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Abstract: Mapping and monitoring agricultural land-use intensity (LUI) changes are essential for
understanding their effects on biodiversity. Current land-use models provide a rather coarse spatial
resolution, while in-situ measurements of LUI cover only a limited extent and are time-consuming and
expensive. The purpose of this study is to evaluate the feasibility of using habitat type, topo-climatic,
economic output, and remote-sensing data to map LUI at a high spatial resolution. To accomplish this,
we first rated the habitat types across the agricultural landscape in terms of the amount and frequency
of fertiliser input, pesticide input, ploughing, grazing, mowing, harvesting, and biomass output. We
consolidated these ratings into one LUI index per habitat type that we then related to topo-climatic,
economic output, and remote-sensing predictors. The results showed that the LUI index was strongly
related to plant indicator values for mowing tolerance and soil nutrient content and to aerial nitrogen
deposition, and thus, is an adequate index. Topo-climatic, and, to a smaller extent, economic output
and remote-sensing predictors, proved suitable for mapping LUI. Large- to medium-scale patterns
are explained by topo-climatic predictors, while economic output predictors explain medium-scale
patterns and remote-sensing predictors explain local-scale patterns. With the fine-scale LUI map
produced from this study, it is now possible to estimate within unvarying land-use classes, the effect
on agrobiodiversity of an increase in LUI on fertile and accessible lands and of a decrease of LUI by
the abandonment of marginal agricultural lands, and thus, provide a valuable base for understanding
the effects of LUI on biodiversity. Due to the worldwide availability of remote-sensing and climate
data, our methodology can be easily applied to other countries where habitat-type data are available.
Given their low explanatory power, economic output variables may be omitted if not available.

Keywords: agricultural land-use intensity; agricultural input; biomass output; distribution model;
habitat types

1. Introduction

Future growth in human population and prosperity will increase the demand for food and
fuel [1]. Meeting this demand will require changes in agricultural land use [2]. Agricultural land-use
change impacts biodiversity and therefore ecosystem services [3–5]. Biodiversity loss from agricultural
land-use change occurs due to changes in landscape composition (i.e., proportion of cultivated land),
landscape configuration (i.e., spatial arrangement of landscape elements), and land-use intensity (LUI)
(i.e., number of inputs and outputs) [5–8]. In western Europe, land resources that are suitable for
agricultural cultivation are becoming scarce, and thus, there are limited opportunities for increasing
the proportion of cultivated land without very high costs, which are economically not profitable [9].
Therefore, changes in LUI are most important [8].
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Land-use intensification involves the introduction of high-input arable systems on fertile and
accessible lands, along with the abandonment of marginal agricultural lands [10,11]. This leads to
the loss of semi-natural areas [12], to an increase in habitat fragmentation [8], to an alteration of
habitat types [13], and to natural succession on marginal land [14,15]. Yet, land-use science has mainly
focused on broad land-cover conversions, while spatial patterns in LUI within cropland, grazing,
and mowing systems remain highly unclear [16–18]. Furthermore, studies that assess the effect of
LUI on biodiversity assume that intensively used agricultural land, which surrounds semi-natural
habitats, is entirely unsuitable for most species, based on the island biogeography theory. These studies
measure LUI as the area of, or distance to, semi-natural habitats such as woody elements [19–22];
the percentage of permanent grassland [23]; the percentage of arable fields [24]; or broad habitat
classes [25]. However, it is now acknowledged that intensively used agricultural land may not always
be entirely unsuitable [26–28]. Some agricultural resources have positive consequences for species’
persistence, dispersal, and colonisation [29–31]. The failure to address LUI more precisely has limited
scientists’ ability to make credible evaluations of the impacts of changes in land use and land cover on
biodiversity in a changing climate [17,32]. A finely graduated index with a high spatial resolution may
provide vital information on the effects of LUI on biodiversity.

To map LUI with a high spatial resolution, LUI has to be first parametrised and then spatialised.
LUI can be parametrised by defining it as the combined effect of agricultural inputs (e.g., fertiliser,
pesticide, ploughing) and biomass outputs (e.g., grazing, mowing, harvest) [33,34]. These components
of LUI are currently spatialised by remote-sensing approaches, land-use models, and farmer interviews.
Remote-sensing approaches primarily map LUI components by analysing temporal profiles of
vegetation indices [35,36]. Before the launch of Sentinel satellites, remote-sensing approaches were
mainly based on moderate resolution imaging spectroradiometer (MODIS; [35,37]), and thus had a
rather low spatial resolution. In recent years, several studies have been developed that either use
Sentinel-2 [38,39], or Sentinel-1 and Sentinel-2 combined [40,41]. Overall, remote-sensing approaches
mostly focus on individual agricultural land-use classes (e.g., field crops [40], grassland [36]), or a few
LUI components (e.g., biomass removal [42] or grassland mowing frequency [39]), without including
ancillary predictors such as climate or topography, despite the fact that patterns on regional and global
scales may strongly be topo-climatically determined. Current land-use models provide a detailed
picture of the dynamics of land use [43], but the maps’ spatial resolution is too low for biodiversity
analyses. Spatially explicit information for individual pieces of land from elaborate, detailed interviews
with farmers [44,45] are very costly to compile and can be unreliable. Because land-use activities take
place in production systems that are defined by their biophysical and economic properties [16], a new
approach based on spatially explicit habitat-type data, topo-climatic data, economic output data, and
remote-sensing data may help map LUI at a higher spatial resolution.

In the new approach, LUI parameters are derived from habitat types, i.e., areas with particular
environmental conditions and management regimes that are sufficiently uniform to support a
characteristic assemblage of organisms. Habitat type-specific ratings of agricultural inputs and
biomass outputs are then assembled into an LUI index that can be spatialised. This spatialization is
done by topo-climatic data that characterise the biophysical properties, economic output data that
describe the economic properties, and remote-sensing data that address the actual local agricultural
management, i.e., agricultural input and biomass output, which are constrained by the biophysical
and economic properties.

In this paper, we (1) evaluate the feasibility of creating an LUI index by rating the agricultural
inputs and biomass outputs per habitat type, (2) evaluate the feasibility of mapping this LUI index at a
high spatial resolution by using topo-climatic data, economic output data, and remote-sensing data,
and (3) evaluate the relative importance of the three predictor sets for determining LUI.
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2. Materials and Methods

2.1. Framework

We selected the agricultural area of Switzerland as the study area. First, we created an expert-based
LUI index for all 96 habitat types that typically occur in the agricultural landscape of Switzerland,
as shown in Figure 1. We used a combined index of input and output, since these two dimensions
of the LUI are not independent of each other. For example, fertiliser applications are often required
to allow for higher mowing frequencies [46]. We evaluated the LUI index by correlating it to plant
indicator values for mowing tolerance and soil nutrient content based on the plant communities
from Switzerland’s farmland species and habitat monitoring program (ALL-EMA). Additionally,
we compared the LUI index of these plots to the aerial nitrogen deposition map, which indicates
different aspects of livestock breeding (housing, storage, and application of manure, grazing) and plant
production (mineral fertilisers on cropland, grassland, and alpine pastures). To create the LUI maps,
we spatially predicted the LUI index assigned to each ALL-EMA plot with the help of topo-climatic
predictors (i.e., climate, topography, and soil), economic output predictors (i.e., agricultural standard
outputs) and remote-sensing predictors (i.e., Normalised Difference Vegetation Index) based on data
from Sentinel-2 sensors. Further, we estimated the relative importance of the three predictor sets for
determining LUI using a variation partitioning analysis.

Figure 1. Framework for creating, predicting, and evaluating a land-use intensity (LUI) index.

2.2. Study Area

The study area was located in and along the central Alps in Switzerland (45◦49′N–47◦48′N,
5◦57′E–10◦29′E; ~41,000 km2). North of the Alps, the climate is moist and maritime. The climate is
drier and more continental in the interior Alpine valleys, and the southern climate is mild and humid.
The Alps act as a barrier that separates the climates of the Mediterranean and central Europe. The
study area is the agricultural landscape and encompasses approximately 15,000 km2 (Figure 2).
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Figure 2. Location of study area showing the 170 landscape squares of Switzerland’s farmland species
and habitat monitoring program ALL-EMA (blue squares) and the farmland species and habitat
monitoring plots within the agricultural landscape on a 50 m mesh (yellow dots).

2.3. Data

2.3.1. Habitat Types, Plant Species, and Plant Indicator Values

Data on habitat types and vascular plant species originated from Switzerland’s farmland species
and habitat monitoring program (ALL-EMA; www.allema.ch). ALL-EMA performs surveys every five
years on a given plot; the first five-year cycle started in 2015. Data are collected within the open agrarian
landscape in 170 1 km2 landscape squares distributed across Switzerland (Figure 2). Habitat-type
data were collected from circular plots with a size of 10 m2 located on a regular grid of 50 m. Forest,
settlement, water bodies, glaciers, and rocks within the squares were not sampled. Data on vascular
plants were obtained from a subsample of 19 plots. For the years 2015–2019, habitat-type information
was available for 30,560 plots, and 3050 plots had a complete survey of vascular plants.

Plant indicator values for mowing tolerance and soil nutrient content are derived from
Landolt et al. [47]. Mowing tolerance indicates the tolerance to a certain frequency of mowing
or grazing. Soil nutrient content indicates the amount of available nitrogen and phosphorous in the
soil. Indicator values range from 1 to 5. Low values indicate low mowing tolerance or low soil nutrient
content, and high values indicate high mowing tolerance or high soil nutrient content. For each of the
3050 plots where we had a complete survey of vascular plants, mean indicator values were derived by
calculating a plant cover [48] weighted mean of the indicator values.

www.allema.ch
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2.3.2. Topo-Climatic, Economic, and Remote-Sensing Data

Topo-climatic, economic, and remote-sensing variables were selected based on their relevance
to agricultural land use, plant physiology, and explaining spatial patterns. In total, 14 variables
were selected (Table 1), which had a |rs| < 0.7 [49] and a Variance Inflation Factor < 5 [50,51] to
reduce multicollinearity problems. All variables were generated with R [52] and ArcGIS 10.3 [53] and
resampled to a 10 m spatial resolution.

In terms of topo-climatic variables, we selected topographic, climatic, and edaphic variables.
The topographic variables used are slope (◦), potential yearly global radiation (kJ m−2 d−1), and
topographical position index (m), which were all computed from a 25 × 25 m digital elevation
model [54]. For climatic variables, we selected annual degree-days using a 0 ◦C threshold (◦C d),
summer frost days (d), and yearly precipitation days (d), which were all calculated from downscaled
monthly temperature and precipitation maps (reference period 1950–2000) [55–57]. We selected soil
suitability for agricultural land-use as an edaphic variable (soil suitability map of Switzerland [58]).

Standard output coefficients for Swiss agriculture describe the average monetary value of
agricultural production at producer prices. We used average standard output coefficients for animal
and crop production for 2005–2009 from the AGIS database [59]: cattle, sheep, and goats (AGIS-codes
1110–1586 and 1882); pigs and poultry (AGIS-codes 1611–1881); crop area (AGIS-codes 501–598);
permanent crops (AGIS-codes 701–798); and protected crops (AGIS-codes 801–898). We omitted
coefficients for meadows and pastures (AGIS-codes 601–698) because they were highly correlated with
the coefficients for cattle, sheep, and goats, as pasture is their main forage. To approximate average
standard output coefficients per pixel, we divided the summed average standard output coefficients
per community by the community size.

For remote-sensing data, we used the Normalised Difference Vegetation Index (NDVI), which is
strongly correlated with aboveground net primary productivity. We selected the mean and standard
deviation for the growing seasons (March–October) [60,61] of 2016–2019 from Sentinel-2. The mean is
a linear estimator of annual primary production, which is one of the most integrative descriptors of
ecosystem functioning [62], while the standard deviation is a descriptor of the differences in carbon
gains between seasons [60,61]. The Sentinel-2 sensor has a spatial resolution of 10 m, a maximal
revisiting time of 3–5 days, and has been available as of July 2015.

To evaluate the LUI index, we used, amongst others, the aerial nitrogen deposition (kg N/ha*year)
map from 2010 with a 200 m resolution [63]. The nitrogen deposition of the year 2010 amounts to
16.3 kg ha−1 a−1, to which gaseous NH3 contributes the largest share. The atmospheric deposition of
gaseous NH3 is strongly correlated with the spatial distribution of NH3 emissions. The main source of
the Swiss NH3 emissions is Swiss agriculture, especially the livestock, which accounts for about 92% of
total ammonia emissions.
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Table 1. Overview of the topo-climatic, economic, and remote-sensing variables and the nitrogen deposition data.

Predictor Set Variable Name/Description Range (min, max) Unit Source

Topo-climatic Degree-days with a 0 ◦C threshold 0–45,832 ◦C d
Wordclim data of 1950–2000 [55] downscaled with
Daymet following Thornton et al. [64] according to

Zimmermann and Kienast [56].

Topo-climatic Yearly precipitation days 20–59 d
Wordclim data of 1950–2000 [55] downscaled with
Daymet following Thornton et al. [64] according to

Zimmermann and Kienast [56].

Topo-climatic Slope 0–88 ◦ Calculated with ArcGIS from DHM25 [54].

Topo-climatic Potential yearly global radiation 2,180–23,443 kJ m−2 d−1 Calculated according to Zimmermann and Kienast
[56] from DHM25 [54].

Topo-climatic Topographic position index 616–1589 m Calculated according to Zimmermann and Kienast
[56] from DHM25 [54].

Topo-climatic Summer frost days 0–8,8154 d
Wordclim data of 1950–2000 [55] downscaled with
Daymet following Thornton et al. [64] according to

Zimmermann and Kienast [56].

Topo-climatic Soil suitability for agricultural land-use 1–18 - Soil suitability map of Switzerland [58].

Remote sensing Mean NDVI −1–1 - Sentinel-2 (ESA)

Remote sensing SD NDVI 0–0.3 - Sentinel-2 (ESA)

Economic output
Agricultural standard output coefficient of

cattle, sheep, and goats (AGIS-codes
1110–1586 and 1882)

0–79,603 CHF km−2 AGIS database for the years 2005–2009 [59].

Economic output Agricultural standard output coefficient of
pigs and poultry (AGIS-codes 1611–1881) 0–38,202 CHF km−2 AGIS database for the years 2005–2009 [59].

Economic output Agricultural standard output coefficient
crop area (AGIS-codes 501–598) 0–114,802 CHF km−2 AGIS database for the years 2005–2009 [59].

Economic output Agricultural standard output coefficient of
permanent crops (AGIS-codes 701–798) 0–184,619 CHF km−2 AGIS database for the years 2005–2009 [59].

Economic output Agricultural standard output coefficient of
protected crops (AGIS-codes 801–898) 0–178,432 CHF km−2 AGIS database for the years 2005–2009 [59].

Aerial nitrogen deposition Aerial nitrogen deposition (critical loads) 2–50 kg ha−1 y−1 Rihm and Achermann [63].
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2.4. LUI Index per Habitat Type

2.4.1. Parametrisation

For the parametrisation of the index, we rated the LUI of each habitat type (classified according to
Delarze and Gonseth [65]) associated with the agricultural landscape (see Appendix A). Each habitat
type was rated separately in terms of fertiliser and pesticide input (frequency and proportion of area);
ploughing (frequency and proportion of fallow area); grazing, mowing, harvesting (frequency and
proportion of area); and biomass output (dt dry matter/ha/y) (Table 2). In order to derive only a
single LUI index per habitat type [33], we first summed all input ratings, as they are all ratings of the
frequency of treatments and the proportion of area where the treatments were applied. To enable a
combined index of input and output ratings, which have different quantities, we standardised the
summed input ratings and the output ratings between 0 and 0.5, and then summed the standardised
input and output ratings. The resulting LUI index ranges from 0 (i.e., no land use) to 1 (maximum
LUI). The ratings for all habitat types before summing and standardising are given in Appendix A.

Table 2. Rating scheme of habitat types.

Dimension of LUI LUI Factors Rating

Input Fertiliser frequency*proportion of areaa

Input Pesticide frequency*proportion of areaa

Input Ploughing frequency*proportion of areaa

Input Grazing, mowing, harvesting frequency*proportion of areaa

Output Grazing, mowing, harvesting Biomass output in dt dry matter/ha
a the “frequency*proportion of area” considers the amount of area which is treated per year. For example, if only
half of the area is treated once per year, then the rating is 0.5, and if the treatment is applied to the entire area three
times per year, then the rating is 3.

2.4.2. Evaluation

We evaluated the LUI index by correlating (i.e., Pearson correlation) the assigned LUI index of
the habitat types from ALL-EMA with plant indicator values for mowing tolerance and soil nutrient
content [66] of the vegetation samples from ALL-EMA. Additionally, we correlated the LUI index of
these plots to the aerial nitrogen deposition map.

2.5. LUI Map and Variation Partitioning

We built generalised linear models (GLMs) with logit links, assuming a binomial distribution of
LUI and its components. The predictor variables (topo-climatic, economic output, and remote-sensing
variables) were entered as linear and quadratic terms to allow for non-linear responses. Backward
and forward stepwise variable selection was based on the Bayesian information criterion (BIC). Model
fit was evaluated by the adjusted D2 to calculate the amount of deviance accounted for by a GLM,
thus allowing direct comparison amongst different models [67,68]. We validated model accuracy by
estimating the coefficient of determination, R2 [69], the mean absolute error (MAE) [70], and the root
mean square error (RMSE) [70] using a 10-fold cross-validation [71].

We evaluated the contribution of the three predictor variable sets (i.e., topo-climatic, economic
output, and remote-sensing variables) to explain patterns of LUI using a variation partitioning
analysis [72,73]. The contribution of each predictor set was estimated by subtracting the model fit of
the model that includes the other two predictor sets from the model fit of the model that includes
all three predictor sets. The joint contribution of each predictor set was estimated by subtracting the
individual contribution from the model fit of the model that includes only the predictor set of interest.

In order to visualise the spatial scale on which the three predictor sets affect the spatial pattern of
LUI, we spatially predicted LUI based on all three predictor sets, only on climate, topography, and soil
predictors, only on economic predictors, and only on remote-sensing predictors.
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3. Results

3.1. LUI Index Evaluation

The LUI index of the ALL-EMA plots was strongly positively correlated with aerial nitrogen
deposition (rp = 0.67, P < 0.0001). In addition, on the subset of plots with a full vegetation survey, the
LUI index was strongly positively correlated with the plant indicator values for mowing tolerance
(rp = 0.75, P < 0.0001) and soil nutrient content (rp = 0.70, P < 0.0001).

3.2. LUI Map and Variation Partitioning

Topo-climatic, economic output, and remote-sensing data were suitable for mapping LUI. Model
fit and model accuracy were high (Adjusted D2 = 0.652, MAE = 0.132, RMSE = 0.187, R2 = 0.717).

The LUI map of the entire country (Figure 3a) shows that areas with a high LUI index occur
throughout the Central Plateau, which is the main arable farming region. Within this region, particularly
high LUI values can be found in central and north-eastern Switzerland, which are major pork-producing
regions. This leads to high manure inputs on the fields, meadows, and pastures. The LUI index shows
the variable suitability of regions for intensive agriculture (Figure 3b). Former floodplains along rivers
can be more intensively farmed than steeper areas due to better accessibility, soil type, and water
availability. Local variations in LUI become visible field by field, showing less intense pastures on
steep slopes, intensive agriculture on the sloped fields, and very intensive fields in the plain (Figure 3c).

The variation partitioning analysis showed that topo-climatic variables explain the largest part
of the LUI index (individual contribution to deviance explained: 0.26, significance of contribution
estimated by ANOVA: p < 0.0001), with their individual contributions greatly exceeding remote-sensing
variables (individual contribution to deviance explained: 0.02, significance of contribution estimated
by ANOVA: p < 0.0001; Figure 4). Despite a significant contribution by the economic output variables
(ANOVA: p < 0.0001), they add the least amount of explanation (individual contribution to deviance
explained: 0.01; Figure 4). For all inputs and outputs individually, topo-climatic variables explain the
most deviance, while remote sensing explains large parts of pesticide and ploughing inputs. For all
inputs and outputs individually, economic output variables also do not add much explanatory power.

Spatial predictions based only on one predictor set showed that topo-climatic variables defined
large- to medium-scale patterns of LUI. The highest LUI was in a medium climate on terrain without
slope, ridges, or depressions. Economic outputs determined medium-scale patterns with the highest
LUI from grazing cattle. Remote sensing revealed local-scale patterns with highest LUI with a high
mean and variation in NDVI (Figure 5).
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Figure 3. LUI map for the agricultural area based on the “full model” for the whole of Switzerland (a) and two zoom levels (b,c). (c-Aerial) is an aerial orthoimage of
the same area. Settlements, forest, and areas without vegetation are masked in grey, and water bodies are masked in blue.
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Figure 4. Deviance explained by the full model (green), the individual contribution (orange) and the joint contribution (violet) of the topo-climatic predictors,
the economic output predictors, and the remote-sensing predictors, where LUI = LUI index; Input = the input dimension of the LUI; Output = the output
dimension of the LUI; Input fert = fertiliser input; Input.pest = pesticide input; Input.plow = ploughing; Input.grmoha = grazing, mowing, and harvesting; and
Output.grmoha = biomass output by grazing, mowing, and harvesting.
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Figure 5. LUI map based only on (a,b) climate, topography, soil, (c,d) economy, and (e,f) remote-sensing
data for Switzerland (a,c,e) and the excerpt from zoom level b from Figure 3 (b,d,f).

4. Discussion

The failure to address LUI differences between and within land-cover classes has limited the
scientists’ ability to make credible estimations of future responses of biodiversity to changes in land use
and land cover in interaction with climate change [17,18,32]. Our results demonstrate the feasibility
of using a combination of topo-climatic, economic, and remote-sensing data to map LUI at a fine
scale between and within land-cover classes across the agricultural area of Switzerland. Large- to
medium-scale patterns of LUI are best explained by biophysical properties (topo-climatic variables),
while economic properties (economic output variables) contribute to medium-scale patterns, and
the actual local agricultural management (agricultural input and biomass output, constrained by the
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biophysical and economic properties; remote-sensing variables), defines local patterns. To ensure a
correct interpretation of our results, we discuss these points critically below.

4.1. LUI Index Parametrisation and Evaluation

LUI can be defined by inputs, outputs, and system properties [33]. Here, we addressed these
LUI components for each habitat type and condensed them into one LUI index because they are not
fully independent of each other [74]. The resulting index enabled the differentiation of LUI within
and between land-cover classes, which is needed to better understand changes from interactions of
land use, land cover, and climate change [17,18,32]. However, estimates of LUI components (fertiliser
input, pesticide input, ploughing, and biomass output) were based on expert ratings rather than
quantitative numbers. Moreover, in the LUI index presented here, the components are weighted
equally, although their actual contributions may differ. Thus, a better conceptual understanding would
be desirable for an improved LUI index. Such an understanding could be fostered by time-series
analyses based on remote-sensing data, where fertiliser input, pesticide input, ploughing, grazing,
mowing, harvesting, and biomass output could be monitored over the entire season (for fertilisation
input, grazing, and mowing see [36]), and then be condensed into a LUI index. Nevertheless, the
evaluation of the parametrised LUI index showed that it was strongly positively correlated with
aerial nitrogen deposition (which represents ammonia emissions due to mineral fertiliser inputs and
aspects of livestock breeding, such as grazing and manure application), the plant cover weighted mean
mowing tolerance index, and the plant cover weighted mean soil nutrient content index. This indicates
that the LUI index is a suitable representation of LUI.

4.2. Spatial Predictions of LUI

Since land-use activities take place in production systems that are defined by their biophysical
and socio-economic properties [75], spatially explicit biophysical and socio-economic data could help
to map LUI. We showed that it is feasible to map LUI using topo-climatic data, agricultural outputs,
and remote-sensing data. Topo-climatic variables determine large to medium-scale patterns; the
highest LUI was on medium climate terrain without slope, ridges, or depressions. Economic outputs
determined medium-scale patterns with the highest LUI from grazing cattle. Remote sensing revealed
local-scale patterns with the highest LUI at a high annual primary production (high average NDVI)
and a high number of treatments (high variation in NDVI) [60,62].

4.3. Importance of Biophysical Factors for LUI

The variation partitioning analysis showed that topo-climatic variables explain most of the
deviation of the LUI index, with their individual contributions greatly exceeding the remote-sensing
data and economic output. Thus, the potential LUI predicted by biophysical factors is consistent
with actual farming practices. This dominating effect of climate is in line with Holzkämper et al. [76],
who showed that climate is a major driver of agricultural production. Similarly, Gerstner et al. [7]
found that plant diversity was not additionally affected, and they found that in addition to land-use,
environmental, and socio-economic factors had no effect on plant diversity, possibly because LUI itself
is already strongly shaped by environmental and economic factors.

4.4. Suitability of Remote-Sensing Data for LUI Mapping

Remote-sensing data is already being used for mapping habitats [77], species [78], and
biodiversity [25,62,79,80], and is arguably one of the most important technologies available for
mapping patterns of current LUI in agricultural systems across broad geographic extents [16,35–38,42].
Nevertheless, current remote-sensing approaches have several shortcomings, and consequently our
understanding of the global patterns of LUI is still weak [16]. On the one hand, existing maps have a
limited extent, are too coarse, are based on model outputs instead of observations, or represent only
snapshots in time that cannot describe highly dynamic land management systems [16,81]. Furthermore,
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current remote-sensing approaches are mostly focused on individual agricultural land-use classes (e.g.,
field crops [40], grassland [36]) or individual LUI components (e.g., biomass removal [42], grassland
mowing frequency [39]). This may be because LUI is a complex and multidimensional phenomenon
that needs a strong conceptual framework for its definition [33]. On the other hand, remote-sensing
data has not been used in combination with other variables to explain these patterns [82,83]. Neglecting
topo-climatic and economic output variables may not affect the results for landscapes without large
environmental or economic gradients but may strongly bias predictions for more diverse landscapes.
Our results show that maps produced only with remote-sensing data had a lower model quality and
poorly represented medium- to large-scale patterns compared to maps that also included topo-climatic
and economic output data. With our approach, which integrates a methodological framework of LUI,
data from remote sensors, and ancillary data, LUI patterns can be well mapped at fine scales across
large extents.

5. Conclusions

Our LUI index is a suitable representation for LUI, which can be predicted well spatially using
topo-climatic, economic output, and remote-sensing predictors. Our methodology can be easily
applied to other countries where habitat-type data are available – due to the worldwide availability of
remote-sensing and topo-climatic data, these data should hardly represent a shortage. Given the low
explanatory power of economic output variables, they may be omitted if not available.

Large- to medium-scale patterns of LUI are explained by topo-climatic predictors, while economic
output predictors contribute to explaining medium-scale patterns, and remote-sensing predictors
contribute to explaining local-scale patterns. The dominating effect of topo-climatic variables suggests
that biophysical factors largely determine farming practices and therefore LUI, or that individual LUI
components, in combination with land cover, land use, and climate descriptors, help with conducting
detailed analyses of the responses of different organisms and ecosystem functions to changes in these
factors. Then, with the knowledge of strong climatic influences on LUI, we may be able to make
more credible estimations of the future response of different organisms, biodiversity, and ecosystem
functions to land-use and land-cover changes to LUI in interaction with climate change [17,32].

With the gradual fine-scaled LUI map, it is now possible to estimate within unvarying land-use
classes the effect on agrobiodiversity by an increase in LUI on fertile and accessible lands and a
decrease of LUI by the abandonment of marginal agricultural lands. Further, by including thresholds,
landscape configuration metrics, that are needed for instance to estimate edge effects [84] may also be
derived from our finely graduated LUI maps. When deriving species-specific metrics from LUI maps,
thresholds for natural areas and agricultural land use could be varied to gain a better understanding of
the effects of land-use configuration on ecosystem functions.
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Appendix A

Table A1. Ratings of the land-use intensity factors and the combined LUI index per habitat type. Habitat type headings are underlined.

Habitat Type
Code

Habitat Type
Name

Fertiliser
(Input)

Pesticide
(Input)

Ploughing
(Input)

Grazing, Mowing,
Harvest (Input)

Grazing, Mowing,
Harvest (Output) LUI Index

1 Non-marine waters
13 Springs

13X Springs 0 0 0 0 0 0
2 Vegetation of banks and wetlands

20 Artificial banks
20X Artificial banks 0 0 0 0 0 0
21 Water fringe vegetation

21X
Peatmoss-bladderwort bog pools, Northern perennial

amphibious communities, Small reed beds of fast-flowing
waters (221, 223, 224)

0 0 0 0.2 1.6 0.017

212 Reed beds 0 0 0 0.4 3.2 0.033
22 Fens and transition mires
221 Large sedge communities 0 0 0 0.2 0.2 0.010
222 Acidic fens 0 0 0 0.5 1 0.028
223 Rich fens 0 0 0 0.5 1 0.028
224 Transition mires 0 0 0 0 0 0.000
225 Arcto-alpine riverine swards 0 0 0 0.2 0 0.009
23 Humid grasslands
231 Purple moorgrass meadows and related communities 0 0 0 0.8 8 0.073
232 Atlantic and Sub-Atlantic humid meadows 0.5 0.1 0 1.5 5 0.120
233 Meadowsweet stands and related communities 0.5 0 0 1 5 0.092
24 Raised bogs
241 Bog hummocks, ridges, and lawns 0 0 0 0 0 0.000
25 Temporarily flooded annual vegetation

25X Temporarily flooded annual vegetation 0.1 0 0 0.5 0 0.028
3 Glaciers, rocks, screes, and gravel

31 Eternal snow and ice
314 Spring snow packs 0 0 0 0 0 0
32 Alluvial deposits and moraines

32X Alluvial deposits and moraines 0 0 0 0 0 0.000
33 Screes

33X Screes 0 0 0 0 0 0
34 Inland cliffs and exposed rocks

34X Inland cliffs and exposed rocks 0 0 0 0 0 0
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Table A1. Cont.

Habitat Type
Code

Habitat Type
Name

Fertiliser
(Input)

Pesticide
(Input)

Ploughing
(Input)

Grazing, Mowing,
Harvest (Input)

Grazing, Mowing,
Harvest (Output) LUI Index

4 Grasslands
40 Artificial grasslands and lawns
401 Temporarily grasslands in rotated crops 5 0.5 0.3 5 110 1.000
403 Lowland sowings after earthwork (road slopes...) 0.2 0.1 0 1 30 0.197
404 High altitude sowings after earthwork (ski slopes...) 0.2 0.1 0 1 20 0.151
41 Rocky flagstones and limestone pavements
411 Middle European rock debris swards 0 0 0 0.1 0 0.005
412 Stepped and garland grasslands 0 0 0 0 0 0.000
413 Middle European rock debris swards/Pavements 0 0 0 0.1 0 0.005
414 Alpine weathered rock and outcrop communities/Pavements 0 0 0 0 0 0.000
42 Thermophilus dry grasslands
421 Sub-Continental steppic grasslands 0 0 0 0.8 2 0.048
422 Sub-Atlantic very dry calcareous grasslands 0.1 0 0 0.8 3 0.056
423 Insubrian Mesobromion grasslands 0 0 0 1 5 0.069
424 Sub-Atlantic semi-dry calcareous grasslands 0.1 0.1 0 2 15 0.170
43 Unfertilised mountain grasslands and pastures
431 Blue moorgrass-evergreen sedge slopes 0 0 0 0.5 4 0.041
432 Cushion sedge carpets 0 0 0 0.3 0 0.015
433 Northern rusty sedge grasslands 0 0 0 0.5 4 0.041
434 Wind edge naked-rush swards 0 0 0 0.2 0 0.009
435 Mat-grass swards and related communities 0.1 0 0 1 8 0.087
436 Subalpine thermophile siliceous grasslands 0 0 0 0 0 0.000
437 Crooked-sedge swards and related communities 0 0 0 0.5 1 0.025
44 Snow-patches

44X Snow-patches 0 0 0 0.1 0 0.005
45 Fertilised grasslands

451_LD Medio-European lowland hay meadows (low diversity) 4 0.5 0 4 100 0.848
451_MD Medio-European lowland hay meadows (medium diversity) 2 0.1 0 2.5 80 0.577
451_HD Medio-European lowland hay meadows (high diversity) 0.5 0.1 0 2 70 0.439
452_LD Mountain and subalpine hay meadows (low diversity) 2 0.1 0 2.7 60 0.495
452_MD Mountain and subalpine hay meadows (medium diversity) 1.5 0.1 0 1.8 35 0.316
452_HD Mountain and subalpine hay meadows (high diversity) 1 0.1 0 1.2 25 0.220
453_LD Mesophilic pastures (low diversity) 3 0.2 0 4 100 0.788
453_MD Mesophilic pastures (medium diversity) 2 0.5 0 2.5 85 0.618
453_HD Mesophilic pastures (high diversity) 0.5 0.1 0 1.5 50 0.324
454_LD Rough hawkbit pastures (low diversity) 0.5 0.1 0 2 75 0.461
454_MD Rough hawkbit pastures (medium diversity) 0.2 0 0 1 35 0.215
454_HD Rough hawkbit pastures (high diversity) 0.1 0 0 1 25 0.165
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Table A1. Cont.

Habitat Type
Code

Habitat Type
Name

Fertiliser
(Input)

Pesticide
(Input)

Ploughing
(Input)

Grazing, Mowing,
Harvest (Input)

Grazing, Mowing,
Harvest (Output) LUI Index

46 Abandoned grasslands
461 Abandoned grasslands with Agropyron repens 0 0.2 0 0.2 1 0.023

46X Abandoned grasslands with Brachypodium pinnatum,
Arrhenatherum elatius, Molinia arundinacea, or Calamagrostis varia 0 0.2 0 0.5 2 0.041

5 Woodland edges, tall herbs communities, scrubs

51 Fringes
511 Xero-thermophile fringes 0.2 0.1 0 0.5 1 0.039
512 Mesophilic fringes 0.2 0.1 0 0.5 2 0.044
513 Mixed riverine screens 0.1 0.1 0 0.2 1 0.021
514 Butterbur riverine communities 0 0 0 0.1 0 0.006
515 Shady woodland edge fringes 0.1 0.1 0 1 3 0.069
52 Clearings

52X Burdock and deadly nightshade clearings, Willowherb and
foxglove clearings (521, 522) 0 0 0 0.2 0 0.010

523 Subalpine small reed meadows 0 0 0 0.2 1 0.014
524 Hercynio-alpine tall herb communities 0 0 0 0.2 0 0.011
525 Bracken fields 0.1 0.1 0 0.2 2 0.026
53 Scrubs, brushes, and clearings
530 Artificial hedgerows 0.1 0.1 0 0 0 0.009
531 Medio-European Cytisus scoparius fields 0 0 0 0.5 2 0.032
532 Blackthorn-privet scrub and box thickets 0 0 0 0.5 1 0.028
533 Blackthorn-bramble scrub 0 0 0 0.1 0 0.006
534 Bramble scrubs 0.1 0.1 0 0.1 0 0.015
535 Shrubby clearings 0 0 0 0 0 0.000
536 Pre-Alpine Willow brush 0 0 0 0.5 0 0.023
537 Mire Willow scrub 0 0 0 0 0 0.000
538 Willow brush 0 0 0 0.1 0 0.005
539 Alpine green alder scrub 0 0 0 0.1 0 0.005
54 Dry heaths
541 Sub-Atlantic acidophilous heaths 0 0 0 0.5 1 0.025
542 Juniperus sabina scrub 0 0 0 0.2 0 0.010
543 Bearberry and hairy alpenrose heaths 0 0 0 0 0 0.000
544 Juniperus nana scrub 0 0 0 0.5 1 0.025
545 Alpenrose heaths 0 0 0 0.5 1 0.025
546 Dwarf Azalea and Vaccinium heaths 0 0 0 0.1 0 0.005
6 Forests

6X Forests
6XX Forests 0 0 0 0.5 1 0.028
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Table A1. Cont.

Habitat Type
Code

Habitat Type
Name

Fertiliser
(Input)

Pesticide
(Input)

Ploughing
(Input)

Grazing, Mowing,
Harvest (Input)

Grazing, Mowing,
Harvest (Output) LUI Index

7 Pioneer vegetation of disturbed areas (ruderal vegetation)

71 Trampled and ruderal areas
710 Trampled ground and unvegetated ruins or debris 1 0.1 0.1 0 0 0.056
711 Flood swards and related communities 1 0.1 0.1 3 2 0.204
712 Lowland fallow fields 1 0.1 0.1 3 2 0.204
713 Subalpine and Alpine fallow fields 1 0 0 2 30 0.275
714 Annual ruderal vegetation 0.2 0.1 0.5 0 0 0.037
715 Pluriannual thermophilus ruderal vegetation 0.1 0 0.2 0.2 0 0.025
716 Pluriannual mesophilic ruderal vegetation 0.1 0.1 0.2 0 0 0.019
717 Alpine dock communities 1 0.1 0 1 10 0.143
718 Lowland dock communities 0.1 0 0.1 0.2 0 0.020
72 Anthropogenic rocky habitats
720 Unvegetated walls or paved areas 0 0.2 0 0 0 0.009
721 Vegetated ruins or old walls 0 0.1 0 0 0 0.005
722 Vegetated paved areas 0 1 0 0 0 0.046
8 Plantations, fields, and cropland

81 Cultivated ligneous formations

81X Deciduous seedbeds, Coniferous seedbeds, Chestnut groves
(without undergrowth), High stem orchard 0.1 4 0.1 1.1 5 0.268

815 Low-stem orchard 2 5 0.2 1.1 5 0.407
816 Vineyards 2 5 0.3 0.6 2 0.377
817 Small fruits 3 3 0.5 0.5 3 0.335
82 Field crops

82X_LD Field crops (low diversity) 3 3 1.5 2 100 0.894
82X_MD Field crops (medium diversity) 2 2 1.5 2 100 0.802
82X_HD Field crops (high diversity) 1.5 1.5 1.5 1.5 100 0.732
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