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Abstract
Throughout the years, most plant genomic studies were
focused on nuclear chromosomes. Extrachromosomal circular
DNA (eccDNA) has largely been neglected for decades since
its discovery in 1965. While initial research showed that
eccDNAs can originate from highly repetitive sequences,
recent findings show that many regions of the genome can
contribute to the eccDNA pool. Currently, the biological func-
tions of eccDNAs, if any, are a mystery but recent studies have
indicated that they can be regulated by different genomic loci
and contribute to stress response and adaptation. In this
review, we outline current relevant technological developments
facilitating eccDNA identification and the latest discoveries
about eccDNAs in plants. Finally, we explore the probable
functions and future research directions that could be under-
taken with respect to different eccDNA sources.
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Introduction
In eukaryotic plant cells, the majority of cellular DNA is
organized in chromosomes and associated with histone
www.sciencedirect.com
proteins inside the nucleus. Nevertheless, a part of the
cellular DNA is not included in these chromosomes and
exists as extrachromosomal circular DNA (eccDNA).
The eccDNA was initially identified in boar sperm DNA
in 1965, and 20 years later in plants, in wheat callus and
tobacco leaf [1,2]. Here, to avoid ambiguity and incon-
sistency between the many terms used to describe
eccDNA, we refer to the recent broad classification to

describe eccDNA as all the circular DNA in a plant cell,
including, but not limited to, small polydisperse circular
DNA (spcDNA), extrachromosomal telomeric circles (t-
circles), microDNA, double minutes, and extrachromo-
somal DNA (ecDNA) [3].

Owing to technological restrictions, we have yet only
seen the tip of the iceberg when it comes to these
molecules. Indeed, all plant species tested so far contain
eccDNA showing a diversity of genomic origins, size
ranges, and structures [1,2,4e8]. In recent years,

genomic approaches and novel bioinformatic pipelines
have led to a revival in eccDNA investigations opening
new avenues of research. In this review, we present the
current state of knowledge about eccDNAs in plants and
their links to biological functions. We anticipate that
this concise collection of papers will motivate more
scientists to join the area of eccDNA biology to answer
long-standing questions about these neglected nucleic
acid molecules in plants.

The eccDNA identification in plants: a
revival thanks to genomic and bioinformatic
advances
Initially, plant eccDNAs were visualized by electron
microscopy, allowing their detection in wheat and beans.
This technique only allowed to investigate the presence,
structure, and size of eccDNA but did not allow the
identification of their sequence [9,10] Nowadays,
advanced electron microscopes, such as scanning elec-
tron microscope (SEM) and transmission electron mi-
croscope (TEM), combined with molecular localization
techniques like fluorescence and in situ hybridization
(FISH) allow the tracking of specific eccDNAs [11]. In
plants, in vivo eccDNA visualization has so far not been

established. For that purpose, the ANCHORTM system,
which allows fluorescence-based real-time single DNA
locus detection in planta, may provide the opportunity to
track their genesis, intra-cellular and nuclear localization,
and potential mobility via live-cell eccDNA imaging
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2 Epigenetics and gene regulation
[12]. Two-dimensional (2D) gel electrophoresis was also
used for separating eccDNAs from linear molecules
based on migration patterns resulting in distinct arcs.
This allowed the distinction of different structural forms
of eccDNA: supercoiled circles and open circles.
Applying this method, many eccDNAs from a wide range
of plant species (Fabaceae, Poaceae, and Brassicaceae)
have been recorded indicating the ubiquity of these

circular molecules in plant cells [4,8]. Although those
methods contributed to the identification of numerous
eccDNAs, these gel-based approaches have limitations.
For instance, because they depend on the hybridization
with specific probes, they only allow the detection of
selected targets and do not provide information at single-
base resolution.

The rapid development of high-throughput sequencing
(HTS) techniques and bioinformatic pipelines has
opened the door to the full landscape of plants eccDNAs.

Recently, several molecular methods that allow the
detection of eccDNA based on different sequencing
sources have been developed. Indeed, they have suc-
cessfully been applied to numerous plant species:
Arabidopsis [5,6,13e15], wheat [6], beet [7], rice [16,17],
peanut [18], potato [19], poplar [20], and carrot [21]
providing a broad overview on the diverse eccDNA
Figure 1

Overview of the main technological processes used for eccDNA identifi
ecules are digested, and eccDNA molecules are amplified by random-primed
are submitted to either short-read and/or long-read sequencing. (b) Mapping, a
read sequencing. (c) Mapping and clustering algorithms for detecting eccDNA
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components in plant cells. Although differences exist
between the protocols, the procedures are straightfor-
ward. Generally, linear genomic DNA is digested, and
circular DNA is amplified by random-primed rolling
circle amplification (RCA). This approach allows the
amplification of low content eccDNA, thereby increasing
sensitivity, it also leads to linearization of circles prior to
sequencing. The DNA is then debranched to remove

complex DNA structures. Debranched eccDNAs then go
into sequencing library preparation for short- (Illumina)
or long-read sequencing (e.g., Oxford Nanopore or PacBio
technology) (Figure 1a). An elaborate protocol that pro-
vides all the detailed wet lab steps has been described by
Lanciano et al. [22]. The RCA is a linear amplification
and quantification is thus possible. However, this process
can induce length-dependent amplification bias so that
the absolute quantification of DNA circles of very
different sizes can be affected [23]. While large eccDNAs
have been detected in cancer cells (for a review see

Ref. [24]), there is no evidence so far that such large
circles (e.g., the 400 kb eccDNAs found in Amaranthus
palmeri [11]) would be detected using classical RCA-
based eccDNA-seq in plants. Of note, a protocol
without RCA but using a centrifugation in CsCl/ethidium
bromide gradients and exonuclease V digestion of linear
DNA has been developed (circulome-seq [25]). It has,
cation by HTS in plants. (a) Following DNA extraction, linear DNA mol-
rolling circle amplification (RCA). After debranching, these DNA fragments
ssembly, and clustering algorithms for detecting eccDNA loci using short-
loci using long-read sequencing.
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eccDNA in plants Peng et al. 3
however, not yet been applied to plants. Finally, a recent
preprint reports on the pulse-field gel electrophoresis
enrichment for eccDNA, a technique named CRISPR-
CATCH, enabled by the CRISPR-guided linearization
of the eccDNA and subsequent fast migration on the gel.
This technique, however, requires the design of a guide
RNA corresponding to a specific eccDNA sequence [26].
New strategies aiming at sequencing eccDNA with long

read without prior amplification step are likely to be
developed in the near future.

To date, several bioinformatic toolkits and pipelines have
been developed and applied for genome-wide identifica-
tion of eccDNAs fromplant species with genomes ranging
from hundredsMb to dozens Gb (Table 1) [6,7,15,17]. So
far, most sequencing-based eccDNA detection ap-
proaches use short sequencing reads as an input to then
assess the genomic origins of eccDNAs. To identify reads
derived from circular DNA by mapping strategy, these

pipelines look for reads derived from junction sites
resulting from eccDNA circularization. First, reads are
mapped to the reference genome, and then both discor-
dant reads and split reads are identified. By combining
these different information sources and overall read
coverage over genomic regions, it is possible to identify
high confidence eccDNA candidates (Figure 1b, map-
ping). The mapping model is the most direct way to
detect eccDNAs with their start and end information
when a reference genome is available. Well-assembled
genomes are expected to give better results because

genome gaps might prevent discordant and split reads
detection, resulting in partial or lack of circle identifica-
tion. If no reference genome is available, an alternative
approach is to perform a de novo sequence assembly. The
raw reads can first be assembled into long contigs and then
clustered into consensus eccDNA candidates when
applying ecc_finder (Figure 1b, assembly) [6]. Further-
more, ECCsplorer supports a comparative clustering
module when control data are provided (Figure 1b, clus-
tering) [7]. This comparative strategy intends to filter
Table 1

Bioinformatic toolbox to detect eccDNAs in plants

Name CIDER-Seq2 [15] ECCsplor

Year 2020 2022
Reads type Long-read Short-read
Reference free Yes Yes
Mapping aligner MUSCLE segemehl

Short-read assembly tool / /
Long-read split tool DeConcat /
Clustering tool CD-HIT RepeatExp
Strategies Mapping and/or c

lustering
Mapping an

clustering
Plant applied Arabidopsis Arabidopsis
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background noise originating from non-circular genomic
DNA. When both reference genome and control data are
unavailable, the conventional assembly and clustering
approach are the onlyway to detect eccDNAs.However, if
genomic regions fromwhich eccDNAs are derived contain
tandem repeat sequences or if multiple sizes of circles are
derived from the same region, the results may lose accu-
racy. In our own analyses, we have observed that de novo
assemblies often yield chimeric sequences which seem to
be bioinformatic artifacts. This is likely caused by the
highly repetitive content of eccDNA sequences. In this
case, long-read sequencing has an innate advantage
because a single read can cover a circle multiple times.
This single read can then be split into individual mono-
mers, allowing the generation of the circle consensus
sequence (Figure 1c). Based on long-read data, around
20% of eccDNAs were found to be chimeric in the human
germline, suggesting a complexity not anticipated by
short-read eccDNA-seq approaches [27]. In summary,

various approaches can be combined to get a very high
confidence eccDNA library allowing subsequent wet-lab
validation steps. We thus encourage researchers to
combine different sequencing methods and detection
strategies in order to obtain the most complete view of
their eccDNA repertoire.

Genomic regions that spawn eccDNAs
Generally, in plants, eccDNAs are heterogeneous in size,
ranging from hundreds of base pairs to several hundred-
thousand base pairs, and most of them appear to be
below 20 kb [15]. In Arabidopsis, the eccDNA size dis-
tribution shows a preferential enrichment in small re-
gions (less than 500 bp) and in the 2 kbe4 kb size range
[5,6,15]. It is likely that small eccDNAs are missed by all
these sequencing approaches as the sequencing reads
can be longer than the actual eccDNA. Nevertheless,
these sequencing approaches provide a higher sensitivity

now showing that eccDNAs can spawn from many
genomic regions, including both genic and intergenic
regions, and not only from satellites and repeated
er [7] ecc_finder [6] ecc_caller [17]

2021 2021
Short-read, long-read Short-read
Yes No
segemehl, BWA, Bowtie2,

minimap2
BWA

Unicycler /
TideHunter /

lorer2 CD-HIT /
d/or Mapping or assembly

and clustering
Mapping

, Beet Arabidopsis, Wheat Arabidopsis, Rice
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4 Epigenetics and gene regulation
sequences [5e7] (Figure 2). In Arabidopsis, more than
60% of eccDNA overlap with genic or pseudogenic re-
gions. However, most of those eccDNA boundaries start
at or end within intron regions indicating that these
eccDNAs do generally not code for full-length proteins
[5]. Notably, the eccDNA repertoire can vary between
different tissues or cell types of the same species.
Tissue-specific eccDNAs can be found in Arabidopsis
stem, leaf, flower, and roots. Similarly, differences in
eccDNA accumulations were observed in rice seed, leaf,
and callus [5,13]. This suggests that specific pathways
and mechanisms are involved in eccDNA formation in
different cell types. The eccDNA repertoire is thus dy-
namic throughout plant development.

The eccDNAs from organelles
Protocols designed to enrich circular DNA also led to an
accumulation of eccDNAs derived from organelles that
have circular genomes and sub-genomes [28]. Therefore,
it is inevitable that such DNAwill also be included in the
sequencing data. Indeed, approximatively 1%e10% of
the reads contained mitochondrial and chloroplast-

derived sequences in Arabidopsis when CIDER-Seq was
Figure 2

Currently known different genomic regions that can spawn eccDNA in p
and can also contain circular sub-genomes. Telomeres, centromeres, and rDN
LTR-RTs form eccDNA with single or double LTRs from eclDNA by HR, NHE
cleavage followed by the formation of a circular intermediate. Other DNATEs c
eccDNAs in Arabidopsis. Huge eccDNAs containing 59 genes have so far on
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applied [15]. Mitochondrial and plastid DNA can also be
found in the nuclear genome which can complicate the
identification of the true origins of these circles. For
instance, Arabidopsis contains mitochondrial and plastid
DNA on the chromosomes 2 and 4, respectively [29,30].
These insertions resulted from intracellular gene trans-
fer (IGT) directly from mitochondrial and plastid ge-
nomes [31]. Similarly, circular chloroplast sequences of

over 20 kb have been detected in wheat [6]; however, it
is unclear whether these eccDNAs originate from or-
ganelles and/or from the nuclear genome.

Repetitive genomic regions
Initially, all detected eccDNAs were originated from
repetitive genomic sequences, most notably derived
from ribosomal DNA (rDNA), which is organized in
large arrays of tandem repeats [32]. In wheat, 18S rDNA
can form large circles of 40 kb in length [6]. Telomeres
are also a type of highly repetitive short sequences
present at the ends of linear DNA molecules which can
spawn eccDNAs termed t-circles [8]. Interestingly, the
DNA repair complex KU70/KU80 heterodimer specif-

ically inhibits t-circles formation but has no effect on
lants. Organelles contain circular mitochondrial and chloroplast genomes
A contain short tandem repeat sequences that can spawn repeat circles.
J, or autointegration. Helitron element transposition starts with ssDNA
an also form eccDNA. Genic repeated regions, such as tRNAs, can spawn
ly been found in Amaranthus palmeri.
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www.sciencedirect.com/science/journal/13695266


eccDNA in plants Peng et al. 5
centromeric and rDNA-derived eccDNAs. Indeed, Ku
defective plants accumulate an increased number of t-
circles indicating that Ku specifically regulates homol-
ogous recombination (HR) at Arabidopsis telomeres [33].
Centromeres in plants are often composed of tandemly
repeated DNA sequences termed centromeric satel-
lites. It was shown that satellites flanked with direct
repeats spawn eccDNAs in Arabidopsis and sugarcane

[33,34]. These findings suggest that tandem repeats are
susceptible to excision as extrachromosomal circles, a
process also reported in the animal kingdom, including
flies and humans [35,36].

Next to tandem repeats, another class of repeats that
can spawn eccDNAs are transposable elements (TEs).
Interestingly, different classes of TEs have their own
way of contributing to the eccDNA pool. TEs are
distinguished into two classes based on their trans-
position mode: retrotransposons and DNA transposons

(DNA-TEs). During the life cycle of long terminal
repeat retrotransposons (LTR-RTs), the reverse tran-
scriptase produces extrachromosomal linear DNA
(eclDNA) that can lead to the formation of eccDNA
(Figure 2). It has been suggested that these eccDNAs
can result from (i) self-ligation via non-homologous end
joining (NHEJ) resulting in double-LTR circles; (ii) HR
producing single LTR circles; or (iii) LTR-
autointegration eccDNA resulting in single LTR or
two separate LTR circles [37]. In plants, the mobiliza-
tion of different families of LTR-RTs has been found to

lead to the accumulation of eccDNAs, for example,
Évadé (EVD/ATCOPIA93) [13] and ONSEN (ATCO-
PIA78) [14,16] in Arabidopsis; Tos17, Tos5/Osr13/Houba,
and Osr4/PopRice in rice [13]; Nightshade in potato [19];
Rider in tomato [38]; Tto1 in tobacco [39]; Gagarin in
sunflower [40]; and MIG in spring triticale [41]. The
situation is a bit less clear for DNA-TEs. Most of the
DNA-TEs move via “cut and paste” which means they
splice themselves and jump into a new position in the
genome. In the case of the Mu and Zuhe DNA-TEs, it
was found that they can also produce eccDNA when
they are excised from the genome [18,42]. Helitrons

seem to transpose through a “peel and paste” mecha-
nism in which they can form an eccDNA intermediate
by peeling off one DNA strand and copying themselves
via rolling circle replication [43,44]. Finally, TE mobili-
zation can also cause large genomic changes as they can
lead to chromosome breakage which can result in the
formation of eccDNAs [45,46].

In most of these cases, the eccDNA forms are thought to
be dead-end by-products of the (retro)transposition
cycle that are not able to reintegrate into the genome.

Their detection nevertheless constitutes a diagnosis for
their activity. The functions of these TE-derived
eccDNAs are currently largely unknown and lead to
different questions: Do they contribute to a TE’s life
www.sciencedirect.com
cycle? Are they the product of the genomic defense
response of the plant?

Genic regions
In contrast to human cells, eccDNAs have rarely been
described to spawn from genic regions in plants [36]. In
Arabidopsis, tRNA gene fragments can frequently be
found within eccDNAs suggesting a role in protein
synthesis [5]. In contrast to mammalian cancer cells or
yeast, reports on eccDNAs containing full endogenous
protein-coding genes are rare in plants. One notable
exception is an almost 400 kb eccDNA harboring 59

genes that were discovered in glyphosate-resistant
A. palmeri, a crop weed. One of these genes encodes a 5-
enolpyruvylshikimate-3-phosphate synthase (EPSPS)
which confers resistance to glyphosate. Notably, 41 of
the genes encoded in this eccDNA are transcribed upon
glyphosate exposure. Furthermore, these large eccDNA
molecules can be inherited possibly through chromo-
some tethering as it has been proposed in yeast [11,47].

The eccDNAs as vehicles for gene
amplification, a role in rapid adaptation?
Even though eccDNAs have been known to exist in
plant genomes for quite some time, only now we started
to have a more complete repertoire of genomic regions
that produce eccDNA. And yet, many open questions
about eccDNA biogenesis and function remain to be
investigated: What are the positive and negative regu-
lators of eccDNA biogenesis? Are there feedback loops

that prevent overaccumulation? If yes, how can a plant
sense a specific eccDNA quantity? To answer these
questions, forward genetic mutant screens for eccDNA
accumulation in Arabidopsis could provide valuable in-
formation. In addition, candidate gene approaches
focusing on DNA repair could be helpful, albeit they
showed limited success in yeast [48]. It is notable that
in the case of rDNA in yeast, the genomic rDNA copy
number showed a strong negative correlation to rDNA-
derived eccDNA quantity [49]. In yeast, replication
fork barrier protein Fob1 binding to rDNA intergenic

spacer sequence can induce double-strand breaks and
DNA circulation [50,51]. Cells with fewer rDNA copies
have been shown to create additional eccDNA in a
replication-dependent way, hinting that eccDNA might
be integrated to raise the rDNA copy number [52].
Notably, genomic rDNA copy loss is concomitant with
an increase of eccDNA. It remains to be tested if similar
mechanisms exist in plants. Telomere rings and loops
seem to be frequent telomere maintenance factors. For
instance, a study in human cells has shown a strong
correlation between telomere shortening and telomere

eccDNA formation [53]. It seems that eccDNA is
involved in regulating copy number variations. Indeed,
the eccDNA harboring EPSPS can also be passed on to
germ cells independently of the chromosomes resulting
in heritable glyphosate resistance [11]. Similarly, in
Current Opinion in Plant Biology 2022, 69:102263
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6 Epigenetics and gene regulation
cancer cells, oncogene-containing eccDNAs segregate
unequally into daughter cells contributing to the dy-
namics of disease evolution [54,55]. Owing to the
absence of centromeres, eccDNA segregation can be
heterogenic resulting in progeny cells containing
different eccDNA copy numbers. Cells harboring a high
proportion of these eccDNAs may have a selective
advantage and may thus be more adaptable to certain

environments. There is currently little information on
how eccDNAs are transmitted during cell division,
although their inheritance most likely follows a non-
Mendelian behavior. Like supernumerary B chromo-
somes, a balance between their influence on host fitness
and their transmission rate could determine their fre-
quency in a population [56].

Overall, because eccDNAs rarely seem to contain genes
in plants, it is difficult to link eccDNAs with direct
functions. Clearly, eccDNAs can represent a source of

gene amplification and thus allow for rapid adaptation to
environmental challenges, as this was shown for yeast
leading to tolerance to copper and A. palmeri with a gain
of herbicide tolerance [57,58]. Interestingly, in yeast,
eccDNA formation can be transcription dependent. It
would be of great interest to now systematically test
whether stressed plants show a similar behavior
providing an avenue for rapid adaptation. Furthermore,
TEs provide a powerful link between stress and
eccDNA biogenesis. For instance, heat stress promotes
the production of eccDNA derived from the heat-stress

responsive ONSEN retrotransposon in Arabidopsis
[14,16], drought stress increases the Rider eccDNA in
tomato [38], and cold stress repress the Nightshade
eccDNA formation in potato [19]. These derivatives of
(potentially) active TEs may provide substrates for
DNA integration, displacement, recombination, and
gene capture allowing plants to rapidly evolve novel
responses to stresses.
The eccDNAs as triggers for structural
variations, also in plants?
Chromothripsis describes the chromosomal breakage
induced by genomic stresses that can lead to large circle
formation. This chromosome aberration has been found
in triticale after treatments causing strong chemical

stress [59]. In mammals, chromothripsis is common in
cancer cells, and there is a growing literature describing
the role of eccDNA in tumor pathogenesis (for a review
see Ref. [24]). In these cells, eccDNAs, notably because
of their different chromatin regulations, contribute to
gene amplification, drug resistance, and accelerate
tumorigenesis. In neuroblastoma, eccDNAs are further
considered a major source of somatic rearrangement of
the genome [60]. In cattle, eccDNA is thought to have
induced copy number variation at the KIT locus, giving
rise to different color-sidedness phenotypes in cows

[61]. In plants, such effects of eccDNA have not yet
Current Opinion in Plant Biology 2022, 69:102263
been documented, and it remains to be investigated if
such events also occur under natural circumstances and
at which frequency to assess the biological relevance of
such findings.

The eccDNAs and epigenetic regulation
Finally, there could be an attractive role to be played for
eccDNAs in plant epigenetics. Plants can be highly
sensitive to gene copy number changes, often resulting
in efficient gene silencing [62]. It would be surprising, if
eccDNAs were not also a source for small interfering
RNAs that then could target mRNAs for degradation or
promote DNA methylation at homologous sequences.
This could provide an attractive additional source for
genomic regulation at numerous possible levels. Indeed,

some studies suggest an interplay between DNA
methylation and eccDNAs. For instance, treatments
with DNA methylation inhibitors or defects in methyl-
transferases effectively reducing DNA methylation can
promote rDNA eccDNA formation via recombination in
human cells [63]. Similarly, plants in which DNA
methylation was reduced by DNA methylation in-
hibitors resulted in LTR-RTs bursts and TE-derived
eccDNA accumulation [16,64]. Fascinating research in
mammalian cells revealed that by simulating functional
eccDNA, artificial eccDNA can express small regulatory

RNAs such as microRNA and small interfering RNAs.
Those small eccDNAs contain miRNA genes that yield
mature miRNA that suppress endogenous mRNA tar-
gets [65]. We expect that this kind of feedback could
also be involved in TE repression and gene regulation.
As active TEs form eccDNA containing either a copy or
partial sequences of the TE, the circles may act as a
silencing sensor for RNA-directed DNA methylation
(RdDM). Recently, reported DNA methylation-free
Arabidopsis lines could be an ideal resource for future
studies [66]. Concerning the epigenetic status of the

eccDNAs themselves, there is little evidence in plants.
Indirect evidence, through methylation-sensitive
Southern bot, suggests a lack of DNA methylation for
the heat-induced ONSEN eccDNA in Arabidopsis [67].
In cancer cells, ATAC-seq studies indicate that the
eccDNA chromatin accessibility is the highest in the
cell, notably at oncogenes, supporting the fact that
eccDNAs promote oncogene expression in these cells
[68]. Future studies are needed to unravel the chro-
matin accessibility of eccDNA in plants.
Conclusion
Currently, eccDNAs in plants and other eukaryotes are
undergoing a revival providing intriguing recent discov-
eries in plant molecular biology. Yet, even after several
decades of studies, their potential biological functions

remain unclear. In the last five years, thanks to the ad-
vances in HTS and bioinformatics tools, significant pro-
gresses have been made in this field. In comparison with
short-read sequencing, long-read sequencing provides
www.sciencedirect.com
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eccDNA in plants Peng et al. 7
significant benefits and a higher level of confidence to
detect eccDNA variations originating from repetitive
regions. Short reads may, on the other hand, be more
suitable for quantification. We anticipate that eccDNA
detection methods integrating short and long-read data
will foster the characterization of the eccDNA repertoire
in more species and in developmental and stress condi-
tions. It is now clear that eccDNAs can originate from

more loci than only repeated regions and can be used as
markers of TEs mobilization. However, the role of
eccDNA during TEs mobilization remains unknown. It
seems that they may be side products of eclDNA that are
ligated by plant defense mechanisms. Currently, there
are no indications suggesting that any of the circles re-
ported in plants so far can integrate back into the genome
or aid in the integration of TEs. In addition, we do not
know how plant cells degrade these molecular structures.
We hypothesize that this kind of feedback is also involved
in TE repression, acting as potential a biosensor of

RdDM. Certain stresses have shown a strong correlation
with the generation of eccDNAs yeast and mammalian
cells. The scale at which eccDNAs may provide a selec-
tive advantage to plants now remains to be tested.
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