Radiative transfer model-based LAI retrieval from Sentinel-2 data through machine learning, adding phenological constraints and soil information

Sélène Ledain^{1,3}, Felix Stumpf², Anina Gilgen³, Helge Aasen¹

C 子子 A 人 Earth Observation of Agroecosystems team

www.eoa-team.net

Sharing i

Motivation

- Soil erosion of arable land can have important consequences on crop production and on the environment due to nutrient loss.
- **Cover crops** during fallow periods can help **protect the soil** from physical processes and maintain the topsoil fertility.
- We can assess **presence of cover crops** in fields by extracting **leaf area index (LAI)** from **satellite imagery**.
- LAI retrieval can be performed by inversion of a mechanistic model (Radiative Transfer Model = RTM), but is computationally expensive.

How can we use **machine learning** (ML) to accelerate and improve **LAI retrieval** in fields across a **large scale** like Switzerland, by incorporating soil data and phenological constraints?

Methods

Extract soil information from the Swiss landscape

- Background soil becomes important in low LAI (low crop cover) settings
- Sample representative spectra of bare soil pixels in Switzerland

Generate a training dataset using a RTM model

- ProSAIL RTM simulates top-of-canopy reflectance of Copernicus' Sentinel-2 satellites
 - Takes in leaf and canopy variables (including LAI)
 - Uses background soil reflectance
- Simulate 50k reflectances using variable ranges for wheat as input
- Obtain pairs of simulated spectra and LAI

Train the ML model

- Train a neural network on the data generated with the RTM, with added noise
- Predict LAI from a pixel's spectral

Add noise to make the data resemble satellite acquisitions

- Sentinel-2 data is atmospherically corrected, but can still contain noise and artifacts
- The simulated top-of-canopy reflectance doesn't account for residual atmospheric and sensor noise
- Add gaussian noise models to make simulated data more realistic

 $R_{ns}(\lambda) = 1 - \{ [1 - R(\lambda)] * [1 + \chi(0, \sigma(\lambda)] \}$

Agroscope

- response
- Validate on in-situ LAI measurements around Switzerland

Results

Adding environmental data and phenological constraints to the RTM, as well as noise to the generated dataset, has shown improvement in the LAI-retrieval model.

Setup	RMSE for LAI<3	Overall RMSE
Default RTM data	0.916	1.35
RTM with added soil data	0.845	1.65
RTM with added soil data and noise	1.42	1.03

 Adjust noise model so that it does not negatively impact predictions for low LAI

What's next?

- Further optimize the model hyperparameters
- Inference on fields across
 Switzerland

- ¹ Water Protection and Substance Flows, Division Agroecology and Environment, Agroscope, Reckenholzstrasse 191, 8046 Zurich, Switzerland.
- ² Competence Center for Soil, Berne University of Applied Sciences, Länggasse 85, 3052 Zollikofen, Switzerland.
- ³ Integrative Agroecology, Division Agroecology and Environment, Agroscope, Reckenholzstrasse 191, 8046 Zurich, Switzerland.
- Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Swiss Confederation

Federal Department of Economic Affairs, Education and Research EAER **Agroscope**