0	Schweizerische Eidgenossenschaft Confédération suisse
	Confederazione Svizzera Confederaziun svizra

Federal Department of Economic Affairs, Education and Research EAER

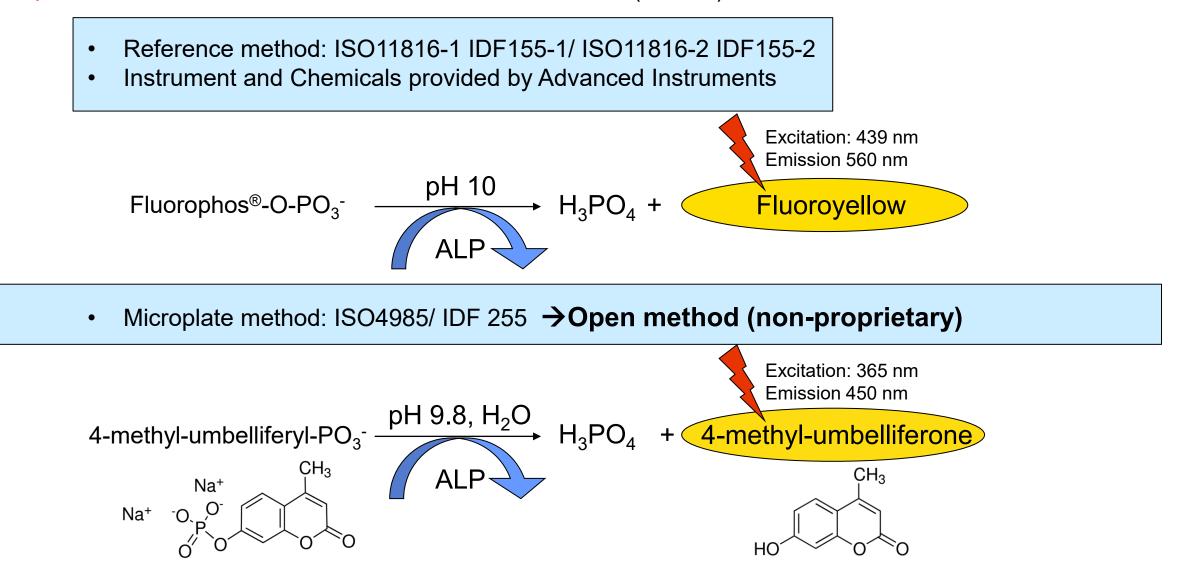
Agroscope

Milk and milk products — Determination of alkaline phosphatase activity — Fluorimetric microplate method

TECHNICALISO/TSSPECIFICATION4985

IDF/RM 255

First edition 2023-07


Determination of alkaline phosphatase activity: use, standard methods and challenges

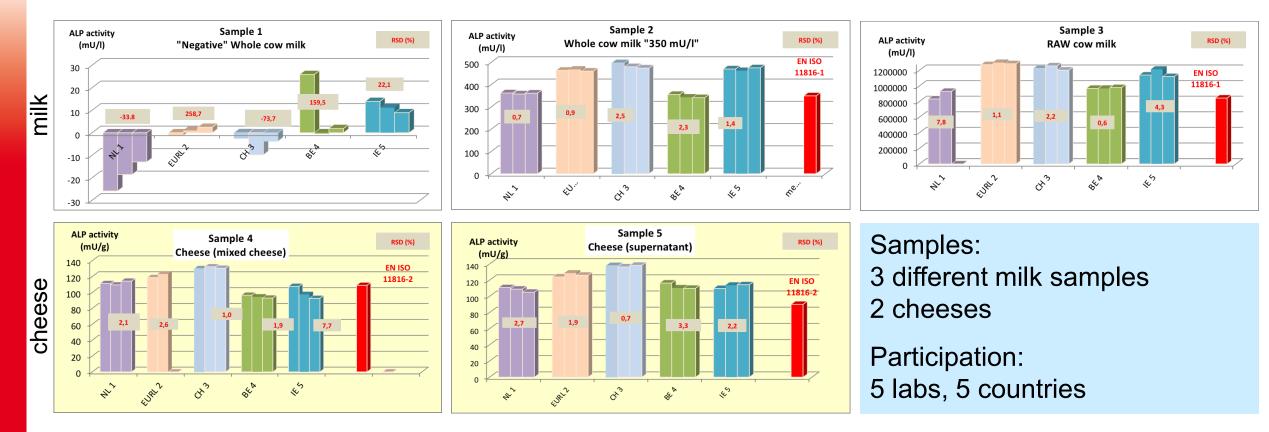
IDF Webinar, Tuesday, 14 November 2023, Lotti Egger, Cédric Brügger

Introduction

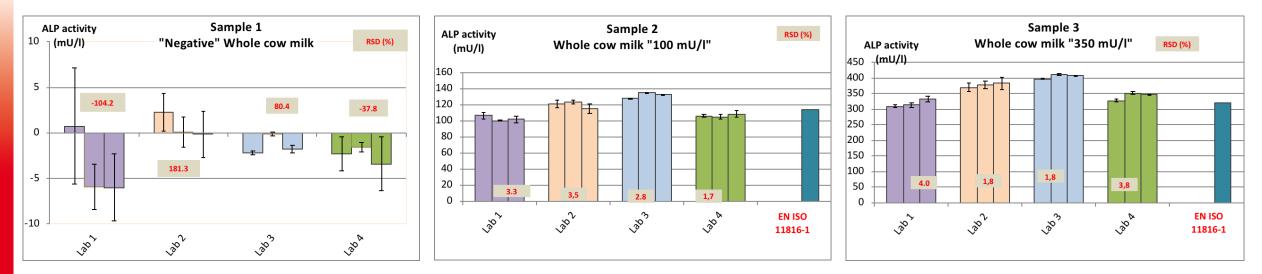

- Why a new ISO/IDF standard method for Alkaline Phosphatase activity?
 - → To date, the available methods for the determination of ALP activity for official control are the reference method ISO 11816-1/IDF155-1 and ISO 22160/IDF 209. Both having the disadvantage of being tied to a single supplier in terms of material and reagents.
- What should this new method be capable of ?
 - → Easy applicable methodology, with standard laboratory equipment and not entirely dependent on one supplier
 - \rightarrow Sensitive, with good repeatability and reproducibility
 - \rightarrow multiple samples to be run in parallel (possibility to automatize)
 - \rightarrow Good comparability with values of reference method ISO 11816
 - \rightarrow Low costs

O Method principles: Reference method_(ISO 11816) versus microplate ISO4985

Based on: Ziobro G.C., McElroy K.M., Fluorometric Detection of Active Alkaline Phosphatase and Gamma-Glutamyl Transferase in Fluid Dairy Products from Multiple Species. Journal of food protection. 2013, 76(5), pp. 892–898


Use Set 1 ISO/IDF 4985/255 Microplate ALP method: Equipment and assay protocol

Instrument:


- Fluorescence microplate reader (e.g. Molecular Device, Biotek, Labtech, Millipore...) equiped with fluorescence filters excitation/emmission at 365/450 nm
- Black 96 well plates
- Kinetic Assay in microplate:
 - Sample preparation: \rightarrow milk: no preparation; \rightarrow cheese: similar as in the reference method ISO 11816-2
 - Primary sample dilution 1:10 in 2-amino-2-methyl-1-propanol (AMP) buffer
 - Generation of blank by heating one portion of a sample of the same matrix at 95°C for 5 min
 - Pipetting 100 μL per well of sample and blank in triplicates
 - Addition of 100 μL of substrate 4-MU-Phosphate
 - Kinetic fluorescence measurement (365/450 nm) at 37°C for 15 min
 - Calculation of slope from linear part of the curve
 - Calculation of activity by using the standard curve measured with the fluorescent product 4-MU

Pilot study: April 2017

→ Good reapetability and good comparability with ISO 11816-1 and 11816-2 for milk and cheese samples

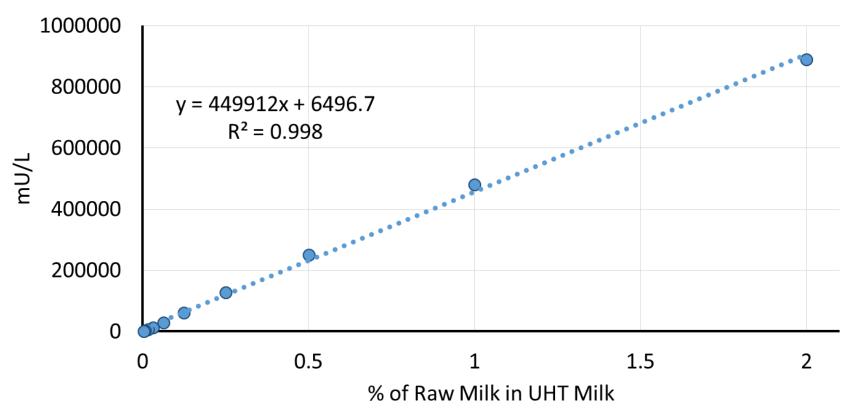
Collaborative study: September 2017

Samples: 3 different milk samples; Participation: 4 labs, 4 countries

→ Again: good reapetability and good comparability with ISO 11816-1 and 11816-2

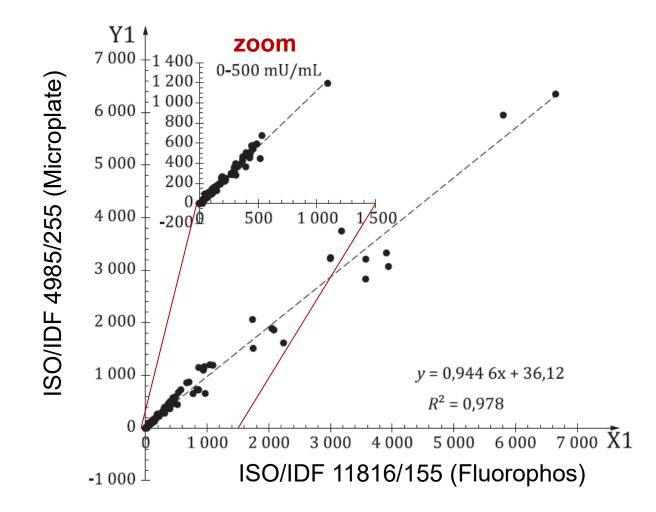
 \rightarrow But: not enough participants for the validation of a full ISO/IDF standard method

→ Publication as TS ISO/IDF 4985/255 in 2023

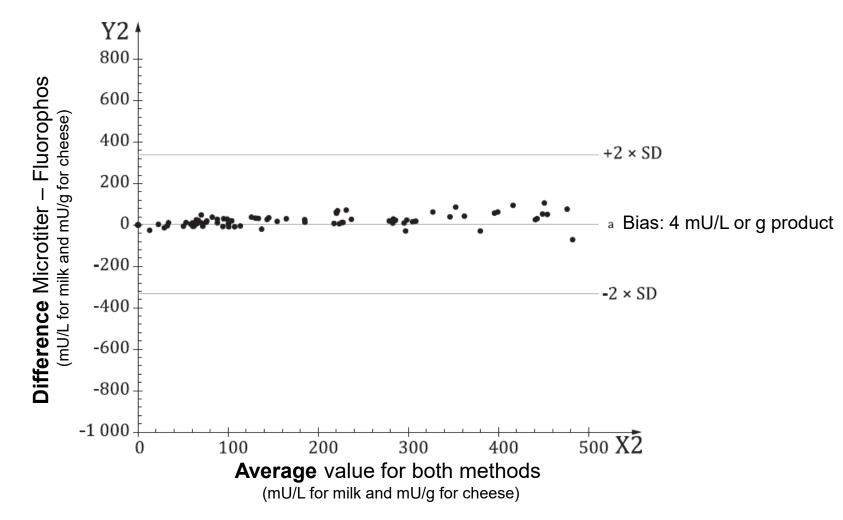

C Statistical evaluation of ISO/IDF 4985/255

Microplate method (ISO TS 4985-2023)										Fluorophos (Milk: ISO 11816-1-2022; Cheese: ISO 118-2:2022)									
Milk (mU/I)			Cheese	e (mU/g)		Milk (Milk target value mU/L				Cheese (mean value mU/g)								
lab code				lab code															
	April	sample 2	sample 3	sample 4	sample 5	Sept.	sample 2	sample 3	40	100	350	500	994	1974	136	4408	2608		
	1	360.81	4405.99	111.66	108.14	3	131.5	404.8											
	2	464.47	6428.62	121.04	126.17	4	106.0	342.7											
	3	483.99	6141.69	130.91	137.44	2	119.6	376.8											
[4	346.78	4858.82	94.63	112.14														
	5	469.41	5787.86	99.26	112.50	1	102.7	318.7											
	p =	5	5	5	5		4	4											
	average	425.09	5524.59	111.50	120.78		114.92	360.76											
	std dev	65.67	860.51	15.02	12.23		13.23	37.79											
	sr =	7.36	179.83	4.07	2.63		3.38	10.35											
re	lative sr =	1.73%	3.21%	3.67%	2.21%		2.94%	0.03											
	r =	20.61	503.52	11.40	7.38		9.46	28.98	11	17	32	37	115	194	14	732	373		
relative repe	atability=	4.8%	9.0%	10.3%	6.2%		8.2%	8.0%	10%	5%	3%	2%	12%	10%	10%	17%	14%		
	sR =	65.94	835.38	15.65	12.42		13.51	38.72											
rel	ative sR =	15.51%	14.91%	14.12%	10.41%		11.76%	10.73%											
	R =	184.64	2339.05	43.81	34.77		37.84	108.43											
relative reproc	ducibility=	43.4%	41.7%	39.5%	29.2%		32.9%	30.1%											
Pilot study						labo- e study													

 \rightarrow Similar repeatability and reproducibility for milk and cheese samples


Sensitivity: Lower limit of detection

Dilutions of Raw Milk


Detection of 0.003 % of Raw Milk in UHT Milk possible \rightarrow similar as Reference method Calculated limit of detection: 15 mU/L

Method Comparison I: ISO/IDF 4985/255 versus Reference method

High correlation between ISO/IDF 4985/255 and the reference method ISO/IDF 11816/155: R² 0.978, slope 0.944, including milk and cheese samples

Omeganison II: Reference method versus ISO/IDF 4985/255

Average expected bias between methods: 4 mU/L or mU/g of product

Method comparison: Bland, M.J., Altman, D.G. Statistical methods for assessing agreement between two methods of clinical measurement. The Lancet. 1986, 327(8476), pp. 307–310. doi: http://dx.doi.org/10.1016/S0140-6736(86)90837-8

Summary

- ISO/IDF TS 4985/255 Microplate ALP method is an open method with commercially available products and equipment, allowing multiple samples to be run in parallel
- Repeatability and reproducibility in milk and cheese was demonstrated in a pilot study with 5 labs and in a colaborative study with 4 labs
- ALP activities obtained with ISO /IDF 4985/255 (microplate) and ISO/IDF 11816/155 (Fluorophos) are highly correlated: R² 0.98, slope 0.94) and are within 2 Standard deviations in >95 % of cases applying the Bland-Altmann method for comparison
- ISO/IDF 4985/255 is at the moment available as TS
- → As soon as enough laboratories are willing to participate, a colaborative study will be organized in order to publish the method as full ISO/IDF standard

Thank you for your attention

Lotti Egger charlotte.egger@agroscope.admin.ch

Agroscope good food, healthy environment www.agroscope.admin.ch

