canton of Val-
ais, 5 = southern Alpine fringe
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the length of linear structures including water bodies; 
and (d) mean trait/indicator values of the species (e.g. 
mean nutrient value of the plant species according 
to Landolt et al., 2010). Each thematic group is rep-
resented by several indicators derived from the field 
data (Meier et al., 2021). Common methods are used 
to quantify the diversity measures beyond the plot 
scale (e.g. �-diversity; Magurran & McGill, 2011).

Field data

To calculate the indicators, in  situ information on 
biologically relevant structures, habitat types, and 
plant species is collected in nested circular plots 
(Fig.  2). Habitat types are usually classified in ter-
restrial habitats based on phytosociological classifi-
cation (mainly vascular plants). This is also the basis 
for the hierarchical classification adapted to Swiss 
habitat types by Delarze et  al. (2015). In the case 
of ALL-EMA, the habitats are recorded at the third 
level of detail (i.e. TypoCH) by using a dichotomous 
field protocol based on the occurrence of characteris-
tic plant species.

Organisation of the ALL‑EMA survey

Survey samples and notation

The complex sampling design of ALL-EMA defines 
two samples of permanent plots for the baseline 
and static survey of habitats and plant species in 
the entire agricultural area of Switzerland (Fig.  3, 

top). To ensure a sufficient number of plots in the 
EFAs and to cope with their dynamic character, an 
additional sample of non-permanent plots is drawn 
per survey run from this target group (Fig.  3, bot-
tom). The notation for the different samples and 
the respective inclusion probabilities are given in 
Tables 1 and 2.

Rationale of the sampling design

For both types of surveys, multi-stage and unequal 
probability sampling are used to distribute the work-
load across the initial BDM-Z7 sampling squares 
and to sample the target groups (i.e. regions/zones, 
habitats, and EFAs) according to the predefined 
interests. The sampling concept of the baseline sur-
vey involves a two-stage approach for this purpose, 
in order to first collect dense but cost-effective 
information on habitat types, which is then used for 
targeted sampling of plant species. The redundant 
information on plant species from the large regions 
and the predominant habitat types and EFAs is thus 
reduced. The selection of the BDM-Z7 squares is 
also proportional to the area of the agricultural land 
within a square in order to later obtain an efficient 
self-weighted (see Särndal et al., 1992, pp. 132–154) 
vegetation sample of fixed sample size within the 
squares. To match the annual rotation plan of the 
BDM-Z7 survey, the selection of the BDM-Z7 
squares is temporally stratified with a fixed sam-
ple size per survey year. The annual subsamples are 
spread in geographic space and balanced on auxil-
iary variables. Balancing improves estimation effi-
ciency if the variable of interest is linearly depend-
ent on the auxiliary variables. Spreading has the 
same effect when the variable of interest has a geo-
graphic structure or trend. The fixed sample sizes 
are convenient for the organisation of the field work 
(see the ‘‘Sampling design in full detail’’ section for 
details of the full sampling design).

Stages of sampling

The sampling for the baseline survey is organised 
into three stages additional to the BDM-Z7 sam-
ple (Fig.  3, top). In the first stage, a sample S1 of 
m = 170 sampling units is selected from the ini-
tial sample S0 of M = 455 BDM-Z7 squares. In the 
second stage, a large sample S2 of circular plots is 

Habitats
10 m2

Structures 
and  neophytes

Plants
10 m2

200 m2

Fig. 2  Geometric representation of a nested circular plot in the 
ALL-EMA survey. Information on structures and neophytes is 
collected within a 200 m2 circle. Habitat type and plant species 
composition are recorded within a 10 m2 circle
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drawn within the first-stage sampling units S1 . Plot 
centres are located on a systematic grid, with a 
grid spacing of 50  m. Data about habitat type and 

biologically relevant structures and neophytes are 
collected with sample S2 in nested circular plots of 
10  m2 and 200  m2 . In the third stage, a subsample 

Fig. 3  Overview of the multi-stage sampling design of ALL-
EMA for the baseline static survey of the full agricultural land in 
Switzerland and the dynamic survey of the temporary ecological 
focus areas (EFAs). In the first stage of sampling, a targeted sam-
ple of squares is selected from the initial grid squares of the Swiss 
landscape-level survey of plants, butterflies, and breeding birds 
(BDM-Z7). The second stage of sampling is a spatial grid sample 
of circular plots within the first-stage selection of squares for the 
survey of habitat types, structures, and neophytes in the agricul-
tural land of a square. In the third stage of sampling, a targeted 
subsample of the habitat plots is selected for the survey of plant 

species composition. The survey of the dynamic EFAs is based on 
two extra stages of sampling within the same first stage selection 
of BDM-Z7 squares. After placing one random point within each 
EFA polygon of a square, a targeted subsample of these interme-
diate points is selected for the concurrent survey of habitat types 
and plant species. The sampling of the EFAs is repeated for each 
survey run. In both survey types, unequal probability sampling is 
combined with balancing on additional information, stratified bal-
ancing, geographic spreading, and self-weighting to achieve opti-
mal estimation efficiency and controlled sample sizes

Table 1  The three stages of the baseline sampling design for 
the repeated survey of habitats and species in the entire agri-
cultural area based on permanent plots. A sample S

1
 of squares 

is selected from the initial BDM-Z7 sample S
0
 . Plots are then 

selected in the S
1
 squares for the habitat sample S

2
 . Finally, a 

subsample of the plots in the S
2
 habitat sample is selected for 

the vegetation sample S
3
 . For simplicity, the sample for record-

ing structures and neophytes is not listed in the table. This 
sample differs from S

2
 only in the larger plot size of 200  m2 

and thus inclusion probabilities

Name of Notation Sample Area of Conditional Total
the sample size sample unit inclusion probability inclusion probability

Baseline initial BDM-Z7 S
0

M = 455 0.9025 km2 (squares) �
0,i �

0,i

Baseline first stage S
1

m = 170 0.9025 km2 (squares) �
1,i∣i∈S0

�
1,i = �

0,i �1,i∣i∈S0
Baseline second stage
(habitat sample)

S
2 n =

∑

i∈S1
ni ≈ 36, 000 10 m2 (circular plots) �

2,j∣i∈S1
�H,j = �

1,i �2,j∣i∈S1

Baseline third stage
(vegetation sample)

S
3 v =

∑

i∈S1
vi ≈ 3, 200 10 m2 (circular plots) �

3,j∣j∈S2
�V ,j = �H,j�3,j∣j∈S2
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S3 is selected from S2 for the survey of plant species 
composition in plots of 10  m2 (Fig.  2). Listing all 
the plants occurring within a plot is time-consuming 
and cost-intensive, and the affordable sample size is 
thus much smaller.

The sampling design for the additional EFA 
sample is again organised into three stages (Fig. 3, 
bottom). The first-stage sample S1E is largely identi-
cal to the first-stage sample S1 of BDM-Z7 squares 
in the baseline survey and only differs in the area 
extent of the sampling squares. In the second stage 
of sampling, one nested circular plot is randomly 
located in each EFA polygon to form the intermedi-
ate sample S2E . In the third stage, a subsample S3E 
is drawn from S2E for the survey of structures, neo-
phytes, habitats, and plant species on the same set 
of EFA plots. The respective plot sizes are the same 
as those in the baseline survey (Fig. 2).

Rationale for sample sizes

The sample sizes given in Tables  1 and  2 are based 
on several considerations. The size M = 455 of the S0 
sample of squares was predetermined by the existing 
sample of BDM-Z7 squares including accessible agri-
cultural land.

The grid spacing for habitat sampling in the sec-
ond stage of the baseline survey was also predefined to 
be 50 m. This grid resolution was found to optimally 
reflect the short-range variability in the Swiss agricul-
tural land. With this spacing, the plot locations also 
match the observation points of the Swiss land-cover 
statistic (Arealstatistik) (GEOSTAT, 1997), a repeated 

survey over all of Switzerland based on aerial photo 
interpretation on a systematic 100 m × 100 m grid.

The high degree of sample clustering was intended 
to allow inferences at the square (i.e. landscape) level, 
but also proved to be a good trade-off with plot-level 
estimation, as demonstrated by a Monte Carlo simula-
tion study investigating the impact of sample cluster-
ing on global habitat estimation (see “Effect of sample 
clustering”). The field budget for the baseline survey 
was to be shared equally between the habitat survey and 
the vegetation survey. Later, an additional budget was 
drawn up for the survey of the EFAs.

Sampling design in full detail

Initial-stage sample of the baseline BDM-Z7 squares

The initial BDM-Z7 sample of squares S0 is the vir-
tual sampling frame of the ALL-EMA survey. The 
probability that a square is included in the ALL-
EMA sample frame is determined by the grid spac-
ing of the BDM-Z7 sample, which varies according 
to biogeographic strata. While the standard spacing 
between squares in the BDM-Z7 sample is 12 km in 
the east–west direction and 8 km in the north–south 
direction, this grid density is doubled in the South-
ern Alps and in the Jura region. Thus, the regular grid 
densities are one BDM-Z7 square per 96  km2 and one 
BDM-Z7 square per 48  km2, respectively (Fig. 1).

In the BDM-Z7 sample, the squares are 1  km2, but 
because only 19 × 19 = 361 habitat plots in a square 
grid of 50 m × 50 m are laid out in the ALL-EMA 

Table 2  The three stages of the EFA sampling design for 
the additional repeated survey of habitats and species in the 
EFA polygons based on dynamic sampling units. A sample 
S
1E

 of squares is selected from the initial sampling frame 
S
0E

 . The selection corresponds to the sample squares S
1
 of 

the baseline survey. The squares only differ in area. One plot 
is then randomly placed in each EFA polygon belonging to 

the selected squares ( S
2E

 sample). Finally, a subsample of 
the plot sample S

2E
 is drawn for a joint sampling of habitats 

and vegetation S
3E

 . For simplicity, the sample for recording 
structures and neophytes is not listed in the table. This sam-
ple differs from S

3E
 only in the larger plot size of 200 m2 and 

thus inclusion probabilities

Name of Notation Sample Area of Conditional Total
the sample size sample unit inclusion probability inclusion probability

EFA initial BDM-Z7 S
0E

M = 455 1 km2 (squares) �
0E ,i

�
0E ,i

EFA first stage S
1E

m = 170 1 km2 (squares) �
1E ,i∣i∈S0E

= �
1,i∣i∈S0

�
1E ,i

= �
0E ,i

�
1E ,i∣i∈S0E

EFA second stage S
2E

p =
∑

i∈S1E
pi 10 m2 (circular plots) �

2E ,j∣i∈S1E
�
2E ,j

= �
1E ,i

�
2E ,j∣i∈S1E

EFA third stage
(joint sample)

S
3E

e =
∑

i∈S1E
ei ≈ 2, 400 10 m2 (circular plots) �

3E ,j∣j∈S2E
�HVE ,j

= �
2E ,j

�
3E ,j∣j∈S2E
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survey (Fig. 2), the actual size of a BDM-Z7 square in 
the baseline survey of ALL-EMA is 950 m × 950 m. 
The resulting inclusion probabilities of the BDM-
Z7 squares are set to �0 = 0.9025∕48 = 0.01880208 
in the Southern Alps and in the Jura region and to 
�0 = 0.9025∕96 = 0.00940104 otherwise.

First-stage sample of the baseline BDM-Z7 squares

General principles

In the first stage of sampling, the initial BDM-Z7 squares 
are sampled with unequal probabilities to achieve higher 
sampling rates in the small target zones/regions and 
to favour the selection of squares with a larger share of 
accessible agricultural land, which in turn benefits a 
self-weighted vegetation sample with fixed sample sizes 
in the third stage of sampling. The first-stage sampling 
is conducted such that a balanced sample of maximum 
spatial spreading and equal sample size is achieved in the 
five annual panels of the BDM-Z7 survey.

The development of this first stage sample can be 
described using the following notation:

• A is the surface area of the accessible agricultural 
land of Switzerland, the target population of the 
ALL-EMA survey

• i = 1,… ,M denotes the initial BDM-Z7 squares 
( M = 455)

• Ai is the surface area of the accessible agricultural 
land within square i

• ni is the number of habitat plot centres located on 
accessible agricultural land in square i

• j = 1,… , ni denotes the habitat plots in square i

Index of interest

In ALL-EMA, the aim is to form a reasonably large 
sample of BDM-Z7 squares in all ERZOs and UZL-
HRs. To guide the first-stage unequal probability 
selection of squares from the initial BDM-Z7 squares, 
it is necessary to define an index of interest Ii > 0 on 
all BDM-Z7 squares, which fulfils the constraints:

(1)
∑

i∈Ug

Ai

A
Ii = qg, for all strata U1,… ,Ug,… ,UG

where the summation is over all M squares of the ini-
tial BDM-Z7 sample, with the centre point in stratum 
Ug or Vh . U1,… ,Ug,… ,UG denote the ERZOs and 
V1,… ,Vh,… ,VH the UZL-HRs, and qg and ph are 
the proportions of the first-stage sample of squares 
that should fall into the respective zones and regions. 
They are defined as:

where AUg
 and AVh

 denote the surface area of UZL-
HR Ug and of ERZO Vh in the target population A. � is 
a parameter known from the power allocation of sam-
pling units to the sampling strata (see Bankier, 1988). 
The parameter can be adjusted according to the 
importance of the strata estimation and the overall 
estimation. A value of � = 1 results in a proportional 
to size allocation of sampling units to the zones/
regions of interest and thus favours the overall estima-
tion, while a value of � = 0 leads to equal sample 
sizes in all zones/regions. A value of � = 0.5 is used 
in ALL-EMA, which corresponds to the aim of the 
survey to produce estimates at both levels of estima-
tion (i.e. zones/regions and total population).

The calibration method described by Deville and 
Särndal (1992) is then used to determine the indices of 
interest that satisfy the constraints given in Eqs. (1) and 
(2). The logistic function is selected from the various 
calibration functions proposed by Deville and Särndal 
(1992), as it can impose bounds on the indices and limit 
the dispersion. Here, the bounds (0.61, 3) are used.

Inclusion probabilities

The aim in ALL-EMA is to select a sample of 
m = 170 squares with inclusion probabilities pro-
portional to ni Ii , where ni approximates the surface 
area of the accessible agricultural land in BD-Z7 
square i. The survey should be divided into r = 5 
rotation groups (i.e. panels of the BDM-Z7 survey) 
R1,… ,Rt,… ,RT of equal size m∕r = 34 . Hence, the 
selection of sampling units needs to be proportional 
to ni Ii within each group.

(2)
∑

i∈Vh

Ai

A
Ii = ph, for all strata V1,… ,Vh,… ,VH

qg =
A�
Ug

∑G

g=1
A�
Ug

and ph =
A�
Vh

∑H

h=1
A�
Vh
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Therefore, the inclusion probabilities in rotation 
group Rt are described as:

and require that:

The value of Ct was computed with the algorithm 
given in Tillé (2006, pp. 18–19) using the R package 
sampling  (see Tillé & Matei, 2013). This algorithm 
can assign a probability equal to one to some squares, 
which means that they are always selected in the sam-
ple (Fig.  1 in Supplementary Information). Because 
of the limited number of BDM-Z7 squares, exact 
proportionality cannot always be achieved and some 
deviation from the index of interest Ii prescribed solu-
tion has to be accepted.

Sampling

A doubly balanced spatial sampling method is used 
to select the sample of BDM-Z7 squares. The method 
has been proposed by Grafström and Tillé (2013), 
and combines the cube method of Deville and Tillé 
(2004) and the spatial pivotal method of Grafström 
et  al. (2012), which ensures that the sample S1 of 
squares is spatially spread and balanced for a given 
vector of auxiliary variables xi , such that:

In the selection of the first-stage sample S1 of BDM-
Z7 squares, the following auxiliary variables are used:

elevi is the mean elevation above sea level, measured 
on the accessible agricultural land in square i, and Ugi 
and Vhi are indicator variables (i.e. 0/1) for the ERZOs 
and UZL-HRs.

In order to improve the efficiency of the method, 
the flight phase of the doubly balanced spatial sam-
pling design is applied separately in each rotation 
group Rt . The method is then reapplied to the round-
ing problem, as proposed by Chauvet (2009). This 

�1,i∣i∈S0 = min(CtniIi, 1), i ∈ Rt

∑

i∈Rt

min(CtniIi, 1) =
m

r
= 34

M
∑

i=1

xi ≈
∑

i∈S1

xi

�1,i∣i∈S0

xi =
(

�1,i∣i∈S0 ,�1,i∣i∈S0U1i,… ,�1,i∣i∈S0Ugi,… ,�1,i∣i∈S0UGi,

�1,i∣i∈S0V1i,… ,�1,i∣i∈S0Vhi,… ,�1,i∣i∈S0VHi, ni, elevi, 1
)

procedure provides annual subsamples of equal size 
that are well spread and almost balanced in each sur-
vey year.

The spatial distribution of the final sample selec-
tion for ALL-EMA is shown in Fig.  2 of the Sup-
plementary Information, while Figs.  3 and 4 of the 
Supplementary Information show the corresponding 
sample proportions in the ERZOs and UZL-HRs.

Second-stage sample of the baseline habitat plots

The sample of the baseline habitat plots S2 is dis-
tributed across the m first-stage sample squares by 
applying grid sampling with a grid spacing of 50 m 
to a surface area of 0.9025 km2 within each selected 
BDM-Z7 square. The sample size ni is thus propor-
tional to the area of the accessible agricultural land 
Ai . The total number of habitat plots in the sample is 
n =

∑

i∈S1
ni , where ni ≤ 361 . With the grid of 361 

centre points and plots with a surface area of 10  m2, 
the conditional inclusion probability �2,j∣i∈S1 of the 
habitat plots is:

and the total (unconditional) inclusion probability of 
the habitat plots is:

For the structure plots of 200 m2 , these probabilities 
must be multiplied by 20.

Third-stage sample of the baseline vegetation plots

General principles

In the third stage of sampling, unequal probability 
sampling is again used in combination with balanc-
ing and spreading for the selection of an efficient veg-
etation sample S3 . The sample size should be as equal 
as possible in each BDM-Z7 square to facilitate the 
organisation of field data collection. Since the squares 
S1 are selected proportional to niIi , the first and 
third stages of sampling are (almost) self-weighted 
(for more on this topic see Särndal et  al., 1992, pp. 
132–154), which reduces the dispersion of the total 
inclusion probabilities of the vegetation plots.

�2,j∣i∈S1 =
10 × 361

9502
= 0.004

�H,j = �1,i�2,j∣i∈S1 = �0,i�1,i∣i∈S0�2,j∣i∈S1
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Index of interest

The aim is to give plots located in rarer but biologi-
cally important habitat types a better chance of being 
selected in the sample of vegetation plots. At the same 
time, it is preferable to avoid collecting redundant infor-
mation in spatially clumped or species-poor habitat 
types. Hence, an index of interest Jj is defined to guide 
the sample selection process. The relevant information 
is obtained from expert opinions on all 91 habitat types 
and is classified into three levels per variable. The vari-
ables refer to different types of interest, as shown in the 
RMP-biplot in (Fig. 5 of the Supplementary Informa-
tion). The first axis of the RMP-biplot is used to define 
the overall weight of the index of interest Jj.

Inclusion probabilities

The sample size is, in principle, fixed to a constant 
number ( v0 = 19 ) of vegetation plots in each BDM-
Z7 square. This number is determined according to a 
cost model. However, if the number of habitat plots in 
a BDM-Z7 square is already very small, the sample 
size may be smaller. The overall size of the sample of 
vegetation plots is v =

∑

i∈S1
vi , with vi ≤ ni , the num-

ber of vegetation plots in square i.
If needed, the sample size is adjusted in the follow-

ing way:

The conditional inclusion probabilities of the veg-
etation plots in a square can then be written as:

where the C3.i values need to fulfil the constraints:

in each i. The C3.i values are again computed with the 
algorithm described in Tillé (2006, pp. 18–19), and 

�3,j∣j∈S2 = min(C3.iJj, 1)

ni
∑

j=1

min(C3.iJj, 1) = vi

the total (unconditional) inclusion probabilities of the 
vegetation plots are:

Sampling

The sample is again drawn according to the doubly bal-
anced spatial sampling design proposed by Grafström 
and Tillé (2013). The random sample S3 of vegetation 
plots is balanced on a set of auxiliary variables xV ,j , 
such that:

For the balancing, the variables contained in the 
following vector are considered:

where �3,j∣j∈S2 are the prescribed, conditional inclu-
sion probabilities. The remaining variables are 
derived from a national digital terrain model with 
a spatial resolution of 25  m. Variables ‘elev’ and 
‘slope’ define the elevation above sea level and the 
slope at the plot location. Variables ‘east’ and ‘north’ 
are continuous variables indicating the orientation of 
the plot, calculated as cosine and sine functions of 
the plot aspect in degrees. Finally, the variable ‘topo’ 
describes the relative position of a plot along a topo-
graphic gradient ranging from exposed ridge, hilltop, 
shoulder, back-slope and foot-slope to flat plain, sink 
and distinct ditch. All these variables are expected to 
affect the spatial distribution of habitats and species 
in the landscape.

Sampling design of the EFA survey

The baseline survey is complemented by a dynamic 
survey of the temporary EFA polygons within the 
same selection of BDM-Z7 squares. Sampling is car-
ried out in the survey year using the latest EFA poly-
gons (i.e. from the previous year) in an updated sam-
pling frame and has to be repeated for each survey 
run. The main objective of this sampling is to cover 
as many EFA types as possible within a square and 
nationwide. In addition, the sampling should again 
evenly distribute the workload across the sampling 

�V ,j = �1,i�2,j∣i∈S1�3,j∣j∈S2

ni
∑

j=1

xV ,j ≈
∑

j∈S3

xV ,j

�3,j∣j∈S2

xV ,j = (�3,j∣j∈S2 , 1, elevj, slopej, topoj, eastj, northj)
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squares and ensure a geographically spread and bal-
anced sample within the squares. To achieve this, 
sampling procedures similar to those used in the base-
line survey are applied. The details are described in 
Section 1 of the Supplementary Information.

Estimators

Estimation of a plot mean and area share

For the estimation of a mean at the plot level, the Hájek 
estimator can be used (Hájek et al., 1971). Suppose that 
yj is the measurement of variable y in plot j for the habi-
tat sample S2 , then the estimator is:

If the measurement yj of variable y is made in plot 
j for the vegetation sample S3 , the estimator is:

Accordingly, the estimator of a mean of the EFA 
sample S3E is:

Applying the estimators of a mean value to data on 
the presence or absence of a category makes it possible 
to estimate the area share (proportion) of that category.

Variance in the ALL-EMA survey

The full sampling design of the baseline survey has 
as many as four stages ( S0 , S1 , S2 , S3 ). Accordingly, 
the EFA sample also includes up to four stages ( S0E , 
S1E , S2E , S3E ). In the four-stage case, the variance 
should have four terms, which is difficult to handle 
in practice.

The first-stage sample S1 is not strictly a second-
stage sample of S0 , but a second-phase sample in the 
sense of the terminology used by Särndal et al. (1992, 
pp. 133–150 and 343–368). Indeed, there are no pri-
mary and secondary units for passing from S0 to S1 
because they are both samples of squares. Sample S1 

(3)
̂
YH =

1
∑

j∈S2

1

�H,j

�

j∈S2

yj

�H,j

̂
YV =

1
∑

j∈S3

1

�V ,j

7
�

j∈S3

yj

�V ,j

̂
YHVE

=
1

∑

j∈S3E

1

�HVE ,j

�

j∈S3E

yj

�HVE ,j

is just a subset of S0 . Analogously, S3 is just a sub-
set of S2 without any intermediate units. The only 
intermediate units are the squares. This also applies 
in the EFA sample. The variance estimation of ALL-
EMA is therefore simplified by the assumption that 
the sampling design only consists of two stages: the 
selection of the squares and the selection of the cir-
cular plots.

For the BDM-Z7 sample, the selection of squares 
S0 is systematic. However, the variance is usually 
estimated under the assumption that the squares are 
selected with simple random sampling (Plattner et al., 
2004; Lanz, 2013; BDM Coordination Office, 2011; 
BDM Coordination Office, 2014). This estimator 
probably slightly overestimates the variance. Indeed, 
if a spatial correlation exists, systematic sampling 
provides generally better estimates than simple ran-
dom sampling.

In contrast, to further simplify the estimation of 
variance in the more complex ALL-EMA design, it is 
assumed that S1 is selected from the entire agricultural 
area of Switzerland A, with replacement and unequal 
probabilities according to the Hansen-Hurwitz scheme 
(Hansen & Hurwitz, 1943) with drawing probabili-
ties pi = �1,i∕m . With this assumption, the calculation 
of the variance is still laborious. However, when this 
complex variance needs to be estimated, the variance 
estimator simplifies dramatically. While the variance is 
written as the sum of as many terms as there are degrees 
in the design, the simplified variance estimator consists 
of only one term (see Särndal et al., 1992; Chauvet &  
Vallée, 2020; Tillé, 2020, pp.  158–161). One only  
has to calculate a simple sum of squares to estimate the 
variance. In this way, all stages of the sampling design 
are well considered.

The Hansen-Hurwitz assumption applies both to 
the BDM-Z7 sample of squares S0 and to the sample 
S1 of S0 . On the one hand, this approach overestimates 
the variance by a factor with an order of magnitude 
equal to the inverse of correction for the finite popu-
lation: (M0 − 1)∕(M0 − m) , where M0 approximates 
the number of squares in the total area A. In our case, 
with m = 170 and M0 ≈ 15, 688 , the factor is equal 
to (15688 − 1)∕(15688 − 170) = 1.010891 , which 
is very small. On the other hand, the Hansen-Hurwitz 
assumption also neglects the effect of the systematic 
selection of S0 and the balancing design of S1 . The 
variance is thus additionally slightly overestimated. In 
any case, it is impossible to estimate the variance in 
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an unbiased way in systematic sampling because some 
joint inclusion probabilities are null. The assumption 
applied here thus provides confidence intervals that are 
slightly conservative but easy to calculate.

Specifically, the estimator of the variance for a plot 
mean simplifies to:

where N̂ is an estimator of the total area A divided by 
the plot area size. Ŷi is the estimated total in square i, 
and Ŷ  is computed as follows:

Estimator Eq. (4) can be used for both the baseline 
samples and the additional EFA sample. N̂ and Ŷi are, 
however, estimated differently. For the baseline habi-
tat type sample:

For the baseline vegetation sample:

For the EFA sample:

where Qi denotes the set of plots in square i. Cases of 
spatial mismatch between a EFA polygon and a plot 
area can be considered by computing:

where wj is again the proportion of the plot area 
located within the EFA polygon. Similarly, N̂ in Eq. 
(4) can be defined according to the sampling design 
as:

(4)v̂ar(
̂
Y) =

1

N̂2

1

m(m − 1)

∑

i∈S1

(

Ŷi

pi
− Ŷ

)2

Ŷ =
∑

j∈S1

Ŷi

�1,i

Ŷi =
∑

j∈Qi∩S2

yj

�2,j∣i∈S1

Ŷi =
∑

j∈Qi∩S3

yj

�2,j∣i∈S1�3,j∣j∈S2

Ŷi =
∑

j∈Qi∩SE

yj

�2E ,j∣i∈S1E
�3E ,j∣j∈S2E

Ŷi =
∑

j∈Qi∩SE

yjwj

�2E ,j∣i∈S1E
�3E ,j∣j∈S2E

N̂H =
∑

j∈S2

1

�H,j

, N̂V =
∑

j∈S3

1

�V ,j
, or N̂HVE

=
∑

j∈S3E

wj

�HVE ,j

Sample efficiency assessment

Planning comprehensive biodiversity monitoring 
of biodiversity on agricultural land at a large scale 
requires complex sampling design decisions. In the 
case of ALL-EMA, this process was supported by 
examining the estimation efficiency of different 
sampling designs using Monte Carlo simulations 
and power analyses based on modelled habitat data. 
Here, we therefore present results from the baseline 
habitat sample S2 and also use real data to check the 
validity of the habitat model. However, the prin-
ciples of this assessment also apply to the base-
line vegetation sample S3 and the additional EFA 
samples, as their sampling replicates the sampling 
techniques of the sample of squares S1 within those 
squares. The structure of this section then follows 
the natural stages of the survey planning phase. 
After decisions on sampling procedures have been 
made, the issue of sample size and distribution is 
addressed, and finally, the changes that the habitat 
survey can be expected to detect are assessed.

Methods

Artificial population of habitat types

Assessing the estimation efficiency of the habitat 
sample S1 required knowledge on the spatial dis-
tribution of the habitat types in the agricultural 
land of Switzerland. Due to the lack of real data 
in the planning phase, an artificial population of 
habitat types was created in the initial BDM-Z7 
grid sample of squares S0 . To do this, the sam-
ple size of a habitat type l in a square ni,l was mod-
elled by means of a double Poisson model with 
ni,l = 1∕2 × Pois(1, 2) × Pois(pl,g, ni) , where ni is the 
number of habitat grid plots falling within the agri-
cultural land of a square Ai and pl,g is the expected 
proportion of habitat type l in the corresponding 
ERZO g. The models were run independently for 
each habitat type, so that the total sample size within 
a square differed randomly from the intended sample 
size ni . The values of ni were known from the data-
base, whereas the values of pl,g were based on expert 
knowledge about the occurrence probability of a hab-
itat type within an ERZO. As the expert knowledge 
was incomplete, only 67 habitat types with assigned 
occurrences were modelled.
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In this way, the abundance of habitats at the level 
of squares (i.e. raster points within the squares) was 
modelled. In doing so, the uneven distribution of hab-
itat types between the ERZOs was mimicked, and the 
amount of agricultural land in the squares was con-
sidered. By choosing a double Poisson model, consid-
erable variation between the squares was also added. 
However, an even distribution of the habitats within 
the ERZOs was assumed, as no information about 
this was available in the planning phase.

Effect of stratified balancing

A Monte Carlo simulation study was performed, 
using the initial BDM-Z7 squares S0 with modelled 
habitats from the ‘‘Artificial population of habitat 
types’’, to investigate the benefit of a stratified bal-
anced square sample S1 for the baseline habitat sam-
ple S2 compared with a pure unequal probability sam-
pling design. Testing the effect of spatial spreading 
additional to stratified balancing was not useful, due 
to the lack of spatial structure within the strata in the 
habitat model. Therefore, 300 draws of the first-stage 
unequal probability sampling of ALL-EMA were 
simulated with and without balancing on xi , and the 
proportional surface area occupied by the 67 target 
habitat types in the agricultural land of Switzerland 
was repeatedly estimated using Eq. (1) in the Supple-
mentary Information. The coefficient of variation was 
then calculated as a percentage across sample draws 
to express the accuracy of the proportion estimates 
for each design. To better see the effect of sampling, 
the proportion estimates of the habitat types were 
repeatedly summed into 17 broader habitat classes, 
corresponding to the second level of detail (i.e. habi-
tat group) in the habitat typology of Delarze et  al. 
(2015), and their coefficient of variation was calcu-
lated again across sample draws.

Effect of sample clustering

Budget constraints limit the number of sampling 
units that can be observed in the field. Reducing the 
number of sampling squares reduces travel costs and 
allows a higher sampling rate within the squares. 
However, plots that are close to each other tend to be 
similar, which has a negative impact on the statisti-
cal efficiency of the sample. To assess the effect of 
sample clustering on the plot-level estimation of 

habitat types in ALL-EMA, an additional Monte 
Carlo simulation study was performed based on the 
habitat distribution model described in the ‘‘Artificial 
population of habitat types’’ section and a global cost 
model. The cost model assumed a fixed cost per habi-
tat record and travel time (i.e. the time to travel to the 
squares and the time to travel between plots within 
a square), which allowed comparison of cluster ver-
sions with equal costs. Here, the Monte Carlo simu-
lation compared square sample sizes m ranging from 
100 to 300. Survey costs were kept equal by adjusting 
the affordable sample size ni to the selected square 
sample size and modelling an artificial habitat popu-
lation per cluster version using the adjusted sample 
size ni . Subsequently, 300 draws of the ALL-EMA 
sample of squares S1 were performed per cluster ver-
sion and habitat model. To quantify the accuracy of 
each cluster version, the proportions of the habitat 
types were again estimated per sample draw using Eq. 
(1) in the Supplementary Information, the individual 
estimates were summed within the broader habitat 
classes, and the coefficient of variation was calcu-
lated as a percentage across sample draws.

Power analyses for change detection

Power analyses were performed to examine the 
changes that are likely to be detected by the baseline 
habitat sample S2 . The analyses considered two-stage 
sampling with unequal probabilities and estimated the 
minimum number of squares required to detect rel-
evant changes in the surface area of a habitat type by 
using the equation for permanent (re-measured) sam-
pling units:

where Y  denotes the current proportion (mean) of 
a habitat type and s2 is the variance of the respec-
tive square-level proportions. � is the correlation  
between paired square proportions, and � is the rate 
of change to be detected at a significance level of  
� and a power of 1 − � . Zp is the constant exceeded 
with probability p by a standard normal N(0;1) ran-
dom variable. In this study, the aim was to detect 
relevant changes � of 10%, 20%, and 30% at a con-
fidence level of 68% ( � = 0.32 ) and a power of  
1 − � = 0.5 , thus corresponding to the detection of 

mmin ≥
s2(2 − 2�)(Z1−�∕2 + Z1−�)

(�Y)2
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‘significant standard errors’. This low threshold is 
a useful reference value for early change detection 
in the establishment phase of long-term monitor-
ing programmes (Mahrer & Vollenweider, 1983). 
Three classes (0.8, 0.9, 0.95) were assumed for the 

correlation between paired square proportions � . The 
correlation depends on the fluctuation of a habitat 
type over time and was expected to increase with the 
time span between re-measurements in a way similar 
to the rate of change �.

Fig. 4  Monte Carlo simulations exploring the effect of strati-
fied balancing in ALL-EMA first-stage unequal probability 
sampling (UPS) of squares on sampling rates in ERZOs a, b, 
and national estimation accuracy of 67 target habitat types c, 
d and 17 aggregation classes e, f. The boxplots show sampling 
rates as proportions within strata (ERZOs), and the bar graphs 
show estimation accuracy as coefficient of variation (CV). 
The categories are displayed in decreasing order of (expected) 

nationwide frequency. On the left side a, c, e, the sampling 
design is unbalanced. On the right-hand side b, d, f, the sam-
pling design is balanced on xi . The graphs show the results 
of 300 draws of the sampling designs from the initial grid of 
BDM-Z7 squares S

0
 with an artificial population of 67 habitat 

types. The ERZOs are abbreviated as follows: sz, summering 
zone; vz, valley zone; lm, lower mountain zones I and II; um, 
upper mountain zones III and IV; hz, hill zone
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Power analyses were performed in the planning 
phase using the modelled habitats from the ‘‘Artifi-
cial population of habitat types’’ section. The results 
can be found in Section  5 of the Supplementary 
Information. Here, existing survey data were used 
to present an up-to-date picture. A first set of power 
analyses used the observations from the first survey 
run of ALL-EMA from 2015 to 2019 to estimate ̂Y  
and ŝ2 for each habitat type. In doing so, ̂Y  was cal-
culated using Eq. (3) from the ‘‘Estimators’’ section. 
To estimate ŝ2 , the adjusted Hansen-Hurwitz esti-
mator defined in Section  4.3 of the Supplementary 
Information was used to calculate v̂ar(̂Y1) , the vari-
ance of a global mean square proportion. ŝ2 was then 
calculated as:

Next, available replicate data from 68 squares observed in 
2020 and 2021 were used to perform an additional power 
analysis, with �̂  and �̂  also estimated from real data, this 
time distinguishing between three power classes 1 − � . 
The wCorr package (Bailey & Emad, 2021) in R was 
used for the calculation of �̂  , allowing the inclusion of 

ŝ2 = v̂ar(
̂
Y1)m

survey weights. This gave the actual number of squares 
needed to confirm the changes observed so far (after 5 
years) with a confidence level of 68%.

Results and discussion

Effect of stratified balancing

The proportion estimates of the modelled habitat 
types were clearly better with stratified balancing 
than with pure unequal probability sampling in the 
Monte Carlo simulations (Fig.  6). The increase in 
accuracy was 14.5% on average (i.e. mean relative 
reduction in the coefficient of variation) and was par-
ticularly evident for the frequent habitat types on the 
left side of Fig. 4d and f. The improvement occurred 
even though the modelled habitat population is a grid 
sample S0 and thus already well distributed over the 
ERZOs. However, simulations that also included geo-
graphic spreading in the sample design (not presented 
here) showed no further improvement, which was not 
surprising since the artificial population was con-
structed without spatial structure in the ERZOs.

Fig. 5  Monte Carlo simulations exploring the effect of cost-
neutral sample spreading (decreased clustering of the habitat 
sample) for estimating the national proportion of 17 aggre-
gated habitat types, where type 2_WF_b occurs only in cluster 
version b. Bar graphs b to f show the precision of the propor-
tion estimates in terms of coefficient of variation (CV). The 

simulations are based on 300 draws of the ALL-EMA square 
sample S

1
 with varying sample size m from the grid of BDM-

Z7 squares S
0
 with a modelled population of 67 habitat types 

for each scenario of m. a shows, for reference, the distribution 
of aggregated habitat types in the modelled population of sce-
nario b 
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Balancing and geographic spreading is assumed to 
be most effective in the third stage of ALL-EMA sam-
pling. The spatial structure is expected to be highest 
within the squares. In addition, the variables used for 
balancing in this stage of sampling are likely to have an 
even greater impact on the indicators and target items.

Effect of sample clustering

As expected, the estimation quality of 17 aggre-
gated habitat types increased with larger square 
sample sizes in the Monte Carlo simulations 
(Fig.  5). The increase in estimation accuracy 

Fig. 6  National change 
detection for the target 
habitat types as a function of 
relevant changes a, b, c and 
actual changes observed 
after 5 years d. Circles 
indicate the minimum 
number of sample squares m 
needed to confirm a certain 
degree of habitat change at a 
confidence level of 68% and 
a power of 1 − � = 0.5 . In a, 
b, and c, correlation values 
of � = 0.95 , � = 0.9 , and 
� = 0.8 are assumed for the 
changes to be detected. The 
different colours represent 
three classes of change 
� (blue: 10%, pink: 20%, 
green: 30%). In contrast, d 
shows the minimum number 
of squares needed to detect 
actual changes �̂  with 
actual correlation values �̂  
observed after 5 years. The 
different symbols represent 
the three power classes 
(square: 0.9, triangle: 0.7, 
circle: 0.5). In each panel, 
the symbols under the green 
line at m = 170 indicate the 
changes that can be detected 
with the square sample size 
of ALL-EMA. The graphs 
include all 41 habitat types 
that were recorded in at 
least 10 of the 68 revisited 
squares. Missing symbols are 
outside the displayed range
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(without 2_WF_b) was substantial from m = 100 
to m = 150 (19.8% on average), while the improve-
ments were rather small and not even consistent for 
the larger square sample sizes (25.6% for m = 200 , 
23.3% for m = 250 , and 28.7% for m = 300 com-
pared with m = 100 ). Based on this result, strong 
clustering with 170 squares was ultimately 
selected, as it favoured inference at the square (i.e. 
landscape) level, a predefined secondary objective 
in the ALL-EMA survey.

Power analyses for change detection

The power analyses based on data from the first survey 
run (Fig.  6a, b and d) show similar statistical power 
to that expected from the simulations before field 
work (see Fig.  6 in the Supplementary Information). 
The small but systematic underestimation of statisti-
cal power with the simulations suggests that the dou-
ble Poisson habitat model was a fairly rigorous study 
population. The additional power analysis, which con-
sidered actual patterns of change (Fig. 6d), shows that, 
after repeating all 170 squares, ‘significant standard 
errors’ can be expected to be detected with a power of 
0.5 for the majority (i.e. 25 out of 41) of the habitat 
types studied. Indeed, the rate of change �̂  (median = 
0.17) already observed after 5 years corresponds to 
the relevant range studied. The correlation values �̂  
(median = 0.86) were also in the middle of the investi-
gated range.

Conclusions

This study shows how nationwide monitoring of habi-
tats, structures, and plants can be carried out to effi-
ciently capture the complex patterns of biodiversity 
on agricultural land at all relevant scales. The sam-
pling design presented combines several techniques 
for this purpose:

• The samples are clustered into a selection of 
BDM-Z7 squares to reduce travel time and to 
facilitate both plot (i.e. local) and landscape-level 
estimation.

• The squares and plots are selected with inclusion 
probabilities proportional to predefined weights 
(i.e. index of interest). Thus, the samples are 
directed towards the small ERZOs and UZL-HRs 

(square sample), the less common but relevant 
habitat types (baseline vegetation sample), and a 
large number of EFA types (EFA sample).

• Using two-phase sampling allows for a more com-
prehensive coverage of plant species, despite the 
lack of a priori information about them.

• The selection of squares is temporally stratified to 
enable a fixed sample size per survey year and to 
match a predefined annual rotation plan.

• Applying the methods of spatially balanced sam-
pling and doubly balanced sampling ensures 
that the samples of all stages and years are well 
spread in the geographic space.

• These methods also ensure that the samples and 
their annual parts are balanced across regions 
and important environmental gradients, i.e. the 
Horvitz-Thompson estimator of the total of the 
balancing variables is almost equal to the popu-
lation total. The sample variance of the balanc-
ing variables can thus be minimised.

• Using self-weighting enables fixed sample sizes vi 
and ei at the third stage with minimal dispersion of 
inclusion probabilities.

• The dynamic sampling of the EFAs takes into 
account the temporary nature of agri-environmental 
measures.

These properties ensure that the estimators are very 
efficient in extrapolating the results of the sample to 
subpopulations (in particular the predefined target 
groups) or in total (i.e. the entire agricultural land 
of Switzerland). Sampling with unequal probabili-
ties equals stratified sampling with unequal sam-
pling rates but allows a general rather than a strati-
fied evaluation. The (annual) sample size within 
regions and squares is still controlled by sampling 
with fixed sample sizes, stratified balancing, and 
self-weighting, which is convenient for the organi-
sation of field work. Additional balancing on envi-
ronmental gradients is efficient if the indicator to 
be estimated correlates with these gradients, while 
geographic spreading of the samples avoids the 
collection of redundant information from nearby 
sites. Both features exceed the capabilities of strati-
fied approaches. Extending the advanced sampling 
design to dynamic sampling of agri-environmental 
measures is particularly important to evaluate the 
allocation of subsidies to promote biodiversity-
friendly practices.
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A Monte Carlo simulation study using modelled 
habitat data showed the positive effect of strati-
fied balancing for the baseline habitat sample. The 
average reduction of the sample variance was 14%. 
Another simulation examined how to balance the 
workload between sampling squares to find an opti-
mal trade-off between plot-level and landscape-
level estimation. This analysis indicated relatively 
small improvements in habitat estimates with 
square sample sizes larger than 150. Power analyses 
with real data showed that after a full survey run, 
changes could be detected for 25 habitat types with 
a confidence level of 68% (i.e. ‘significant standard 
error’) and a power of 0.5. These results are simi-
lar to those of power analyses with modelled habitat 
data, confirming the double Poisson habitat model 
as a suitable study population in the planning phase 
of the monitoring programme.

The approach presented here offers several advan-
tages that have not yet been exploited in operational 
biodiversity monitoring on complex agricultural land. 
In this way, the approach could be a useful example 
for improving future monitoring networks and for 
obtaining meaningful and efficient samples for opera-
tional use, including at the local scale. To provide 
guidance on how to implement the advanced sam-
pling techniques, an annotated R script, which dem-
onstrates the first stage selection of squares of ALL-
EMA, is provided additional to this article.
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