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Abstract 

Background: In spite of the implementation of control strategies in honey bee (Apis mellifera) keeping, the invasive 
parasitic mite Varroa destructor remains one of the main causes of colony losses in numerous countries. Therefore, this 
parasite represents a serious threat to beekeeping and agro-ecosystems that benefit from the pollination services 
provided by honey bees. To maintain their stocks, beekeepers have to treat their colonies with acaricides every year. 
Selecting lineages that are resistant to infestations is deemed to be a more sustainable approach.

Review: Over the last three decades, numerous selection programs have been initiated to improve the host–parasite 
relationship and to support honey bee survival in the presence of the parasite without the need for acaricide treat-
ments. Although resistance traits have been included in the selection strategy of honey bees, it has not been possible 
to globally solve the V. destructor problem. In this study, we review the literature on the reasons that have potentially 
limited the success of such selection programs. We compile the available information to assess the relevance of 
selected traits and the potential environmental effects that distort trait expression and colony survival. Limitations to 
the implementation of these traits in the field are also discussed.

Conclusions: Improving our knowledge of the mechanisms underlying resistance to V. destructor to increase trait 
relevance, optimizing selection programs to reduce environmental effects, and communicating selection outcomes 
are all crucial to efforts aiming at establishing a balanced relationship between the invasive parasite and its new host.
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Background
The western honey bee, Apis mellifera, is one of the most 
valuable pollinators worldwide [1–3]. Over the last few 
decades, increased honey bee colony losses have been 
reported, mostly in the Northern hemisphere [4–6], 
possibly as a result of a growing number of interacting 
threats, such as habitat losses, nutritional deficiencies, 
pesticides, pests and pathogens [7–9].

Among the parasitic threats, the invasive mite Varroa 
destructor is often identified as the main macrobiotic 
cause of colony losses of A. mellifera in many regions [6, 

10–14]. This parasite originates from Southeast Asia, and 
has shifted from its original host, A. cerana, to A. mel-
lifera at the beginning of the twentieth century, when 
the latter was imported to the Russian Far East [15, 16]. 
The parasite rapidly spread around the world due to the 
globalized trade with A. mellifera queens and swarms 
[17, 18]. On a global scale, only a few areas, including 
Australia, some regions of Northern Europe and cer-
tain islands, are still considered to be free of V. destruc-
tor mites and, thus, safe from the parasite’s detrimental 
impact.

Varroa destructor is not lethal to A. cerana due to the 
host–parasite co-evolution [19–21]. The reproduction of 
the parasite is limited to the transient male (drone) brood 
of A. cerana, which restricts the population growth of the 
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mite. In contrast, in A. mellifera, the new host, the para-
site infests both the drone brood and the more persistent 
worker (non-reproductive female) brood, which subse-
quently leads to high infestation levels [22–24]. Thus, a 
large proportion of the colony is weakened by the feed-
ing [25–28] and pathogen-vectoring activity [29–35] 
of the mother mite and its offspring. Upon emergence, 
the infested individuals do not perform optimally or die 
early, which threatens colony survival and reproduction 
[36–39].

To prevent colony losses due to V. destructor infesta-
tions, beekeepers that rear European A. mellifera limit 
the parasitic pressure on their stocks by implementing 
control strategies. Such strategies often rely on chemi-
cal treatments that involve synthetic miticides, organic 
acids or essential oils [40]. They may also include bio-
technical measures, such as the removal of the preferen-
tially parasitized drone brood. Beekeepers can coordinate 
these actions within the framework of an integrated pest 
management strategy [41–43]. Strategies based on syn-
thetic miticides are problematic because their residues 
contaminate hive products [44] and are likely to favor the 
emergence of resistant lineages of V. destructor [45–47]. 
Although treatments that involve organic acids have 
proven to be effective and do not leave residues when 
used correctly, negative side effects on honey bee health 
have been demonstrated [48]. Due to such problems, a 
growing number of beekeepers are attempting to reduce 
their reliance on chemical treatments [49–51], which 
has highlighted the need for alternative and sustainable 
approaches to control this parasite, including the selec-
tion of honey bee lineages that survive parasite infesta-
tions [52]. This selection aims at favoring the expression 
of traits that enhance colony survival and subsequently 
reduce the need for human interventions to control the 
parasite’s population.

The idea of selecting less susceptible colonies emerged 
shortly after the global invasion of the mite [19, 53–55], 
following the observation that several populations could 
survive in the presence of the parasite without treat-
ments, such as sub-Saharan African subspecies of A. 
mellifera [56, 57] and Africanized honey bees [58–60]. 
The discovery that some European A. mellifera popu-
lations can survive V. destructor infestation [55, 61, 
62] also opened up new avenues of using resistance 
traits for human-mediated selection. Indeed, survival 
is often attributed to resistance traits, which, by defini-
tion, reduce the parasitic load of the host [63]. Toler-
ance mechanisms, which allow the host to sustain high 
parasitic loads [63], are also likely to favor colony sur-
vival and to be naturally selected [64], but currently their 
impact remains largely hypothetical. To our knowledge, 

no selection program includes tolerance traits; thus, such 
mechanisms are not considered in this review.

In Europe, numerous resistance selection programs 
aiming at increasing the frequency of resistance traits 
in populations started in the 1980s [65], but it has not 
yet been possible to improve survival of untreated colo-
nies on a broad scale [66]. In North America, lower 
colony losses of selected lineages (‘Russian’, Varroa sen-
sitive hygiene) were recorded [67]. However, high colony 
losses attributed to V. destructor are still reported in the 
United States [68], which suggests that the current selec-
tion strategies have not resulted in a large-scale, sustain-
able host–parasite equilibrium. Whereas in both regions, 
knowledge of resistance mechanisms may be increasing 
[64], a detailed overview of the achievements of past and 
current selection programs on which to base further pro-
gress towards increasing the ability of colonies to survive 
infestations by V. destructor  is lacking After nearly four 
decades of selecting honey bees towards this objective, 
we expected that sufficient data were available to assess 
these achievements and to identify to what extent genetic 
progress has been achieved and the strengths and weak-
nesses of the selection strategies implemented. Towards 
this aim, we analyzed scientific peer-reviewed as well as 
specialized beekeeping literature, which focus on traits 
linked to survival of infested colonies and on their selec-
tion. Our approach consisted of considering whether 
trait attributes and selection design conformed to the 
theoretical framework known to lead to genetic progress 
towards a selection objective [69] (Fig.  1). The factors 
known to affect selection progress that we considered are: 
(1) the choice of relevant selection traits, which should 
provide accurate colony phenotypes, should be herit-
able and should be linked to the selection objective (i.e., 
colony survival); (2) the environmental effect that can 
hinder the expression of heritable traits; and, (3) beyond 
the theoretical considerations, the practical limitations of 
selection strategies during field implementation. Finally, 
we suggest a strategy to improve selection strategies to 
overcome the obstacles and limitations identified.

Trait relevance
Several traits observed in naturally surviving popula-
tions have been proposed to contribute to the survival 
of A. mellifera colonies infested by V. destructor [64, 70]. 
The expression of some of these traits is thought to lead 
to the reduction of reproduction and/or survival of the 
mite within the honey bee brood cell. Others should lead 
to the reduction of the infestation levels of adult honey 
bees. The definition of these traits and their evaluation 
methods are summarized below. The evaluation methods 
are presented in more detail in Additional file 1.
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Mite non-reproduction (MNR) [64], formerly called 
suppressed mite reproduction (SMR), is quantified by 
counting the number of viable mated offspring produced 
per mother mite infesting worker brood [71]. Varroa sen-
sitive hygiene (VSH) indicates the ability of adult workers 
to remove mite-infested brood, for example by quantify-
ing the removal of manually infested brood. Uncapping-
recapping measurements reveal the number of cells in 
which the wax cap was opened and re-sealed by adult 
workers, which has been associated with colony survival 
[72, 73]. Hygienic behaviour towards dead brood is used 
to evaluate the removal rate of frozen or pinned killed 
brood by adult workers, which has been hypothesized to 
be a proxy for the removal of V. destructor-infested brood 
[74]. The post-capping stage duration is the amount 
of time available for the mite to reproduce, and shorter 
durations are targeted with the aim to reduce the num-
ber of viable offspring mites produced by foundresses per 
reproductive cycle [75]. Grooming refers to the ability of 
adult workers to remove and potentially wound and kill 
mites that are infesting them or infesting adult nestmates 
[40]. Grooming rates are measured in laboratory settings 
by quantifying the proportion of mites fallen from adult 
workers and of injured mites. It can also be measured 
in the field, where, due to the presence of natural mite 
mortality, only the proportion of injured mites can be 
recorded. As a phenotype encompassing the cumulated 
effect of the resistance traits mentioned above, the meas-
ure of the infestation level of a colony can be the basis for 

selection. It can be evaluated through measures of infes-
tation rates obtained by washing mites off adult honey 
bees or by brood cell inspections [76].

Currently, most selection programs towards improved 
survival aim at increasing the frequency of single resist-
ance traits. To enable successful selection, trait measure-
ment needs to be accurate—that is, the values obtained 
should be precise and stable over time to enable a reliable 
estimation of the genetic value of the colony at any time. 
Factors internal to the colonies or external to it, (i.e., 
environmental) can affect this accuracy.

Measurement accuracy
Intracolonial effects on the expression of resistance traits
As the substrate for V. destructor reproduction, the 
quantity of brood produced in a honey bee colony 
directly influences infestation levels. Therefore, infes-
tation levels can be directly affected by brood inter-
ruptions linked to swarming [77, 78]. In addition, 
fluctuations in brood production may explain, at least 
partly, why within-colony distribution of V. destruc-
tor is spatially heterogeneous [79, 80], which affects 
the expression of VSH: a stronger VSH response is 
obtained if many infested cells are clustered in a small 
brood area [81]. Also affected by brood dynamics is the 
proportion of damaged mites, which is used as a proxy 
for the grooming ability of a colony [82]. More damage 
was recorded when the brood was emerging [83], pos-
sibly due to mites being more vulnerable to grooming 
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when they are changing their host from emerging work-
ers to nurses [84] compared to when they are adhering 
to adult workers.

MNR is influenced by the reproductive ability of the 
mite entering the cell [85–89] and by colony-specific 
pupal traits [90, 91], the latter effect corresponding to 
the new definition of SMR [64]. VSH is also triggered in 
response to brood characteristics, specifically odor cues 
emitted by infested pupae [92–95] and, possibly, by V. 
destructor [96]. The uncapping-recapping behavior has 
recently gained attention as a target for selection towards 
resistance [72, 73, 97]. However, a lack of knowledge 
about how the factors influence its expression currently 
limits its use as target trait. For example, its impact on 
the survival of the mite leaving the cell and hence on her 
reproductive output differed between studies [98, 99]. 
Since the mite’s decision to leave its cell once opened is 
influenced by yet unidentified factors, such as previous 
disturbance or temperature and humidity, mite repro-
duction might not be interrupted to the same degree in 
all populations.

Expression of resistance traits can fluctuate accord-
ing to the infestation level of the colony, and according 
to the occurrence of multiply infested cells, its frequency 
increasing in parallel to infestation levels. The number 
of offspring per mite, and hence the MNR value, can 
decrease when infestation increases [100] or be higher in 
multiply than in singly infested cells [101]. An increasing 
frequency of multiply infested cells can lead to increased 
VSH [102, 103]. An increase of VSH was also noted 
when several infested cells were spatially clustered on the 
brood frame [81, 98]. A possible explanation for the lat-
ter two observations is that the increase of VSH results 
from increased host damage and/or from the amount of 
signal triggering the behavior [81, 98]. The influence of 
infestation levels on the expression of resistance traits 
is inconsistent and leads to a chicken or egg dilemma, 
where it is unclear if the infestation level is determined 
by the expression of a resistance trait or if the expression 
of a resistance trait is determined by the infestation level.

Because of the natural increase in the infestation lev-
els of colonies over the season, growth rates instead of 
snapshots of infestation rates are sometimes evaluated 
[104–106]. However, such evaluations can be biased if 
infestation levels fluctuate during the season and are 
not measured at a frequency allowing for the capture of 
these fluctuations. Decreasing infestation rates in spring 
or summer have been recorded in a surviving population 
[107]. The breadth and time of occurrence of the result-
ing infestation peaks may vary among colonies, even 
within the same apiary, making it difficult to set an opti-
mal time point to record the infestation and to compare 
values obtained from different colonies.

The expression of a particular resistance trait can also 
depend on the expression of other traits. MNR, which is 
related to the number of offspring by foundresses, was 
affected by VSH [108–114]. This link may be due to VSH 
being more frequent when mites reproduce than when 
they do not [108], and hence selectively removing more 
fecund mites. However, recent studies did not confirm 
this biased removal towards cells containing reproducing 
mites [73, 115]. Yet other studies did not find any corre-
lation between MNR and VSH values at the colony level 
[116]. These results indicate that the association between 
traits may vary between populations. Such fluctuating 
interdependence might result in the selection of a trait 
not responsible or only partially responsible for increased 
resistance or survival.

Other pests and pathogens affecting the honey bee col-
ony, and especially its brood, can also affect expression 
of resistance traits. For example, the occurrence of wax 
moth larvae can lead to overestimation of uncapping-
recapping and grooming behaviours because their feed-
ing activity can trigger honey bee nurses to open and 
close brood cells [117] and can damage mites [118–120]. 
Ants can also bias the infestation level estimation stem-
ming from natural mite fall by scavenging fallen mites 
[121], thereby limiting the accuracy of measurements 
[121]. In addition, the type of mite-transferred viruses 
infecting the honey bee populations may influence infes-
tation levels, allowing for or compromising survival. Dif-
ferences in the virulence of the various deformed wing 
virus types [122], for instance, may have a direct effect on 
the number of mites that can be tolerated by the colony 
[123, 124]. This survival threshold can also be influenced 
by the haplotype of the mite [125].

The literature focusing on resistance traits indicates 
that several agents can affect their expression. These 
agents are the parasite itself, other pests and the host via 
its biological attributes or via the interaction between 
resistance traits. As a result, only part of the phenotype 
measured reflects the ability of a colony to defend itself 
against the parasite. In addition, the prevalence of these 
agents is driven by their intrinsic cycles (e.g., seasonal 
rhythms), thus decreasing the accuracy and reliability 
of phenotypes. Seasonal rhythms are mostly dictated by 
environmental factors; thus, next we consider how these 
factors affect the expression of resistance traits towards 
V. destructor.

Environmental effects on the expression of resistance traits
Temperature and humidity are probably the most impor-
tant environmental factors that affect the expression of 
resistance traits, as they affect several attributes of the 
agents described in the previous section. Infestation 
growth rates recorded early or late in the season have 



Page 5 of 22Guichard et al. Genet Sel Evol           (2020) 52:71  

been found to correlate negatively with temperature and 
positively with relative humidity [126]. In addition, infes-
tation levels depend directly on brood quantities, which 
can be affected by multiple factors, including beekeeping 
management (e.g., hive size, colony divisions) as well as 
food resources and climate [127–129]. Grooming is also 
affected by climatic conditions [82], with less groom-
ing being performed in spring than in summer [130]. 
The impact of grooming on mite mortality is generally 
reduced at lower temperatures [131, 132] and at higher 
humidity [132], indicating that selecting this particular 
trait could be insufficiently efficient to reduce the mite 
population significantly during wintertime, when groom-
ing could have a strong impact since brood is generally 
absent and all mites are exposed to this behavior. MNR 
also varies between years [133], potentially due to tem-
perature fluctuations that affect the number of viable 
offspring produced per female mite [134]. Temperature 
effects on the duration of the post-capping stage have 
also been recorded [135]. Marked differences of up to 
24  h were observed in relation to this duration within 
individual colonies, possibly due to the heterogeneity of 
the brood temperature that drives brood development 
[136, 137]. The impact of temperature on development 
also results in strong seasonal variations in its duration: 
longer development times were measured in late sum-
mer or fall when compared to spring [138, 139]. To have 
a protective effect, the duration of the post-capping stage 
should be kept short, even under the lower temperatures 
experienced in fall, which is physiologically unlikely.

The availability of food resources is known to affect the 
expression of several resistance traits. This is particularly 
the case for hygienic behavior, which is expressed more 
frequently when food availability is high [140, 141]. Simi-
larly, rates of mite removal by VSH doubled after colonies 
were fed with sugar water [141]. Trade-offs between for-
aging and VSH behavior as well as an effect of the brood 
to honey stores ratio in the colony on VSH have also been 
noted [116]. MNR was found to be lower in colonies dur-
ing periods of greater pollen availability [142]. In times 
of pollen shortness, brood removal can also occur due 
to cannibalism, resulting from protein deficiency [143], 
which biases the measure of VSH.

Human factors, via the evaluation of traits and the 
management of selected stock, can also decrease the 
accuracy of trait measurement. The infestation levels of 
colonies in the late summer result from the initial infesta-
tion in the spring, from the fecundity and longevity of V. 
destructor foundresses and from the defence behaviors of 
the host. However, they can also be significantly affected 
by the horizontal transmission of V. destructor between 
colonies due to drift or robbing, which depend heavily 
on beekeeping management [104, 144–150]. Mite influx 

from neighboring colonies and apiaries is not measured 
and thus invisible to the evaluator, and hence biases 
colony phenotyping. Unreliable assessment of the resist-
ance potential of a colony based on its infestation level 
is particularly likely to occur if mite transfers affect colo-
nies located within the same apiary differently. Indeed, 
honey bee selection requires that all colonies placed 
within the same apiary share almost identical environ-
mental conditions, so that differences between colonies 
can be attributed to genetic differences to a large extent. 
The heterogeneity of horizontal mite transmission among 
honey bee colonies [147] is likely confounding the assess-
ment of the impact of resistance traits on the infestation 
level.

Horizontal transmission is more likely to occur in 
regions in which colonies are kept at high densities [147] 
or when the inter-colony distance within the apiary is low 
[151, 152]. Thus, single colony resistance mechanisms 
with a significant influence on the infestation level may 
be more easily detected when horizontal mite trans-
mission is low, such as during the early season or dur-
ing honey flows. Removing ‘superspreaders’, i.e. colonies 
above a certain infestation threshold [63], could also be 
an option to reduce horizontal transmission. However, 
this approach entails the risk of removing colonies that 
may start expressing resistance behavior in the near 
future or potentially tolerant colonies that are unharmed 
by elevated infestation levels. Infestation thresholds that 
are critical to colony survival may vary according to envi-
ronmental conditions and, therefore, do not offer suitable 
values for guiding selection programs. Their effective-
ness would be increased if they were locally determined, 
thereby avoiding as many biases as possible, although 
this would involve an extremely tedious process [76, 153, 
154].

Human influence beyond beekeeping can also affect 
selected traits: grooming, for instance, was found to 
decrease when workers were exposed to the pesticide 
clothianidin [155]. The same compound was also found 
to decrease hygienic behavior towards dead brood 
[156]. Thus, periodical use of this chemical in agricul-
ture can reduce the effectiveness of the defence mecha-
nisms of the colony against V. destructor and calls into 
question whether colonies selected for resistance traits 
sufficiently express these traits when kept in intensive 
agro-ecosystems.

Few studies have performed repeated measurements 
to assess whether and how much the large number of 
host, parasite or environmental factors affect the expres-
sion of resistance traits [116, 157]. Performing such 
repeated measurements during colony evaluation pro-
cesses has nevertheless been suggested for different traits 
to ensure data reliability [61, 116, 157–159]. Indeed, the 
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repeatability of resistance traits is often low: it ranges 
between 0 and 0.4 for MNR [116, 159] and between 0.21 
and 0.33 for hygienic behaviour towards dead brood 
[116, 159]. Values found for recapping and grooming are 
in the same range, i.e. 0.35 [159] and 0.48 [158], respec-
tively. Up to five repeated measurements are required 
to assess the VSH level of a colony [157]. The fact that 
repeatability is relatively low casts doubt on the reliability 
of single values and raises the issue of how to aggregate 
several values when measurements are repeated. Averag-
ing the values does not provide a reliable measurement 
of the true resistance level of the colony unless the vari-
ability originated from imprecise measurement methods, 
in which case repetition increases accuracy. Variation in 
the expression of a resistance trait over time indicates 
that factors yet to be identified influence this expres-
sion. Once identified, it becomes possible to correct for 
their effect. If these factors are not easily identifiable or 
not identifiable at all, the key periods when resistance 
traits are likely to have their maximum effect on survival 
should be targeted (for example, during the production 

time of winter bees). Traits that can be accurately and 
reliably estimated do not guarantee success; they also 
need to be sufficiently heritable for their frequency to be 
increased by selection.

Heritability
The literature provides variable levels of knowledge 
about the heritability of each resistance trait. For both 
VSH and uncapping-recapping, a single heritability esti-
mate is available, which makes it difficult to determine if 
these traits are relevant for selection towards resistance. 
In contrast, 16 studies present heritability estimates for 
hygienic behaviour towards dead brood, which provides 
more background information to assess the relevance of 
this trait. However, heritability estimates varied strongly 
for this and other traits. Heritability of hygienic behav-
iour ranged from 0.02 to 0.65, which suggests that select-
ing this trait might not be successful in any environment 
or population. In addition to variation in heritability 
estimates, the standard errors were occasionally as high 
as the estimates themselves (Fig.  2) and see Additional 

Fig. 2 Top-left: Distribution of published heritability estimates proposed for resistance traits mentioned in the literature and Top-right: Distribution 
of published standard errors associated with heritability estimates (only publications reporting standard errors around heritability estimates were 
included). Black bars represent the standard deviation from the mean value (black rhombus). Grey dots represent individual values. Bottom-left: 
Distribution of peer-reviewed and non-peer-reviewed studies according to population size used to assess heredity. All traits were pooled. 
Bottom-right: Distribution of peer-reviewed and non-peer-reviewed studies according to the number of colonies used to evaluate trait heredity. All 
traits and locations were pooled
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file 2: Table S1. This was especially the case when these 
estimates were derived from a small number of colonies 
(< 100), casting doubt on the reliability of their value 
(Fig. 2) and see Additional file 2: Table S1. Another limi-
tation to their reliability is that many studies recorded 
traits in a limited number of locations (Fig.  2) and see 
Additional file  2: Table  S1, which hinders our ability to 
differentiate between additive and non-additive genetic 
effects, possibly leading to an overestimation of heritabil-
ity estimates. Issuing general recommendations towards 
the selection of a particular trait in all populations could 
be accomplished by comparing heritability values among 
studies. Unfortunately, this is not feasible because differ-
ent methods were used to generate the estimates (e.g., 
regression between parents and offspring or calculation 
of the ratio between genetic and phenotypic variance) 
(see Additional file 2: Table S1).

It is worth noting that heritability might be confounded 
by epigenetic processes. A genetically inherited trait is 
indistinguishable from a trait acquired via social learn-
ing, when workers have the ability to transmit acquired 
knowledge across generations: thus, behaviours may be 
expressed by related workers without a genetic causality. 
Social learning has been identified in other insects, such 
as fruit flies [160] and bumble bees [161–163], which 
adapt their behavior after observing conspecifics. It has 
rarely been investigated in honey bees, which is surpris-
ing given that they are a model organism to study learn-
ing and memory in insects [164]. One of the few studies 
on the topic ruled out the social transmission of hygienic 
behaviour towards dead brood [165], but learning may 
play a role in other resistance traits against V. destruc-
tor. For instance, grooming was performed more inten-
sively by workers of naturally surviving A. m. intermissa 
colonies when they were in contact with older workers. 
Younger nurses could have learned the behaviour from 
their older nestmates [166]. Such a phenomenon could 
lead to the loss of resistance if queens from selected lines 
are introduced into foreign colonies.

Several limitations linked to the heritability estimation 
procedures may thus decrease the quality of these esti-
mates and hamper progress in the selection for resistance 
traits. More heritability estimates, based on hundreds of 
colonies in different locations, should be obtained and 
published, especially for those traits that gain interest 
among beekeepers, such as VSH or uncapping-recapping. 
Screening the heritability estimates for the resistance 
traits available to date shows that values are often higher 
than 0.20 (Fig. 2) and see Additional file 2: Table S1 and 
should therefore lead to increased survivability over 
time. However, the improvement of colony survival 
despite infestation by V. destructor via selection requires 
that heritable traits are directly or indirectly linked to 

a survival mechanism. Next, we review the degree of 
knowledge on this link and hence on the relevance of the 
traits that can be selected towards the desired objective.

Link to survival
The publications from which the relevance of resistance 
traits to be selected can be deduced are listed in Addi-
tional file 3: Tables S2 to S7. This compilation shows that 
the causal link or association between known resistance 
traits and infestation level or the survival rate of colonies 
is not well established. The main reason for this weak link 
is that most of the studies were performed on treated 
colonies, which restrains the amount of data available to 
accurately determine effects in terms of improved colony 
survival. Another contentious point is that several traits 
(e.g., VSH, MNR, uncapping-recapping and hygienic 
behaviour towards dead brood) have only been observed 
in some naturally surviving populations [64, 70, 115]. 
Even within a single honey bee population, the contri-
bution of a particular trait to survival can be unclear: in 
Africanized honey bees, two studies indicated that VSH 
may reduce infestation level [167, 168], whereas another 
concluded that it is not a key resistance factor [169] (see 
Additional file 3: Table S3). This suggests that VSH may 
have no influence on survival or may only have an effect 
in the presence of other locally expressed traits or envi-
ronmental factors in some populations.

Generalization from observations made at the scale 
of brood cells or adult honey bees to colony phenotype 
may also be unwarranted. Although high MNR would 
be expected to decrease colony infestation level, this link 
was not observed in all populations [170–172]. However, 
generalization from cell to colony appears warranted in 
the case of uncapping-recapping, which does not have a 
direct impact on mite reproduction at the cell level but 
is associated with colony survival in various populations 
[72, 73] and thus considered a valuable proxy to identify 
resistance against V. destructor [73].

Generalizing the occurrence of a trait at yet another 
level, i.e. from workers to other castes in the colony, 
can lead to suboptimal selection results. Worker instead 
of drone brood is routinely examined for the expres-
sion of resistance traits (e.g., MNR, hygienic behaviour 
towards dead brood), although trait expression may dif-
fer between castes. In such instances, only part of the 
colony phenotype is captured. Uncapping-recapping of 
worker brood, but not of drone brood, was reported in 
naturally surviving populations [73] (see Additional file 3: 
Table S4). Similarly, frequency of VSH was high towards 
worker brood but was only low towards the drone brood 
of the same colonies [173] or vice versa [141]. Thus, the 
contribution of traits measured on worker brood to 
reduce the infestation level may be wrongly estimated in 
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colonies rearing many drones (e.g., drone-producing col-
onies in selection programs).

Another occasionally misleading generalization occurs 
when results obtained in the laboratory are extrapolated 
to the field. To date, grooming has been studied primar-
ily in controlled laboratory conditions, where the pro-
portions of damaged mites differed from those obtained 
in field conditions [174], which leads to misestimating 
the effects of this trait. This may have contributed to a 
decrease of interest in selecting for grooming [120, 175–
178] (Additional file 3: Table S7).

Similarly, the generalization that hygienic behaviour 
towards dead brood, which is known to be associated 
with resistance to chalkbrood and American foulbrood 
[179–181], will also lead to removal of V. destructor-
infested brood appears unwarranted, although positive 
correlations between both traits have been recorded in 
some publications [74, 158, 182]. First, the value of this 
trait is often a poor predictor of the colony infestation 
level [183, 184]. Second, the selection of hygienic behav-
iour against dead brood did not consistently increase 
resistance against V. destructor (see Additional file  3: 
Table  S5). Several phenomena can explain these obser-
vations. Some honey bee lineages selected for hygienic 
behaviour express a low removal response only against 
V. destructor-infested cells. Positive correlations between 
the removal of freeze-killed brood and the removal of V. 
destructor-infested brood cells were occasionally found, 
but only when the brood was infested by two mite foun-
dresses [103, 141] and not when the brood was infested 
by a single foundress [102, 103]. This may be due to the 
need for a large amount of chemical stimuli to trigger the 
removal of dead, diseased or infested brood [92, 185–
189]. Thus, hygienic behaviour might only be triggered 
in cases of high infestation, which may be too late to 
favour colony survival. These results suggest that selec-
tion of hygienic behaviour towards dead brood may not 
be adapted to select for resistance against V. destructor 
[190] (see SM3-4). It is currently recommended that this 
trait can be used to pre-select colonies, but that more V. 
destructor-specific traits also need to be applied to ascer-
tain the resistance potential of a given stock [191].

In other cases, the difficulty of relating traits to infes-
tation or survival arises from confounding effects. Here 
again, grooming can be used as an example when it is 
evaluated by the number of injured mites fallen from 
tested colonies. Some deformations of the dorsal shield 
of the mite are related to the mite’s ontogeny and do 
not reflect the action of honey bee mandibles [118–
120]. Similarly, missing legs on mites can derive from 
post-mortem decomposition and not from a defensive 
behaviour of the workers [120]. This may lead to an over-
estimation of the effectiveness of grooming and to false 

positives for this trait because of a weak mechanistic link 
to reduced infestation.

In addition to generalization and confounding effects 
distorting the links between traits and colony survival, 
other traits were chosen based on assumptions only. This 
is the case for the short capping durations. Shorter post-
capping durations are assumed to interrupt the reproduc-
tion cycle of V. destructor and subsequently reduce the 
number of offspring per founder mite [75]. Several argu-
ments weaken the validity of this assumption. A shorter 
developmental time may result in more brood cycles per 
year, thereby counterbalancing the negative effect on 
individual mite reproduction by increasing the number 
of generations [40]. To decrease mite fecundity to a level 
at which the mite population in a colony would be stable 
over the years, modelling results indicate that a decrease 
of two days in the post-capping stage duration of workers 
would be necessary [192, 193]. Even if a reduction of 17% 
in the duration of the pupal stage could be achieved by 
selection, physiological effects of parasitism could pro-
long the duration of the post-capping stage of infested 
pupae [92, 194] to the point that a reduction generated 
by selection would be negated [194]. These limits could 
explain why the majority of the studies concerning the 
post-capping duration have led to inconclusive results in 
selection programs (see Additional file  3: Table  S6) and 
highlight the need to take possible side effects or biologi-
cal costs of a trait into consideration when evaluating its 
relevance for selection.

The degree of generalization and assumption made 
when formulating a trait’s link with survival as well as on 
confounding effects affect the degree of certitude with 
which this trait can be considered as relevant for selec-
tion. The overall variability in the strength of the link 
between traits and survival recorded in the literature 
suggests that a major challenge for selection programs 
lies in defining the most relevant trait to select for in a 
given population. When this link appears weak, survival 
of selected populations may be attributable to environ-
mental factors rather than to the increase in frequency of 
a heritable trait. Next, we review the literature to deter-
mine whether survival can be explained solely on the 
basis of favourable environmental factors.

Environmental effects on colony survival
In addition to their effect on the expression of sev-
eral resistance traits (see “Environmental effects on the 
expression of resistance traits” section), environmen-
tal factors can also have major effects on the survival 
of the V. destructor-infested colony independent of the 
trait selected. This happens because the outcome of 
the selection program can be the result not only of the 
accumulation of additive genetic effects via selection for 
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heritable traits (see “Trait relevance” section) but also of 
the environmental effects and genotype-by-environment 
interactions. These effects can create the illusion that 
selected colonies are resistant, while survival is partly or 
entirely enabled by environmental factors. Honey bees 
are particularly exposed to highly variable environments 
compared to other livestock because of their resource 
acquisition from large areas covering several square km.

Pathogens
Pathogens belong to the category of environmental fac-
tors that affect honey bee health [8, 195, 196]. The sur-
vival of some European A. mellifera populations was 
attributed to the occurrence of mite-vectored virus 
strains of low virulence, which are thought to enable col-
onies to tolerate more mites. Tolerance to high V. destruc-
tor infestations was observed in surviving A. m. ligustica 
colonies from the island of Fernando de Noronha, Brazil 
[197, 198]. It is very likely that this survival is associated 
with the lower virulence of the Japanese haplotype of V. 
destructor found on the island [125] or of the viruses it 
vectors [199] and not with host resistance. This idea 
is supported by the fact that when exposed to different 
mites (Korean haplotype of V. destructor) and different 
virus types after relocation, these colonies did not show 
higher survival than local controls [200]. Similarly, V. 
destructor-infested A. mellifera colonies in Papua New 
Guinea and Solomon Islands survive without acari-
cidal treatments, which could be due to the absence of 
deformed wing virus (DWV) in these populations [201].
The survival of the Gotland population in Sweden was 
also partly attributed to a tolerance against viral infec-
tions [70, 202–204]. Tolerance to viruses could result 
from natural selection for more virus-tolerant colonies 
[204] and/or for less virulent viruses [203]. Tolerance 
to DWV could also be favoured by a resistance to other 
viruses [202], by decreasing the overall pathogenic pres-
sure on the host. Both tolerance and resistance are likely 
co-occurring in this population. If natural selection for 
virus tolerance is confirmed, it may have been facilitated 
by the isolation of the Gotland colonies, an environmen-
tal condition favouring host–parasite co-evolution. This 
condition can hardly be reproduced in common bee-
keeping conditions. In Wales, the involvement of viruses 
in colony survival is hypothesized via the superinfec-
tion exclusion of the virulent variant DWV-A by the less 
virulent variant DWV-B [122, 205, 206]. However, other 
results suggest a higher virulence of DWV-B when com-
pared to DWV-A [207, 208]. Therefore, the contribu-
tion of the virus populations to the observed survival of 
these colonies remains unclear. Viral loads also fluctuate 
during beekeeping season [209–212] or following col-
ony migration [213], which can directly influence mite 

virulence. When virulence of pathogens is low or natu-
rally decreases over time due to natural selection [214], 
an illusion of selection success can arise.

Colony size and density
Infestation levels depend on colony size and particularly 
on the quantity of brood available for V. destructor repro-
duction [64, 78, 215–217]. The quantity of brood pro-
duced in colonies is known to be particularly influenced 
by environmental factors such as climate and food avail-
ability [128, 129, 218]. Colonies that are located in areas 
with low food resources during summer, for instance due 
to droughts [219, 220], are likely to build up smaller mite 
populations. As a result, winter honey bees in these colo-
nies should be healthier and risks of colony losses corre-
spondingly lower.

Cavity size can also constrain colony and brood size: 
colonies nesting in small cavities have less volume avail-
able for brood production [78]. The importance of nest 
size for colony survival was supported when untreated 
susceptible colonies were kept in small hives and their 
survival increased to levels comparable to untreated feral 
colonies surviving in the Arnot Forest (New York, USA) 
[221]. Small cavities further contribute to survival since 
they promote frequent swarming and increase air humid-
ity, which are factors known to reduce infestation levels 
[78, 222].

The spatial dispersal of colonies in their environment 
also affects their survival chances [151, 223]. In the Arnot 
Forest, distances between nests often reach hundreds or 
thousands of meters [224], which reduces the horizontal 
transmission of the parasite between colonies. Therefore, 
their survival may not be associated with a genetic resist-
ance [224]. Supporting the idea of a non-genetic survival 
mechanism, colonies from this feral population trans-
ferred to a conventional apiary, in which colonies are 
kept in close proximity, did not show reduced infestation 
levels when compared with colonies from susceptible 
stock [224]. Modelling the effect of colony density and 
inter-colonial distances on V. destructor dispersal [225] 
differed from the observations in the field [151, 223], 
highlighting the insufficient understanding of V. destruc-
tor dispersal.

Genotype‑by‑environment interactions
Although genetic background could be excluded in 
some cases, survival could also be conditioned by 
genotype-by-environment interactions. Naturally sur-
viving honey bee colonies expressing resistance have 
often been imported and used as starting material 
for selection. However, colonies headed by imported 
queens often failed to show better resistance or sur-
vival than local controls. This phenomenon may be due 
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to genotype-by-environment interactions that favour 
the survival of locally selected colonies. Such interac-
tions can be identified by comparing colonies of a given 
population kept in their original range with colonies 
of the same population kept elsewhere under differ-
ent environmental conditions [226, 227]. Although 
their designs do not allow conclusions to be drawn on 
the occurrence of genotype-by-environment, several 
other studies suggest their involvement and convinc-
ingly show high environmental effects on survival. Low 
survival was observed for naturally surviving colonies 
imported from South America and South Africa to 
Europe, or of their hybrids with local European A. mel-
lifera [58, 200, 228–230]. Similarly, colonies from the 
surviving Avignon population in France, relocated to 
other European countries [70, 227, 231] or to Canada 
[232] did not show differences in infestation levels or 
survival rates compared to local stocks. Seemingly bet-
ter results were obtained when colonies from the ‘Rus-
sian’ lineage were imported to Germany [233]. Pure 
colonies or hybrids with local stock showed lower 
infestation levels and more damaged mites than control 
colonies [234]. However, lower infestations could be 
explained by the lower colony and brood sizes seen in 
the ‘Russian’ lineage in their new environment and not 
by a genetic resistance trait [235, 236]. In addition, low 
survival rates were observed for these imported ‘Rus-
sian’ colonies [236]. Therefore, it is likely that the low 
resistance measured in Germany corresponds to the 
lack of adaptation to the new environment.

The likely frequent occurrence of genotype-by-envi-
ronment interactions indicates that adaptation to local 
conditions plays a major role in colony survival and 
restrains the possibility to export resistant colonies to 
regions with different environments. Because of the lack 
of initial local adaptation, importing resistant colonies 
from other regions or environments bears low chances of 
success, and selecting local stock is recommended. Aside 
from the uncertain performance of the introduced stock, 
detrimental side effects such as admixture with local 
populations and the risk of introducing foreign pests and 
pathogens are problematic [18]. Genotype-by-environ-
ment interactions also make the selected colonies sus-
ceptible to local changes in environment [237], especially 
in the current context of increased climatic variations 
[238], which have direct impacts on plants and pollina-
tors [239, 240]. Therefore, programs aiming at improv-
ing colony survival should target resistant traits resilient 
to environmental changes. In addition to the choice of 
relevant traits for selection towards better survival and 
low dependency of survival on environmental factors, a 
successful selection program depends also on practical 
constraints.

Implementation of selection strategies 
in beekeeping practice
Selecting honey bee lineages that are capable of surviv-
ing V. destructor infestation would be of little interest for 
breeders if the implementation of the selection program 
was impractical, tedious or costly in resources. The biol-
ogy of the honey bee itself constitutes an obstacle, and 
the phenotyping of colonies, as shown above, is challeng-
ing. Once these obstacles are overcome, the acceptance 
and use of selected stocks depend on whether they corre-
spond to the beekeepers’ objectives in terms of efficiency 
to resist to V. destructor infestations and of other desir-
able traits.

Constraints of honey bee reproductive biology
Compared to other livestock species, selecting A. mellif-
era is difficult due to its reproductive and genetic charac-
teristics. The queen performs nuptial flights across large 
distances [241–245]. This implies that controlling mat-
ing is challenging and requires isolated mating stations 
to exclude mating with sexuals from unwanted genetic 
backgrounds [246] or artificial insemination, which 
allows an even more precise control of drones [247].

The appropriate design of honey bee selection pro-
grams that permit the calculation of reliable heritability 
and breeding values, is crucial in terms of generating 
and monitoring genetic progress. However, such strat-
egies are difficult to implement due to the complexity 
of honey bee genetics. As honey bee queens mate with 
many drones [248–250], a colony, unlike other livestock, 
is an assembly of worker subfamilies (groups of super- or 
full-sisters) rather than a single animal. Since only queens 
(i.e., the dam of the workers) are carried through the 
selection process, their breeding values need to be cal-
culated from the colony phenotype. Together with mul-
tiple mating and the haplodiploid reproductive system 
[251] of the honey bee, these biological specificities lead 
to more complex breeding value estimations compared 
to other livestock species [252–254]. The calculation of 
reliable breeding values requires knowledge of both ani-
mal genetics and honey bee biology and complex algo-
rithms. This complexity may explain why calculation of 
breeding values and heritability estimates have only been 
performed in a limited number of programs to date (see 
Additional file 2: Table S1).

Field evaluation of resistance traits
An important limitation of selecting resistance traits in 
the field is that their evaluation is tedious. Selecting for 
MNR or VSH is time-consuming, as a minimum num-
ber of infested brood cells need to be screened in order 
to generate reliable results [71, 76]. Reaching this number 
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can require the opening of several hundred brood cells. 
The lower the infestation level, the larger the number of 
cells that need to be opened. As a consequence, the colo-
nies of greatest interest, i.e. those with the lowest infesta-
tion level, are the most time-consuming to evaluate and 
sometimes cannot be phenotyped at all if the infesta-
tion level is too low. To solve this problem, for VSH, the 
desired number of cells can be manually infested [76], 
which is also time-consuming and requires maintaining 
highly infested colonies as mite donors. Therefore, this 
process can only be applied on a sufficient number of 
colonies with sufficient workforce. As shown in the first 
“Trait relevance” and second “Environmental effects on 
colony survival” sections, obtaining reliable phenotypes 
can also require repeated measurements, adding to the 
cost in time and resources, which might exceed what is 
possible for breeders. In addition to data size, a further 
limitation is data precision [64]. The methods commonly 
used to assess traits are insufficiently precise if based on 
a sample of workers that is too small or on a number of 
colonies that is too small [255].

The apparent weakness of the links between trait 
expression and colony survival (see “Link to survival” 
section), which hinders reaching selection objectives, 
can originate from variable definitions of the traits under 
selection. More precise definitions would help to stand-
ardize evaluation methods and provide more comparable 
results. Even when traits are well defined (VSH, MNR, 
hygienic behaviour towards dead brood, reduced post-
capping stage duration, infestation level), their evaluation 
is often conducted using different methods (see Addi-
tional file 1), making it difficult to compare outputs (e.g., 
phenotypes, phenotyping accuracy, repeatability, link 
with objective) between populations to obtain a general 
overview of the relevance of a trait. For example, VSH 
can be measured as the removal of manually infested 
cells [115, 182, 256] or by less effort-intensive measures 
of the changes in infestation rate of brood frames tran-
sitorily inserted into highly infested colonies before 
being returned to the test colonies [157, 186, 257–260]. 
However, with this method, it is not known whether the 
infested pupae have been removed (VSH) or whether 
the mite escaped from the cells opened by the worker 
(uncapping–recapping). Another method, using photo-
graphs of the inserted brood frame before and after being 
returned to the test colony, has also been used [114, 261]. 
It allows to determine whether the reduction in infesta-
tion measured following the opening of remaining brood 
cells correlates with brood removal or not. However, this 
approach does not indicate whether or not the removed 
brood was infested. Measures of infestation rates are also 
obtained by a variety of methods (see Additional file  1) 
that provide different values for this parameter.

Unreliable results may be obtained if the measurement 
of the trait influences its expression. This could be the 
case when combs are regularly removed from colonies to 
measure post-capping durations (see Additional file  1). 
The regulation of hive temperature is crucial for optimal 
brood development [262–264] and might be disturbed, 
thus affecting post-capping duration.

Matching expectations
The main expectation from a stock selected for resist-
ance against V. destructor is that it efficiently (in terms of 
both money and honey) protects the colonies in spite of 
the high horizontal transmission of the parasite in typical 
apiaries [148, 151, 214]. Aside from resistance, selected 
colonies should remain productive since most beekeep-
ers aim at collecting one or more hive products. The 
‘Russian’ stock tested in Germany revealed lower honey 
production, smaller population size, lower calmness dur-
ing inspection, and higher defensive behaviour than the 
local controls [235, 236, 265, 266]: as a result, the import 
of this stock was not recommended for German beekeep-
ers [233].

Detrimental traits have also been shown to appear 
in colonies that are selectively bred for resistance to V. 
destructor. In Austrian A. m. carnica colonies, a positive 
phenotypic correlation (r = + 0.17) between the infesta-
tion level and honey production was observed. In spite 
of the low coefficient of the correlation, this implies that 
colonies producing more honey also reared more brood, 
which promotes mite reproduction [267]. Such trade-offs 
may also occur in some lineages selected for VSH with 
poor brood patterns [67] and may express suboptimal 
colony development, which would hinder honey collec-
tion or pollination ability. Similarly, although artificially 
uncapped-recapped worker brood have similar adult 
longevity compared to controls [268], negative effects on 
their behaviour and performance could not be excluded 
[109]. A possible trade-off was also observed between 
MNR and honey production. Colonies selected for 
MNR were found to be smaller than controls or hybrids 
[42, 269]. In a German population selected for hygienic 
behaviour and grooming, lower colony size, lower gen-
tleness and slightly lower spring honey harvest were 
recorded compared to control colonies in various envi-
ronments [270, 271].

Perspectives towards more efficient selection
Selection against V. destructor is a complex process. The 
currently described host defence mechanisms are diverse 
and their genetic background is uncertain, as is their 
effective involvement in colony survival (Fig.  1). This is 
highlighted by publications reporting contrasting results 
on the link between traits and colony survival, as well 
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as on the heritability of these traits and therefore on the 
potential for their improvement by selection. Moreover, 
expression of resistance traits is heavily influenced by 
unknown or uncontrollable environmental factors, with 
the consequence that local selection successes cannot 
be replicated elsewhere. As long as the impact of local 
environment on the ability of the selected traits to limit 
infestation remains unknown, progress towards surviv-
ing stock will likely be limited. Finally, practical limita-
tions make selection processes tedious and limit their 
efficient implementation in the field. The available liter-
ature shows that proposals made 30 years ago still have 
to be achieved [272]. The lack of progress towards the 
selection of honey bee lineages surviving infestations by 
V. destructor is probably not due to the generation time 
of the honey bee, which is short compared to other live-
stock such as cattle, but is likely due to caveats in selec-
tion strategies and knowledge gaps in our understanding 
of resistance mechanisms.

Improving selection strategies
Given that the traits described as conferring resistance to 
honey bee colonies may exhibit regionally variable effi-
ciency in terms of improving survival or at least in limit-
ing colony infestation (see Additional file 3: Tables S2 to 
S7), an a priori choice of resistance traits to be selected in 
any given susceptible population is a hazardous strategy 
to obtain surviving colonies. Recording potential resist-
ance traits in the population targeted before initiating a 
selection program might help identify those that are most 
relevant. A further challenge to choosing relevant traits 
to be selected is that in all naturally-resistant populations 
investigated to date, various combinations of resistance 
mechanisms are thought to contribute to colony survival 
[64, 70]. Thus, a limited response to selection is expected 
when only one trait is selected, which seems to be a com-
mon procedure in current selection programs. Increasing 
the expression of a single trait to levels at which no other 
trait is required might lead to resistance, but this resist-
ance may reach the biological limits of the host [273]: if 
workers are performing one resistance behaviour with 
high intensity and frequency, they may have less time to 
perform other tasks that are also essential to colony func-
tioning. Selection for multiple resistance traits would 
thus be preferable, adding to the workload required to 
reach the selection objective.

Multiple solutions and perspectives have been pro-
posed to decrease the workload associated with pheno-
typing. Phenotype acquisition could first be facilitated by 
automated devices providing reliable image-based counts 
of mite fall or of adult infestation rates [274], for exam-
ple. Once relevant resistance traits are known, marker-
assisted selection could also help rapid evaluation of the 

genetic values of large numbers of colonies [64]. Relying 
on natural selection to obtain resistance to V. destructor 
[66] could also be a way to reduce the workload associ-
ated with phenotyping since the traits leading to survival 
do not need to be known when only survival and ability 
to reproduce are the objectives [275]. However, natural 
selection does not consistently favour high productivity, 
low defensive behaviour, behaviour on comb and a low 
propensity to swarm [60, 66, 215, 276–279], which are 
often desired by beekeepers.

If they are to be adopted broadly, selected stocks must 
indeed fulfil beekeepers’ expectations. The extent to 
which decreased performance may hinder the acceptance 
of a resistant stock by beekeepers is poorly understood. 
Surveying the objectives and expectations of beekeepers 
[280, 281], and analysing under which circumstances V. 
destructor resistance could be favoured over profitabil-
ity [281], could help define currently valued traits before 
initiating selection programs. A further challenge is that 
the desired traits may change faster than selection pro-
grams can generate the corresponding lineages, which, at 
best, takes several years. Several years are also necessary 
to take the local environmental effects on colony survival 
into account. Although this may delay reaching the final 
objective, it would make the success of the selection pro-
gram more likely.

It is not sufficient to formalize a breeding goal and to 
optimize the selection strategy to obtain resistant popu-
lations; the host genome must also include the genes that 
enable this goal to be reached. Calculating heritability for 
the desired traits ascertains whether the observed varia-
tion has a genetic origin and therefore can be improved 
by selection. Heritability estimates known to date show 
that values for resistance traits are in the range of other 
desirable production or behavioural traits [282]. Thus, 
selected resistance traits should have contributed to bal-
ance the host–parasite relationship. Selected lineages 
matching some of the beekeeper criteria were obtained 
through relatively simple selection procedures [283–289], 
whereas selecting resistance to V. destructor seems much 
more challenging, suggesting that the relevance of the 
resistant traits should be reconsidered.

Improving our understanding of resistance mechanisms
The choice of traits currently used in selection for resist-
ance derives from observations of naturally-resistant 
colonies. However, the traits or combination of traits that 
provide protection to infested colonies have not been 
empirically determined. Thus, the role of currently used 
traits towards improving survival remains hypothetical. 
Determining the role and importance of the suspected 
traits is limited by the complexity of the experimental 
designs required. The prerequisites for such tests are 
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honey bee lineages that express different trait combina-
tions at different intensities so that a comparative study 
can be performed. The multi-year duration of the tests 
required due to the relatively long generation time and 
longevity of honey bee colonies and the time required 
for V. destructor to exert an impact on colony survival 
add to the challenge. In addition, data on the genetic 
background of resistance traits to help choose traits for 
selection are lacking. Although some values are available 
(Fig. 1) and see Additional file 2: Table S1, there is a need 
to obtain additional estimates from a larger number of 
colonies and environmental conditions to provide more 
reliable baseline information on the traits that may be 
more easily and rapidly improved by selection.

Increased international collaborations among scien-
tists such as in the COLOSS network (http://www.colos 
s.org) could help develop a concerted and standardized 
approach to tackle the challenge of unveiling the complex 
mechanisms enabling colony survival [64] and environ-
mental factors influencing their expression.

In theory, the results of ongoing selection programs 
could be used to fill some of these gaps, as they rep-
resent real-life tests of the hypothesis that selected 
traits contribute to colony survival. Unfortunately, the 
lack of published data on genetic progress achieved 
and on the associated colony survival performance 
(Fig. 1) make it impossible to determine whether colony 
survival was genetically improved or whether it was 
linked to favourable environmental conditions. Even 
in research programs, controls are often not used in 
parallel to the selected population to take environmen-
tal effects into account [290]. Also problematic is the 
fact that when genetic progress is shown for a selected 
trait, implications in terms of colony survival are often 
not presented [291], hindering our understanding of 
the mechanisms involved. An improved availability of 
information on genetic parameters linked to resistance 
traits, on selection strategies used, on outcomes and 
limitations of past and current programs could not only 
provide better insights into how best to improve selec-
tion programs but also help promote currently available 
resistant lineages [292]. A more systematic publication 
of such information could be achieved by promoting 
networks and partnerships between research institutes 
and honey bee breeders. Such collaborative efforts 
would also allow inclusion of a large number of colo-
nies and environments and generation of more reliable 
data and, therefore, the development of better pheno-
types, which are crucial to enable selection progress 
towards the survival of A. mellifera colonies infested 
with V. destructor. Such collaborations were often ini-
tiated, but faded away because scientific projects are 
funded for a limited time, whereas the efforts required 

must span many years. Thus, the availability of longer-
term national funding schemes is desirable to ensure 
sustainable scientific support of breeding efforts.

Conclusions
The urgent need to identify a sustainable solution to 
the V. destructor problem conflicts with the long last-
ingness of selection programs, which span years or 
decades. Although potentially a sustainable solution 
to the ‘Varroa problem’, the current rate of progress of 
programs that focus on traits promoting the survival 
of V. destructor-infested colonies suggests that the 
strategies followed should be critically reconsidered to 
ensure that goals are reached with sufficient rapidity for 
selection to represent a valid solution. These strategies 
should be rooted in better knowledge of survival mech-
anisms and of the environmental factors influencing 
them. In addition, they should be optimally designed 
to provide progress as rapidly and efficiently as possi-
ble in terms of both time and resources. Better program 
design and, more specifically, the regular assessment 
of selection progress are required. Failure of selection 
programs is likely until the current gaps in knowledge 
about survival mechanisms are filled; thus, the sooner 
shortcomings are recognized, the faster the program 
can be re-directed.
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